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Abstract: Hydraulic infrastructures are susceptible to deformation over time, necessitating reliable
monitoring and prediction methods. In this study, we address this challenge by proposing a novel
approach based on the combination of Variational Mode Decomposition (VMD), Convolutional Neu-
ral Network (CNN), and Long Short-Term Memory (LSTM) methods for Global Navigation Satellite
Systems (GNSS) deformation monitoring and prediction modeling. The VMD method is utilized to
decompose the complex deformation signals into intrinsic mode functions, which are then fed into a
CNN method for feature extraction. The extracted features are input into an LSTM method to capture
temporal dependencies and make predictions. The experimental results demonstrate that the pro-
posed VMD-CNN-LSTM method exhibits an improvement by about 75%. This research contributes to
the advancement of deformation monitoring technologies in water conservancy engineering, offering
a promising solution for proactive maintenance and risk mitigation strategies.

Keywords: Variational Mode Decomposition; Convolutional Neural Network; Long Short-Term
Memory; prediction; GNSS; hydraulic structures; deformation monitoring

1. Introduction

Deformation monitoring is crucial for the management and maintenance of hydraulic
structures. Structural damage may lead to disasters during their service life. Therefore,
the monitoring and prediction of structural status help take corresponding repair and
reinforcement measures [1,2]. Monitoring provides engineers with scientific data to extend
the lifespan of structures, reduce the risk of accidents, and ensure the safety of people’s
lives and properties. Furthermore, deformation monitoring also serves as a vital reference
for engineering design and construction, enabling early detection of issues and hazards,
thereby enhancing the quality and reliability of hydraulic structures.

Since 1990, GNSS has gradually been applied to the deformation monitoring for
hydraulic structures due to its advantages of all-weather, high precision, and real-time
performance [3–8]. However, the GNSS time series of hydraulic structures contains both
long-term crustal movement periodicity and the periodic characteristics of the actual
deformation contaminated by various noises, which pose challenges for its modeling and
prediction. Furthermore, the mixed periodic characteristics and the separation of signals
present a significant challenge in modeling and prediction.

There are many kinds of methods for the prediction of GNSS deformation monitor-
ing. The Kalman filter is a Bayesian estimation method, which is suitable for introducing
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state constraints and handling system errors [9–13], but it may face challenges in com-
plex environments. The gray model is suitable for analyzing and modeling incomplete
systems [14–18], but it is mainly used for short-term and exponential growth predictions.
The Autoregressive Integrated Moving Average (ARIMA) method can extract the auto-
correlation of time series [19–23], but it requires the time series to be stable and can only
capture linear relationships. Multiple regression analysis is simple and easy to use with
high accuracy [24–28], but it has issues with multicollinearity and lacks causal inference
capability. Genetic algorithms are suitable for handling complex problems and situations
lacking mathematical expressions [29–33], but they require special definitions, and parame-
ter adjustments, and cannot guarantee the quality of solutions. Machine learning methods
combined with historical data for prediction may amplify errors in high-dimensional data,
leading to reduced training accuracy, such as LSTM [34–36], BP [37–39], CNN [40–42], and
so on. Considering the characteristics and limitations of these methods, it is important to
choose the appropriate modeling method based on specific situations to improve predictive
accuracy and effectiveness in practical applications.

This study aims to integrate the advantages of signal decomposition, feature extraction,
and sequential modeling to effectively capture the complex temporal patterns in GNSS time
series related to hydraulic structures. In this study, we propose a novel approach based on
VMD, CNN, and LSTM to address the limitations of existing methods by leveraging the
strengths of each component in the model architecture. The VMD algorithm is employed to
decompose the original time series data into intrinsic mode functions, effectively capturing
the underlying oscillatory modes and trends in the data. The CNN component is utilized
to extract local features from the decomposed sequences, enabling the model to learn
important patterns at different scales. The extracted features are then fed into an LSTM
model, known for its ability to capture long-term dependencies in sequential data.

The paper is divided into 5 sections. Section 2 discusses the methods used and
introduces the principles, processes, and details of the methods used in this study. Section 3
validates the effectiveness and superiority of the proposed methods through experiments.
Section 4 summarizes the rationality, superiority, and possible issues of the proposed
methods. Section 5 concludes the entire paper, providing analysis and conclusions.

2. Methods

The proposed method utilizes a comprehensive approach for the prediction of GNSS
deformation monitoring in hydraulic engineering. It offers a robust framework for feature
extraction, representation learning, and long-term sequence modeling, enabling accurate
and proactive deformation prediction within hydraulic structures. The workflow integrates
VMD, CNN, and LSTM methods to capture spatial–temporal patterns and dependencies,
which are presented in Figure 1.

Figure 1. The proposed schemes for data processing.
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This methodological overview sets the stage for a detailed description of each com-
ponent and its role in the prediction process of GNSS deformation monitoring in hy-
draulic structures.

2.1. VMD

The VMD method is utilized to decompose complex signals into basic functions
with diverse forms and different frequency ranges. Its primary purpose is to extract low-
frequency and high-frequency modes for signal analysis and processing. The VMD method
decomposes the signals into multiple Intrinsic Mode Functions (IMFs) and a residual
component, where each IMF corresponds to a vibrating mode within a specific frequency
range [43]. The IMFs are obtained by solving a variational problem, showcasing strict
bandwidth constraints, and gradually reducing residues. The VMD method allows for
bandwidth adjustments as needed and finds wide applications in signal processing, image
processing, and data dimensionality reduction fields. The schematic diagram of the VMD
method is shown in Figure 2.

Figure 2. The schematic diagram of the VMD method.

The method entails assuming a multi-component signal composed of i finite band-
width modal components vi(t), with each IMF having a center frequency of ωi(t). The
constrained variational expression ensures that the IMF components have a finite band-
width with the sum of the center frequencies and estimated bandwidths minimized, while
also ensuring that the sum of all modes is equal to the input signal. The constrained
variational expression is as follows:

min{vi},{ωi}

{
∑
i
∥∂t

[(
δ(t) + j

πt

)
∗ vi(t)

]
e−jωit∥

}
s.t. ∑

i
vi(t) = xt

(1)

where {vk} = {v1, . . . , vk} represents the decomposed IMF components, {ωk} = {ω1, . . . , ωk}
represents the central frequencies of the respective components, ∂t() is the Tikhonov regular
term function, δ(t) is the Dirac function, j denotes the imaginary number, ∗ denotes the
convolutional operator, xt is the input signal,

[(
δ(t) + j

πt

)
∗ vi(t)

]
denotes the Hilbert

transform, and e−jω it) is the frequency modulation operator.
To find the optimal solution, we first introduce the Lagrange multiplier τ(t) and

a second-order penalty factor α, which transforms the constrained variational problem
into an unconstrained variational problem. The second-order penalty factor α ensures
the accuracy of signal reconstruction in a Gaussian noise environment. The Lagrange
multiplier τ(t) ensures the strictness of the constraint. The extended Lagrange expression
is as follows:
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L({vi}, {ωi}, τ) = α ∑
i
∥ϑt

[(
δ(t) + j

πt

)
∗ vi(t)

]
e−jωit∥

2

+∥x(t)− ∑
i

vi(t)∥2 + ⟨τ(t), s(t)− ∑
k

vi(t)⟩
(2)

Then, the Alternating Direction Method of Multipliers (ADMM) is utilized to update
each component and its central frequency. The optimal solution to the original problem is
ultimately obtained at the saddle point of the unconstrained model. All components can be
obtained in the frequency domain as follows:

v̂n+1
k (ω) =

ŝ(ω)− ∑i ̸=k v̂i(ω) +
τ̂(ω)

2

1 + 2α(ω − ωk)
2 (3)

where ω represents frequency, and v̂n+1
k (ω), ŝ(ω), and τ̂(ω) correspond to the Fourier

transforms of vn
k (ω), s(ω), and τ(ω).

The VMD method is based on the time-frequency localization characteristics of signals.
It decomposes the input signal into multiple modal functions through an iterative optimiza-
tion process, describing the frequency modulation characteristics of each modal function
through frequency modulation parameters. The VMD method can adaptively decompose
signals into modal functions with different scales and frequency ranges, making it suitable
for various types of signals. Besides, the VMD method provides high decomposition
precision, allowing the resulting modal functions to better reflect the local characteristics of
the signal.

2.2. CNN

The CNN method is a type of artificial neural network, designed specifically for
processing data with grid-like structures. Through convolution operations, the CNN
method can effectively identify patterns and features in input data. Composed of multiple
convolutional and pooling layers, the CNN method progressively extracts features from
input data and ultimately performs classification or prediction. The schematic diagram
illustrating its principle is shown in Figure 3:

Figure 3. The schematic diagram of the CNN method.
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Figure 3 shows that the convolutional layer, pooling layer, and fully connected layer
are the key steps of the CNN method. In this study, the convolution kernel W is a vector.
The forward propagation process can be succinctly described as follows:

a2 = σ
(

z2
)
= σ

(
a1 ∗ W2 + b2

)
(4)

where a is the input or output dataset, the superscript represents the number of layers in
the network, ∗ represents convolution, b represents the bias vector, and σ( ) is an activation
function, usually the rectified linear unit or simply ReLU.

The convolutional layer is the core layer of the CNN method, primarily responsible for
convolving input data to extract features. The convolution operation, resembling a sliding
window, moves a window across the input data, computing the dot product between
the elements within the window and the convolutional kernel to generate a new feature
sequence. The convolution operation dimension transformation formula is as follows:

Od =


⌈
(Id−ksize)+1

s

⌉
padding = Valid⌈

Id
s

⌉
padding = Same

(5)

where Id is the input dimension, Od is the output dimension, ksize is the size of the convolu-
tional kernel, and s is the stride. In most cases, stacking smaller convolutional kernels is
more effective than directly using a single larger convolutional kernel.

The pooling layer is another crucial component in the CNN method, responsible for
downsampling input features to reduce the parameter count and prevent overfitting. The
formula is as follows:

aˆ l = pool(aˆ(l − 1)) (6)

where pool( ) is the function of reducing the input tensor according to the pooling region
and the pooling criteria. The proposed method sets the average pooling, where the average
value within each small window is selected as the output, resulting in new pooled features.

The fully connected layer is the final layer in the CNN method, responsible for clas-
sifying the features of the pooling layer and mapping them to probabilities of different
classes. Its formula is as follows:

al = σ
(

zl
)
= σ

(
W lal−1 + bl

)
(7)

where l is the number of layers. Nodes in the fully connected layer form a network where
the activation values are transformed into class probabilities using the Softmax function to
predict the highest probability class. Each node is connected to the input feature vector,
and the activation values are computed using weight matrices and bias vectors, followed
by calculating class probabilities through the So f tmax function.

The output layer is as follows:

aL = so f tmax
(

zL
)
= so f tmax

(
WLaL−1 + bL

)
(8)

where L is the number of output layers. The CNN method learns and extracts features
through convolutional layers, pooling layers, and fully connected layers for classification
or regression tasks. The convolutional layers filter the input GNSS time series through
convolution operations to extract local features. The pooling layers downsample the feature
dataset to reduce spatial size while retaining essential features. The fully connected layers
map the features to the final output.

The CNN method effectively captures local features in GNSS time series through con-
volution operations and weight sharing, demonstrating strong local perception capabilities.
The parameter-sharing mechanism in the CNN method reduces the parameter counts,
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enhancing training speed and generalization capability. The CNN method has a certain
level of invariance through convolution and pooling operations.

2.3. LSTM

The Recurrent Neural Network (RNN) is a neural network designed for time series,
characterized by its recurrent structure, which allows for the propagation and memory of
previous states. However, the RNN method suffers from decay over long time intervals,
leading to diminished effectiveness in capturing long-term dependencies. To address this
challenge, the Long Short-Term Memory (LSTM) network, a specialized RNN method,
has been developed. LSTM’s unique design enables it to effectively circumvent long-
term dependency issues by inherently retaining early-stage information without incurring
significant additional costs. The schematic diagram of the LSTM method is shown in
Figure 4.

Figure 4. The schematic diagram of the LSTM method [44].

As shown in Figure 4, there are four key components, including input gate, forget gate,
cell gate, and output gate.

The forget gate functions to determine the retention or misplacement in the memory
cell from the previous step. This gate uses a sigmoid activation function to determine how
to update the cell state, enabling the network to selectively forget unnecessary information.
Specifically, the forget gate takes both previous cell state and current input into consid-
eration, outputting a value between 0 and 1 to indicate the ratio of each cell state. The
corresponding information is forgotten when the forget gate output is close to 0. Otherwise,
the information is retained. The formula of the forget gate is as follows:

ft = σ
(

W f |ht−1, xt|+ b f

)
(9)

where W f is the weight matrix, b f is the bias term, ht−1 is the hidden state of the previous
step, xt is the current input, and σ() is the sigmoid function. This mechanism allows the
LSTM method to effectively manage long-term dependencies and better handle GNSS
time series.

The input gate functions to control the impact of new input on the cell state. It utilizes
a sigmoid activation function to determine what can pass through and be updated into
the cell state. Specifically, the input gate performs a weighted sum of the new input and
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the previous step’s hidden state to determine what needs to be stored or discarded. The
formula of the input gate is as follows:{

C̃t = tanh(WC|ht−1, xt|+ bC)
it = σ(Wi|ht−1, xt|+ bi)

(10)

where C̃t is the candidate, it is the value of the input gate, WC, Wi is the weight matrix, bC,
bi is the bias term, ht−1 is the hidden state of the previous step, xt is the current input, σ()
is the sigmoid function, and tanh() is the hyperbolic tangent function. This mechanism
enables the LSTM method to selectively remember or forget certain information, thereby
more effectively handling temporal dependencies in long GNSS time series.

The cell gate functions to control the influence of the cell gate by the current input,
which filters and integrates input into the cell gate. Specifically, the cell gate uses sigmoid
and tanh functions to generate a candidate for the cell gate. It considers the previous cell
gate and the current input and uses multiplication operations to determine what to retain
and discard. The formula of the cell gate is as follows:

Ct = ftCt−1 + itC̃t (11)

where ft is the output of the forget gate, Ct−1 is the previous status of the cell gate, it is the
input gate, and C̃t is the candidate. This mechanism allows the LSTM method to effectively
control the update of cell gates, capturing important patterns and correlations in sequential
data more effectively.

The output gate functions to control the influence of the final output by the current
cell gate. It selects the cell gate using sigmoid and tanh functions to generate an output
value for the current step. The output gate considers the current cell gate and input gate at
the current step, deciding which will be passed to the next layer. The formula of the output
gate is as follows: {

ot = σ(Wo|ht−1, xt|+ bo))
ht = ottan h(Ct)

(12)

where Wo is the weight matrix, bo is the bias term, ht−1 is the hidden state of the previous
step, xt is the current input, σ() is the sigmoid function, and tanh() is the hyperbolic tangent
function. This mechanism allows the LSTM network to effectively produce appropriate
outputs based on the current cell gate and input gate, enhancing its ability to handle and
predict GNSS time series.

The LSTM method is effective in handling long-term dependencies in GNSS time
series, making it suitable for capturing long-span dependencies. These mechanisms help
alleviate the vanishing and exploding gradient problems, making the model easier to train.
Additionally, the memory cells can retain and update information over periods, aiding in
capturing long-term dependencies in GNSS time series.

3. Experiment

Tow experiments are given in this section. The first experiment is performed to prove
the feasibility of the proposed method, and the second experiment is performed to give a
comparison for the proposed method with the extended Kalman filter (EKF).

3.1. The Feasibility Experiment

The experiment was conducted at the Sanhe sluice of Hongze Lake, Jiangsu, China,
whose configuration parameters are shown in Table 1. The monitoring site and the reference
site are shown in Figure 5.
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Table 1. The configuration parameters of the feasibility experiment.

Configuration Parameter

The experiment period 10 September 2023–21 February 2024

GNSS systems BDS(B1I, B2I), Galileo(E1B/C, E5b), GPS(L1C/A, L2C)

Sampling frequency 1 Hz

Ambiguity resolution method MLAMBDA

Multipath error model Stellar day filter in observational domain

Troposphere method Saastamoinen model + random walk

Ionosphere method Broadcast model

Intervals of outputs 1 h

Smoothing filter method Rauch–Tung–Striebel smoother filtering method

Figure 5. The figures of the monitoring site (a,b) and the reference site (c).

This study validates the effectiveness of the proposed method using east (E)-direction
time series as an example. We use 80% of the time series as the training set and the
remaining 20% as the validation set. A 24 h extrapolation is provided at the end for predic-
tion. First, the results of the CNN–LSTM method are shown in Figure 5. In the following
experiment, we choose the mean-square error (MSE) as the instantaneous function be-
cause it can better reflect the gradient changes during the training of neural networks for
regression problems.

Figure 6 illustrates the curve of the loss function of the training process, in which the
number of iterations is set to 17. Legend loss, also known as training loss, quantifies the
disparity between the model’s predictions and the actual observations during the training
phase. Conversely, val_loss, or validation loss, highlights the deviation between the model’s
predictions and the validation data, serving as an indicator of the model’s performance on
unseen data. As the number of training iterations increases, the loss function gradually
decreases, indicating that the model is converging. In the initial phase (1st–8th epoch),
the loss function decreases rapidly, then levels off from the 8th to 17th epoch, eventually
converging to a low value. This suggests that after eight epochs of training, the loss function
has stabilized, and further increasing the number of training iterations has little impact on
performance improvement.
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Figure 6. The training loss function diagram of the CNN–LSTM method.

Figure 7 illustrates the observation, model prediction, and extrapolated forecast for
the next 24 h in the GNSS time series. The overall trend of the observation aligns with
the model prediction, but their agreement is moderate with a maximum difference of
approximately 2 mm. Particularly, in the range of the 600th to 800th hour, the consistency
between the two is poorer, indicating that the neural network captures features poorly
within this interval. Additionally, the 24 h extrapolated forecast in the figure demonstrates
the model’s ability to predict, showing a trend of increase followed by a decrease, providing
us with some insights into the changing trends within the next day. Figure 7 shows that it is
necessary to take additional measures to obtain a better prediction. Firstly, decomposition
and analysis of the original GNSS time series are provided.

Figure 7. The prediction diagram of the CNN–LSTM method.

Figure 8 depicts the original GNSS time series and the IMFs of the VMD method.
The original signal exhibits abrupt changes between 10 September 2023 and 20 October
2023, while showing jagged fluctuations for the remaining period. The VMD method
decomposes the original signal into several modal components with different frequencies
and amplitudes. Each modal component can be referred to as an IMF and represents a local
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pattern or oscillation mode in the original signal, with a better show of the local features
and periodic variations in the original signal. IMF1 is the lowest-frequency component,
typically encompassing the slowest-changing patterns, which represents the long-term
effects. IMF2 shows low-frequency fluctuations, with a maximum fluctuation range of
approximately 0.8 mm. It represents foundation settlement. IMF3 represents the medium-
frequency fluctuations, exhibiting noticeable fluctuations during the abrupt changes and
jagged fluctuations of the original signal, with a maximum fluctuation of about 0.3 mm.
It represents deformations caused by cyclical loads. IMF4 represents the high-frequency
fluctuations, which represents deformations caused by resonance. IMF5 depicts the high-
frequency vibration patterns, reflecting the potential noise interference, with a maximum
fluctuation of about 0.3 mm corresponding to the abrupt changes in the original signal.
The VMD method also aids in extracting important information and periodic variations in
the original signal, facilitating signal processing, feature extraction, and other applications.
Through the analysis of the IMFs shown in the figure, we can delve deeper into the
underlying structure and features of the GNSS time series, providing valuable references
and foundations for subsequent analysis and applications. Figure 8 shows that IMFs have
different characteristics, and it is better to apply different parameters for different IMFs in
the CNN–LSTM method.

Figure 8. VMD decomposition diagram of the original GNSS time series.

Figure 9 illustrates the curve of the loss function of the training process of IMF1, in
which the number of iterations is set to 40. As the number of training iterations increases,
the loss function gradually decreases, indicating that the model is converging. In the initial
phase (1st–12th epoch), the loss function decreases rapidly, then levels off from the 12th to
17th epoch, eventually converging to a low value. This suggests that after 12 epochs of
training, the loss function of IMF1 has stabilized.

Figure 10 illustrates the observation, model prediction, and extrapolated forecast for
the next 24 h of IMF1. The overall trend of the observation aligns with the prediction, with a
maximum difference of approximately 0.6 mm. In contrast with Figure 7, IMF1 has a smaller
difference and better consistency. Particularly, in the range of the 700th to 800th hour, the
consistency between the two is better, while the original is poor. Additionally, the 24 h
extrapolated forecast in Figure 10 demonstrates a better prediction than that in Figure 7.
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Figure 9. The training loss function diagram of IMF1.

Figure 10. The prediction diagram of IMF1.

To enhance prediction reliability, the subsequent 24 h of data are excluded from the
test set. However, decomposing only the 24 h data would result in a time series that is
too short, making it challenging to detect the correct signal components and disrupting
continuity between the test set and the 24 h outcome. Consequently, the figure cannot
depict the IMF observation line for the next 24 h. The reconstructed overall signal, derived
from the processed prediction of the IMFs, is compared with the original time series to
assess the performance of the proposed method.

Figure 11 illustrates the curve of the loss function of the training process of IMF2, in
which the number of iterations is set to 50. As the number of training iterations increases,
the loss function gradually decreases, indicating that the model is converging. In the initial
phase (1st–7th epoch), the loss function decreases rapidly, then levels off from the 8th to
30th epoch, and then the loss function decreases slowly. After the 30th epoch, the loss
function eventually converges to a low value. In contrast to Figures 7 and 9, Figure 10 has
better consistency with no repetition.
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Figure 11. The training loss function diagram of IMF2.

Figure 12 illustrates the observation, model prediction, and extrapolated forecast for
the next 24 h of IMF2. The overall trend of the observation aligns with the model prediction
perfectly. Additionally, the 24 h extrapolated forecast in the figure demonstrates the model’s
ability to predict, showing a trend of increase followed by a decrease, providing us with
some insights into the changing trends within the next day. Figure 12 shows a better
consistency than Figures 7 and 10.

Figure 12. The prediction diagram of IMF2.

Figure 13 illustrates the curve of the loss function of IMF3, in which the number of
iterations is set to 17. As the number of training iterations increases, the loss function gradu-
ally decreases, indicating that the model is converging. In the initial phase (1st–9th epoch),
the loss function decreases rapidly, then levels off from the 10th to 17th epoch, eventually
converging to a low value. This suggests that after a certain amount of training, the loss
function has stabilized, which is similar to the situation in Figures 6 and 9.
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Figure 13. The training loss function diagram of IMF3.

Figure 14 illustrates the observation, model prediction, and extrapolated forecast for
the next 24 h of IMF3. The overall trend of the observation perfectly aligns with the model
prediction for most of the period, but there are some slight differences, such as from the
300th–400th hour. Additionally, the 24 h extrapolated forecast in the figure demonstrates
the model’s ability to predict, showing a trend of increase followed by a decrease.

Figure 14. The prediction diagram of IMF3.

Figure 15 illustrates the curve of the loss function of IMF4, in which the number of iter-
ations is set to 50. As the number of training iterations increases, the loss function gradually
decreases, indicating that the model is converging. In the initial phase (1st–20th epoch),
the loss function decreases rapidly, then levels off from the 21st to 50th epoch, eventually
converging to a low value with a slight difference. This suggests that after a certain amount
of training, the loss function has stabilized, and further increasing the number of training
iterations has little impact on performance improvement.
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Figure 15. The training loss function diagram of IMF4.

Figure 16 illustrates the observation, model prediction, and extrapolated forecast for
the next 24 h of IMF4. The overall trend of the observation aligns with the model prediction
perfectly, but there are two significantly different periods in which the prediction has
a 0.01 mm difference with the observation, such as periods around the 350th hour and
770th hour. Additionally, the 24 h extrapolated forecast in the figure demonstrates the
model’s ability to predict, showing a maximum range of about 0.04 mm. Figure 16 shows
an abnormal range of the 24 h extrapolated forecast.

Figure 16. The prediction diagram of IMF4.

Figure 17 illustrates the curve of the loss function of IMF5, in which the number of iter-
ations is set to 50. As the number of training iterations increases, the loss function gradually
decreases, indicating that the model is converging. In the initial phase (1st–30th epoch),
the loss function decreases rapidly, then levels off from the 31st to 50th epoch, eventually
converging to a low value with a slight difference. This suggests that after a certain amount
of training, the loss function has stabilized, and further increasing the number of training
iterations has little impact on performance improvement.
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Figure 17. The training loss function diagram of IMF5.

Figure 18 illustrates the observation, model prediction, and extrapolated forecast for
the next 24 h of IMF5. The overall trend of the observation aligns with the model prediction,
but their agreement is moderate with a maximum difference of approximately 0.01 mm.
Additionally, the 24 h extrapolated forecast in the figure demonstrates the model’s ability
to predict, showing a trend of increase followed by a decrease, providing us with some
insights into the changing trends within the next day.

Figure 18. The prediction diagram of IMF5.

Figure 19 illustrates the observation, model prediction, and extrapolated forecast for
the next 24 h of the VMD-CNN-LSTM method. In contrast with Figure 7, Figure 19 has
better consistency with a maximum of about 0.6 mm. Particularly, in the range of the 600th
to 800th hour, the prediction of the VMD-CNN-LSTM method has a perfect consistency.
Additionally, the 24 h extrapolated forecast shows a trend of increase followed by a decrease,
which is better than the CNN–LSTM method. In general, the original GNSS time series has
different IMFs with different characteristics. It is better to apply different parameters to
obtain better predictions.
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Figure 19. The prediction diagram of the VMD-CNN-LSTM method.

The evaluation metrics for the prediction performance of IMFs, including the root
mean square error (RMSE), mean-square error (MSE), mean absolute error (MAE), and
R-squared (R2), are presented in Table 2. These metrics are utilized to assess the prediction
accuracy for each IMF component, revealing the performance differences across different
frequency components. It can be observed that the RMSE, MSE, and MAE metrics reflect
the prediction accuracy of the model, with only slight discrepancies in the accuracy of
IMF1 compared to the others. Furthermore, R², as a measure of the model’s goodness of
fit, indicates that IMF2 and IMF3 exhibit good fitting, while IMF1, IMF4, and IMF5 show
slightly lower fitting performance.

Table 2. The comparison of the IMFs’ prediction accuracy.

MSE (mm) RMSE (mm) MAE (mm) R2

IMF1 0.0065 0.0809 0.0724 −0.6943
IMF2 2.852 × 10−5 0.0053 0.0042 0.9988
IMF3 0.0002 0.0134 0.0107 0.9530
IMF4 6.9622 × 10−6 0.0026 0.0020 0.6527
IMF5 4.3939 × 10−6 0.0021 0.0017 0.6078

For further comparison, Figure 20 compares the error statistics of the CNN–LSTM
method and the VMD-CNN-LSTM method. The left panel displays the error distribution
and curve fitting of the CNN–LSTM method, with errors mainly concentrated in the (−3, 1)
range and a central value of approximately −0.8 mm for the fitted curve. The right panel
illustrates the error distribution and curve fitting of the VMD-CNN-LSTM method, with
errors primarily distributed in the (−2.5, 1.8) range and a central value of about −0.2 mm
for the fitted curve. Besides, the proposed method has an improvement of about 75%
compared with the CNN–LSTM method. In general, the proposed method, by applying
different parameters to different IMFs, achieves better prediction performance.
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Figure 20. Error histogram of CNN–LSTM (left) and VMD-CNN-LSTM (right).

3.2. The Comparative Experiment

The above experiment proves the feasibility of the proposed VMD-CNN-LSTM method,
and the experiment in this section is performed to give a comparison between the pro-
posed method and the EKF. The experiment was also conducted at the Sanhe sluice
of Hongze Lake but at a different monitoring station. Figure 21 demonstrates the sur-
rounding environment of this new monitoring station The experimental period is from
10 September 2023–24 April 2024, and other configuration parameters are the same as the
above experiment.

Figure 21. The monitoring site used for the comparative experiment from different perspectives
(a) view from the left side and (b) right side.

Table 3 presents performance metrics for the EKF and the VMD-CNN-LSTM method.
The overall assessment reveals significant enhancements across all metrics with the pro-
posed VMD-CNN-LSTM method relative to the EKF, indicating superior accuracy and
reliability in GNSS deformation monitoring for hydraulic structures. Specifically, compared
to the EKF, the employment of VMD-CNN-LSTM results in approximately a 67.16% re-
duction in the MSE, a 42.62% decrease in the RMSE, a 43.28% decrease in the MAE, and a
6.88% increase in R2. In summary, the VMD-CNN-LSTM method demonstrates clear ad-
vantages in geophysical process analysis, offering more precise and dependable outcomes
for geological structure analysis.
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Table 3. The comparison of the VMD-CNN-LSTM and the EKF.

MSE (mm) RMSE (mm) MAE (mm) R2

EKF 0.1646 0.4057 0.3236 0.9037
VMD-CNN-LSTM 0.0541 0.2326 0.1833 0.9654

Figure 22 presents a comparison between the proposed VMD-CNN-LSTM and EKF
methods, focusing on both the test dataset and 24 h extrapolation results. The figure
comprises a time series plot and an error scatter plot. In the time series plot, the VMD-
CNN-LSTM method shows a closer alignment with the original observations from the
test dataset, while the EKF method demonstrates more frequent fluctuations throughout
the process. The error scatter plot corroborates the findings from the time series plot,
indicating that the results obtained with VMD-CNN-LSTM are markedly better than those
from the EKF. Around the 120th hour, the EKF exhibits prediction errors of approximately
1 mm, while VMD-CNN-LSTM remains more consistent with fewer and less pronounced
deviations over the entire interval. Overall, the VMD-CNN-LSTM method outperforms the
EKF, delivering more accurate and stable predictions.

Figure 22. The prediction diagram of the VMD-CNN-LSTM and EKF methods.

4. Discussion

The VMD method is a global optimization method aimed at decomposing the GNSS
time series into various modes with distinct frequencies and amplitudes. By minimizing
the distances between the signal and each mode, it effectively extracts periodic components
and vibration characteristics. However, overlapping frequencies between modes may lead
to unclear decomposition outcomes, and noise in the signal also impacts the efficacy of
the VMD method. In the future, we will try to apply spectral decomposition methods to
separate overlapping vibration modes.

The CNN method can extract features that effectively identify features in GNSS time
series, reducing the risk of overfitting, and improving the generalization ability. However,
the CNN method has poorer performance for time series than the RNN method. Therefore,
an LSTM method is adopted in the subsequent process.

LSTM is one of the RNN methods, which can capture long-term dependencies in
GNSS time series. It effectively addresses the gradient problem and aids in prediction for
long-time series. Besides, it can also be applied to GNSS time series of different lengths.
However, its complex algorithm increases the computational cost of training and inference.
To address these issues, we will apply attention mechanisms to enhance the performance
and efficiency of LSTM models in the future.



Remote Sens. 2024, 16, 1767 19 of 21

However, several factors can impact the performance of VMD-CNN-LSTM in GNSS
deformation monitoring. Firstly, poor data quality, characterized by significant noise
contamination or a high proportion of missing values, can hinder the accurate extraction
of useful information for prediction. Secondly, for excessively long time series spanning
years or more, the model may struggle to effectively capture long-term trends and patterns.
Thirdly, the presence of highly complex nonlinear patterns, arising from interactions among
multiple factors, may pose challenges for VMD-CNN-LSTM in modeling and predicting
deformation accurately. Besides, limited training data availability can impede the model’s
ability to fully learn patterns within the time series, thereby affecting its predictive capacity.
Moreover, in specific environments such as extreme weather conditions, seismic activity, or
instances of human interference, anomalous behavior in GNSS deformation monitoring
may exceed the predictive capabilities of VMD-CNN-LSTM, particularly when confronted
with limited data samples. These considerations underscore the importance of carefully
assessing the suitability of VMD-CNN-LSTM for deformation monitoring tasks under
various conditions, while also highlighting potential avenues for future research to address
these challenges.

5. Conclusions

In this study, we have introduced a novel methodology based on VMD, CNN, and
LSTM for enhancing the accuracy of time series prediction. By leveraging the strengths
of these three components within a unified framework, our proposed VMD-CNN-LSTM
method has demonstrated promising results in capturing complex temporal patterns and
improving predictive performance. The VMD method decomposes the original GNSS
time series into IMFs, enabling the isolation of inherent oscillatory modes and trends. The
subsequent CNN method facilitates the extraction of features from the decomposition,
allowing the model to discern important patterns at multiple scales. The further LSTM
method facilitates the refinement and prediction of time series outcomes with improved
accuracy and adaptability to diverse temporal dynamics. The experiment proves that the
proposed method has an improvement of about 75% over the CNN–LSTM method. By
integrating VMD, CNN, and LSTM in a unified framework, our study aims to contribute
to the advancement of time series forecasting techniques and pave the way for enhanced
predictive modeling in diverse domains.
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