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Abstract: The unique P‑band synthetic aperture radar (SAR) instrument, BIOMASS, is scheduled
for launch in 2024. This satellite will enhance the estimation of subcanopy topography, owing to
its strong penetration and fully polarimetric observation capability. In order to conduct global‑scale
mapping of the subcanopy topography, it is crucial to calibrate systematic errors of different strips
through interferometric SAR (InSAR)DEM (digital elevationmodel) block adjustment. Furthermore,
the BIOMASS mission will operate in repeat‑pass interferometric mode, facing the atmospheric de‑
lay errors introduced by changes in atmospheric conditions. However, the existing block adjust‑
ment methods aim to calibrate systematic errors in bistatic mode, which can avoid possible errors
from atmospheric effects through interferometry. Therefore, there is still a lack of systematic error
calibration methods under the interference of atmospheric effects. To address this issue, we pro‑
pose a block adjustment model considering atmospheric effects. Our model begins by employing
the sub‑aperture decomposition technique to form forward‑looking and backward‑looking interfer‑
ograms, then multi‑resolution weighted correlation analysis based on sub‑aperture interferograms
(SA‑MRWCA) is utilized to detect atmospheric delay errors. Subsequently, the block adjustment
model considering atmospheric effects can be established based on the SA‑MRWCA. Finally, we use
robust Helmert variance component estimation (RHVCE) to build the posterior stochastic model
to improve parameter estimation accuracy. Due to the lack of spaceborne P‑band data, this paper
utilized L‑band Advanced Land Observing Satellite (ALOS)‑1 PALSAR data, which is also long‑
wavelength, to emulate systematic error calibration of the BIOMASS mission. We chose climatically
diverse inland regions of Asia and the coastal regions of South America to assess the model’s ef‑
fectiveness. The results show that the proposed block adjustment model considering atmospheric
effects improved accuracy by 72.2% in the inland test site, with root mean square error (RMSE) de‑
creasing from 10.85 m to 3.02 m. Moreover, the accuracy in the coastal test site improved by 80.2%,
with RMSE decreasing from 16.19 m to 3.22 m.

Keywords: interferometric synthetic aperture radar (InSAR); block adjustment; DEM; atmospheric
effect; sub‑aperture decomposition; multi‑resolution analysis

1. Introduction
Interferometric synthetic aperture radar (InSAR) is a powerful tool for large‑scale to‑

pographicmappingwithin remote sensing technologies due to its all‑weather, all‑day, and
wide‑area observation capability [1,2]. To further observe the three‑dimensional structure
of forests and estimate the subcanopy topography, the European Space Agency (ESA) pro‑
posed the BIOMASS mission [3], which has strong penetration capability due to operating
in P‑band. Compared with existing space‑borne SAR satellites, BIOMASS holds excellent
potential for global‑scale inverting forest parameters [4] and estimating digital terrainmod‑
els (DTMs) [5].
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The BIOMASSmissionwill carry a P‑band synthetic aperture radar (SAR) sensorwith
full polarimetric and tomographic capabilities, offering the first opportunity to measure
global subcanopy topography [5]. The SAR will operate in repeat‑pass interferometric
mode and fly in a near‑polar, Sun‑synchronous orbit with a 637–666 km altitude. Due to
instrument performance and high interferometric coherence requirements, the BIOMASS
missionwill achieve global coverage through interleave stripmapoperations between three
subswaths, which need a series of roll and repositioning maneuvers [5,6]. Therefore, the
digital elevation models (DEMs) derived from BIOMASS will encounter systematic errors
between different strips and atmospheric delay errors introduced by changes in atmo‑
spheric conditions [7–9]. To ensure the absolute height accuracy and the overall accuracy
consistency of topography products, it is necessary to eliminate the above error sources.

For the systematic error calibration, one of the most effective methods is to estab‑
lish the block adjustment model based on absolute elevation references from ground con‑
trol points (GCPs) and elevation consistency constraints from tie‑points (TPs) [10,11]. To
achieve this, DLR (Microwaves and Radar Institute at the German Aerospace Center) uti‑
lized the spaceborne lidar, Ice, Cloud, and land Elevation Satellite‑1 (ICESat‑1) [12] as
GCPs and proposed block adjustment using a two‑dimensional polynomial as the func‑
tion model [1,9–11], which generated global topography products TanDEM‑X DEM. As
the successor to ICESat‑1, ICESat‑2 offers GCPs with higher spatial resolution and higher
repetition rates [13]. Due to the distribution and accuracy of GCPs and ensuring height
matching being the keys for systematic error calibration [14,15], researchers began using
ICESat‑2 as GCPs and considered horizontal errors of DEMs, further improving the block
adjustment methods [16,17]. However, the existing block adjustment methods aim to cali‑
brate systematic errors in bistatic mode, whose atmospheric effects can be effectively elimi‑
nated through interferometry [18]. Therefore, for the BIOMASSmission, there is an urgent
need for a systematic error calibration algorithm under the interference of atmospheric ef‑
fects. In addition, for the P‑band, the atmospheric delay errors significantly affect the ele‑
vation accuracy of DEM [7]. Moreover, it also interferes with the height matching between
DEMs andGCPs, as well as between TPs, thus affecting the calibration of systematic errors.
However, the existing atmospheric effects correction methods usually rely on external wa‑
ter vapor data [19] or require extensive SAR data to perform spatiotemporal analyses [20],
limiting the real‑time correction of atmospheric effects on a global scale.

Given the above issue, we utilize ICESat‑2 ATL08 data as GCPs and propose the block
adjustment model considering atmospheric effects for the BIOMASS mission. First, we
use the block adjustment model to weaken atmospheric effects’ interference in estimat‑
ing systematic errors. Second, the forward‑looking interferograms (F‑Infs) and backward‑
looking interferograms (B‑Infs) are composed by sub‑aperture decomposition [21]. Then,
the atmospheric delay errors can be detected through the multi‑resolution weighted cor‑
relation analysis based on sub‑aperture interferograms (SA‑MRWCA), which can correct
atmospheric effects without relying on external water vapor data. Finally, we establish the
block adjustment model considering atmospheric effects and utilize robust Helmert vari‑
ance component estimation (RHVCE) [22] to determine weight ratios for GCPs and TPs,
overcoming the interference of gross errors and achieving fine systematic error calibration.

2. Methodology
InSAR‑DEM block adjustment aims to calibrate systematic errors in different strips to

fulfill height accuracy requirements and accomplish large‑scale topographic mapping [9,23].
However, due to the error equation’s lack of consideration for atmospheric delay errors’ im‑
pact on height matching, current block adjustment methods prove inadequate for estimating
systematic errors in repeat‑pass interferometric mode. Hence, this section mainly describes
the proposed block adjustment model considering atmospheric effects to address this issue.
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2.1. InSAR‑DEM Block Adjustment Based on Function Model
The interference factors such as baseline inaccuracies, randomphase errors, and radar

instruments residual offsets can cause residual systematic errors in different strips [10,11].
The above error sources primarily include offsets and tilts in range and azimuth, which
can typically be modeled using a two‑dimensional polynomial about image coordinates:

gi(x, y) = ai + bix + ciy + dixy + eix2 + fiy2 (1)

where i is the index of the DEM acquisition, gi(x, y) is the height error function, and x, y are
the range and azimuth coordinates. {ai, bi, ci, di, ei, fi} are the unknown error parameters
of the block adjustmentmodel, which can be estimated using height constraints fromGCPs
and height consistency constraints from TPs.

For the bistatic mode, since the atmospheric conditions of the two SAR images are the
same, the atmospheric delay errors can be eliminated through interferometry [1]. There‑
fore, the error equations of block adjustment are as follows:{

VGCP = HGCP −
(
Ĥi + gi(x, y)

)
VTP = −

(
Ĥj + gj(x, y)

)
+

(
Ĥk + gk(x, y)

) (2)

whereVGCP andVTP are residual vectors of GCPs and TPs, respectively. HGCP is the height
of GCPs, and Ĥ is the initial height matched on InSAR‑DEM. j and k are the indices of
adjacent and overlapping DEMs. Then, we can use the least squares principle to calculate
the unknown error parameters and correct the systematic errors in each DEM:

∣∣∣VTPV
∣∣∣ = min

V =
[
VGCP VTP

]T P =

[
PGCP 0

0 PTP

]
DEMi

post−adjust(x, y) = DEMi
pre−adjust(x, y) + gi(x, y)

(3)

where T denotes the vector transposition, V is the residual matrix, and P is the stochastic
model that characterizes the weight of observation equations in Equation (2).

2.2. Atmospheric Effects Correction Based on Correlation Analysis
Due to different atmospheric conditions in the repeat‑pass interferometric mode, the

propagation path and propagation speed of SAR ranging signals will change in the atmo‑
sphere, introducing atmospheric delay errors in InSAR‑DEM [20,24]. Therefore, the core
factors affecting DEM accuracy are systematic errors and atmospheric delay errors [24,25].
At this point, the height matching of the error equations shown in Equation (2) will be
disturbed, which should transform into{

VGCP = HGCP −
(
Ĥi + ∆Hi + gi(x, y)

)
VTP = −

(
Ĥj + ∆Hj + gj(x, y)

)
+

(
Ĥk + ∆Hk + gk(x, y)

) (4)

where ∆H represents atmospheric delay errors. A lightweight atmospheric effects correction
method is urgently needed to estimate systematic errors accurately through block adjustment.

In the atmosphere, the troposphere and ionosphere severely impact SAR signals, re‑
sulting in troposphere delay errors and ionospheric delay errors in InSAR‑DEM [26].
Among them, the troposphere mainly causes the delay of the SAR signal propagation
path, which is manifested as the tropospheric delay phase φtrop in the InSAR interfero‑
gram [24,26]:

φtrop =
4π

λ

10−6

cos θ

∫ ztop

z
Ndl (5)

where λ is the wavelength, θ is the SAR incidence angle, N is the zenith total delay, and
z and ztop represent the surface elevation and tropospheric elevation, respectively. Under
identical tropospheric conditions, shorter wavelengths reduce penetration into the tropo‑
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sphere and increase range delay. Therefore, long‑wavelength SAR data can resist the inter‑
ference of tropospheric delay for InSAR deformation measurements. However, for InSAR
terrain mapping, the wavelength λ will be eliminated when the tropospheric delay phase
φtrop undergoes phase‑to‑height conversion, as shown in Equation (6). So, the tropospheric
delay errors σtrop are independent of wavelength λ.{

kz =
4πB⊥

λRsin θ

σtrop =
φtrop

kz

(6)

where kz is the phase‑to‑height conversion factor determined by the baseline parameters,
B⊥ is the vertical baseline, R is the slant‑range, and σtropo is the tropospheric delay errors
after phase‑to‑height conversion. In particular, although BIOMASS will operate in a Sun‑
synchronous orbit tomitigate the effects of ionosphere disturbances, allmeasurementswill
still be influenced by the ionosphere [7]. Themain impacts include Faraday rotation Ω and
range delay φiono: {

Ω = K
f 2 ⟨B·cos ψ⟩·sec θ·TEC

φiono = 2π K
c f ·TEC

(7)

where constant K = 40.28m3/s2, f is the wave frequency, B is the magnetic field, ψ is
the magnetic declination, and TEC is the Total Electron Content (TEC). Under identical
ionospheric conditions, the longer the wavelength of the SAR signal, the more serious the
ionospheric delay will be.

In summary, considering the needs of BIOMASS global terrainmapping, atmospheric
correction is crucial. Liu et al. proposed the multi‑resolution weighted correlation analy‑
sis (MRWCA) method, achieving atmospheric effects correction of single‑baseline dual‑
polarization SAR data without external water vapor data [24]. To further alleviate the
limitations imposed by the polarization mode, we propose the SA‑MRWCA method for
single‑baseline single‑polarization SAR data. Specifically, the SAR images are divided into
F‑Infs and B‑Infs under different squint angles using sub‑aperture decomposition. Based
on the independence assumption between atmospheric effects and squint angles, the SA‑
MRWCA can detect similar atmospheric delay errors in sub‑aperture interferograms. Al‑
though the sub‑aperture decomposition changes the overall information characteristics of
the interferograms, the atmospheric effects are hardly affected, manifesting the same at‑
tributes in the sub‑aperture interferograms. This provides the possibility to detect the at‑
mospheric delay phase (ADP) [21]. For stable ground scattering targets, the main compo‑
nents of the interferometric phase φint include

φint = φ f lat + φtopo + φorb + φatm + φnoi (8)

where φ f lat is the flat‑earth phase, φtopo is the topographic phase, φorb is the orbit error
phase caused by the inaccuracy of orbit parameters, φatm is the ADP, and φnoi is the noise
phase (NP). After the sub‑aperture decomposition, the forward‑ and backward‑looking
interferometric phases φF/B

int can be represented as

φF/B
int = φF/B

f lat + φF/B
topo + φF/B

orb + φF/B
atm + φF/B

noi (9)

where F/B represents forward‑ and backward‑looking, respectively. Among the phase
components shown in Equations (8) and (9), φ f lat is the systematic phase contributed by
the reference ellipsoidal surface, and φorb is only related to the orbit parameters of SAR
satellites, so they are the same in F‑Infs and B‑Infs. Additionally, the partial phase associ‑
atedwith the scattering characteristics of the ground target in φtopo will be slightly different
between F‑Infs and B‑Infs. At the same time, φnoi will show randomness in sub‑aperture
interferograms. Most importantly, the changes in atmospheric conditions between F‑Infs
and B‑Infs are insignificant compared with the distance from the satellite to the ground
scattering target. Therefore, φatm is almost the same in F‑Infs and B‑Infs.
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The SA‑MRWCA is based on the MRWCA for multi‑resolution analysis of F‑Infs and
B‑Infs throughwavelet transform [24], utilizing correlation analysis to estimate atmospheric
effects, which requires that ADP is the only similar signal in the phase components. There‑
fore, the other identical or similar phase components must be eliminated. To achieve
this purpose, we first employ SRTM DEM [2], generated based on InSAR, and ASTER
GDEM [27], generated based on optical stereophotogrammetry, to perform differential in‑
terferometry of F‑Infs and B‑Infs:

φF/B
int = φF/B

εtopo + φF/B
orb + φF/B

atm + φF/B
noi (10)

where φF/B
εtopo represents the topographic error phase (TEP).Due to the different error sources

of the above two DEMs, φF
εtopo and φB

εtopo are also different in forward‑looking differential
interferograms (F‑DInfs) and backward‑looking differential interferograms (B‑DInfs). Sub‑
sequently, the same orbit error phase φorb can be removed through polynomial fitting [28]
or block adjustment:

φF/B
int = φF/B

εtopo + φF/B
atm + φF/B

noi (11)

At this point, the ADP is the only similar phase component between F‑DInfs and B‑
DInfs. Moreover, the TEP and the NP primarily consist of high‑frequency signals in the
frequency domain, while the ADP predominantly includes low‑frequency signals. Based
on the differences in frequency characteristics, the SA‑MRWCA decomposes F‑DInfs and
B‑DInfs into building blocks through forward wavelet transform [24]. Then, it utilizes the
weighted correlation analysis to estimate the wavelet coefficients associated with the ADP.
Finally, the ADP is reconstructed by refining thewavelet coefficients in the inverse wavelet
transform process to achieve the estimation of atmospheric delay errors. By substituting
the atmospheric delay errors into the error equations shown in Equation (4), height match‑
ing between DEMs and GCPs, as well as between TPs, can be achieved for the repeat‑pass
interferometric mode of BIOMASS.

2.3. InSAR‑DEM Block Adjustment Model Considering Atmospheric Effects
Based on the above analysis, we can establish the block adjustmentmodel considering

atmospheric effects to calibrate systematic errors under the interference of atmospheric
delay errors. Figure 1 shows that the algorithmmainly includes the following three stages.
(1) Coarse Block Adjustment

The core task of this stage involves selectingGCPs andTPs and then utilizing the block
adjustment model, as shown in Equations (1)–(3), to provide the orbit error phase φorb for
atmospheric effects correction. Compared with fitting the orbit error phase φorb scene by
scene, this method uses the overall observations of the block adjustment as constraints,
weakening the interference of the ADP on the polynomial fitting orbit error phase φorb,
thus separating the two as much as possible. High‑quality GCPs and TPs are needed to
achieve this goal [14,15], with the selection criteria shown in Table 1.

Table 1. Selection criteria for Ground control points (GCPs) and tie‑points (TPs).

Data Sources Chip Grid Selection Criteria

GCPs
ICESat‑2
ATL08

Version 5
5 km × 5 km

1. Strong beam
2. Cloud cover less than 20%
3. Not located in the geometric distortion
area of SAR images
4. InSAR coherence greater than 0.5

TPs InSAR DEMs 3 km × 3 km

1. Slope less than 30◦
2. Not located in the geometric distortion
area of SAR images
3. InSAR coherence greater than 0.5
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We use ICESat‑2 ATL08 (Version 5) data [13] as GCPs and divide the overlapping
DEMs uniformly into 3 km× 3 km grids, with the central points selected as TPs. Then, we
integrate the ICESat‑2 orbit, InSAR observations, and terrain factors as the selection criteria
to refine the GCPs and TPs. The selection criteria determine the quality of the GCPs and
TPs, playing a crucial role in DEM calibration. To further improve the quality of points
and reduce the interference of atmospheric delay errors on height matching, a reselection
based on the 3‑sigma rule is carried out:

abs(HGCP − HTanDEM−X DEM) < 3 ∗ σHGCP−HTanDEM−X DEM
abs(HGCP − HInSAR−DEM) < 3 ∗ σHGCP−HInSAR−DEM

abs
(

HTIE_j − HTIE_k
)
< 3 ∗ σHTIE_j−HTIE_k

(12)

where HGCP, HTanDEM−XDEM, and HInSAR−DEM represent the height of GCPs, TanDEM‑
X DEM, and InSAR‑DEM, respectively. HTIE_j and HTIE_k represent the height of ad‑
jacent and overlapping DEMs. Then, we downsample the GCPs using a 5 km × 5 km
grid and select the GCPs with the smallest elevation uncertainty [13] within each grid as
the GCP used for block adjustment. The remaining parts will serve as checkpoints after
block adjustment.

By using the selected GCPs and TPs, we can establish the error equations shown in
Equation (2). Then, the unknown parameters of the block adjustment model can be esti‑
mated by utilizing the least‑squares principle iteratively to realize the adaptive correction
of systematic errors by the function model [11]:

t =
x̂est

σx̂est

(13)

where x̂est and σx̂est represent the unknown parameters and their standard deviation, re‑
spectively. If the significance of all parameters t ≥ 1.64, then accept all parameters. Oth‑
erwise, iterate the estimation by reducing one parameter at a time until all remaining pa‑
rameters are significant [11]. As shown in Figure 1, the systematic errors based on coarse
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block adjustment serve as the orbit error phase in atmospheric effect correction, making
the ADP the only similar phase component in Equation (11).

(2) Atmosphere Effects Correction

Previous studies have reported that the ionosphere delay errors usually show a sim‑
ilar trend to the orbit error phase, causing the traditional polynomial fitting method to
correct the orbit error to fail [29]. However, with the help of the systematic error estimated
by the coarse block adjustment, the orbit error phase and the ADP in F‑DInfs and B‑DInfs
can bemore accurately separated. After removing the orbit error phase, theADP is the only
similar phase component between F‑DInfs and B‑DInfs, which can be detected through the
SA‑MRWCA, providing a basis for block adjustment considering atmospheric effects.

(3) Fine Block Adjustment

As shown in Figure 1, unlike the coarse block adjustment, the fine block adjustment
utilizes the atmospheric delay errors detected by the SA‑MRWCA to establish the error
equations considering atmospheric effects, achieving height matching for the block adjust‑
ment of repeat‑pass interferometric mode. Furthermore, since the GCPs and TPs come
from two different observation systems, the priori stochastic model P in Equation (3) may
not be appropriate, and the error equations shown in Equation (4) is also susceptible to in‑
terference from gross error. Therefore, after realizing systematic error adaptation through
a t‑test, we use RHVCE [22] in fine block adjustment to calculate the robust posterior
stochastic model. In this way, the weight ratio of GCPs and TPs can be adjusted while
overcoming the interference of gross errors. Combining the systematic errors estimated
from block adjustment and the atmospheric delay errors detected by the SA‑MRWCA, we
can conduct precise error calibration:{ ∣∣∣VTPRHVCEV

∣∣∣ = min

DEMi
post−adjust(x, y) = DEMi

pre−adjust(x, y) + gi
RHVCE(x, y) + ∆Hatm(x, y)

(14)

where PRHVCE represents the robust posterior stochastic model estimated by RHVCE,
gi

RHVCE(x, y) represents the systematic errors estimated based onPRHVCE, and∆Hatm(x, y)
represents the atmospheric delay errors estimated by the SA‑MRWCA at position (x, y).

3. Test Sites and Data Sets
To fully verify the algorithm’s effectiveness, we conducted experiments in inland re‑

gions of Asia and coastal regions of South America with significant climate differences.
Due to the lack of spaceborne P‑band InSARdata, we emulated the BIOMASSdata through
L‑band Advanced Land Observing Satellite (ALOS)‑1 PALSAR data [30], which was also
long‑wavelength.

3.1. Test Sites
3.1.1. Inland Test Site

As shown in Figure 2, the inland test site lies at the junction of China and Mongolia.
Situated in the midlatitude region of inland Asia. The test site exhibits a typical temperate
continental climate: hot summers, cold winters, little precipitation, low air humidity, and
a relatively stable atmosphere. In addition, hills and mountains dominate the topography
of the area.
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3.2. Data Sets
3.2.1. ALOS‑1 PALSAR

In 2006, the Japan Aerospace Exploration Agency (JAXA) launched the ALOS‑1 satel‑
lite carrying the L‑band PALSAR for research in Earth resource survey, environmental
monitoring, and natural disaster management [30]. ALOS‑1 has a 46‑day repeat cycle and
features multiple polarization and multimode capabilities. We used HH‑polarization data
from fine‑beam dual‑polarization (FBD) mode to emulate block adjustment considering
atmospheric effects for the BIOMASS mission. Table 2 shows the data information in the
inland and coastal test sites.
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Table 2. The information of ALOS‑1 PALSAR data used in this study.

Test Sites Time Number * Path *
–
Bperp(m) Btemp Pixel

Spacing (m) Orbit

Inland

25 July 2010 1–3 482 557.5 92 3.16 × 9.37 ASC
11 August 2010 4–6 483 435.6 46 3.16 × 9.37 ASC
28 August 2010 7–9 484 317.3 46 3.16 × 9.37 ASC

14 September 2010 10–12 485 465.3 46 3.16 × 9.37 ASC

Coastal

4 June 2010 1–3 111 131.4 46 3.26 × 9.37 ASC
8 July 2010 4–6 113 160.9 46 3.26 × 9.37 ASC
25 July 2010 7–9 114 537.5 46 3.26 × 9.37 ASC
6 August 2010 10–12 112 489.3 46 3.26 × 9.37 ASC

“*” indicates correspondence to Figures 1 and 2.

3.2.2. ICESat‑2 ATL08 Product (Version 5)
The National Aeronautics and Space Administration (NASA) has released the fifth

version of the land elevation product ATL08 through photon cloud filtering and classifica‑
tion of ICESat‑2 ATL03 data [13]. The ATL08 data provide terrain and canopy heights at a
20m along‑track spacing, which has beenwidely used for DEM systematic error correction
or forest height deduction [16,31]. In actual quality assessments, the accuracy of ATL08 ter‑
rain elevation can reach 0.73 m [32]. Previous studies have shown that the quality of GCPs
is crucial for block adjustment [14,15]. To ensure the reliability of GCPs, we established
extraction rules and refined ATL08 data within the two test sites from 14 October 2018 to
15 July 2021, as shown in Table 1.

3.2.3. Global Digital Elevation Products
We introduced the SRTMDEM and ASTER GDEM to remove the topographic phases

of F‑Infs and B‑Infs, respectively. In addition, the higher‑precision TanDEM‑X DEM was
utilized to verify the correction of atmospheric delay errors and systematic errors in con‑
tinuous space. Table 3 shows the information of the above DEMs. Before using the SRTM
DEM and ASTER GDEM, it is necessary to convert their vertical datum to WGS84.

Table 3. The information of the DEMs used in this study.

Dataset Horizontal
Datum

Vertical
Datum

Time
(Year)

Resolution
(m)

Absolute
Vertical

Accuracy (m)
Technique

TanDEM‑X DEM WGS84 WGS84 2016 30 10 InSAR
SRTM DEM V003 WGS84 EGM96 2013 30 16 InSAR

ASTER GDEM V2 WGS84 EGM96 2011 30 17 Optical
stereophotogrammetry

4. Results and Analysis
4.1. Inland Test Site

Aiming to construct an observation equation for block adjustment that considers both
systematic errors and atmospheric delay errors, the reliability of GCPs and TPs is essential.
Figure 4 shows the distribution of GCPs and TPs in the inland test site, where Figure 4a
represents the control point database established using the selection rules in Table 1, and
Figure 4b displays the GCPs and TPs after refinement and thinning. The uniform distribu‑
tion provides support for systematic error calibration.
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The existing research indicated that atmospheric delay errors mainly include tropo‑
spheric delay errors and ionospheric delay errors [26]. Since the ionospheric delay error
is a long‑wavelength signal usually manifested as the orbit error, it will cause the scene‑
by‑scene polynomial fitting method to correct the orbit error phase to fail [29]. To over‑
come the influence of trend errors of ionospheric delay errors on polynomial fitting or‑
bit error, we used the coarse block adjustment to provide the SA‑MRWCA with more
accurate orbit error phases for correcting atmospheric effects. Sub‑aperture decomposi‑
tion was employed to form F‑Infs and B‑Infs. Then, we utilized SRTM DEM and ASTER
GDEM to perform differential interferometry, respectively. Subsequently, the orbit er‑
ror phase of F‑DInf and B‑DInf was removed to guarantee the ADP’s unique similarity.
Figure 5 compares the above two methods for removing the orbit error phase, where
Figure 5a–d shows scene‑by‑scene polynomial fitting, and Figure 5e–h displays coarse
block adjustment estimates.
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Apparent trend errors are observed at the top of Figure 5b–d but are weakened in
Figure 5f–h. In the orange frame of Figure 5, Figure 5f shows an ionospheric delay phase
similar to the orbit error phase. We can find that the scene‑by‑scene polynomial fitting or‑
bit error phase was interfered with by the ionospheric delay phase and absorbed part of
it, resulting in a residual orbit error signal at the top of Figure 5b. In addition, comparing
the black frame and red frame in Figure 5, it can be seen that the trend errors in Figure 5c
are weakened in Figure 5g. The above differences prove that benefiting from the elevation
control of GCPs and the elevation consistency constraint of TPs, the systematic errors es‑
timated by coarse block adjustment can overcome the interference of atmospheric delay
errors to a certain extent and better separate the two. As a result, this provides the basis
for the SA‑MRWCA to correct atmospheric effects. The remaining phase components after
removing the orbit error phase are shown in Equation (11).

Since the TEP comes from different DEMs and the NP is random, the ADP is the
only similar phase component between F‑DInfs and B‑DInfs. In the frequency domain, the
TEP and the NP are mainly composed of high‑frequency signals, while the ADP mostly
appears as low‑frequency signals. The above phase components are mixed in the differ‑
ential interferograms and are difficult to separate effectively through spatial domain filter‑
ing. However, the different signal characteristics provide the basis for detecting the ATP.
Therefore, we proposed the SA‑MRWCA method to decompose F‑DInfs and B‑DInfs into
multiple phase signals of different wavelengths through forwardwavelet transform. Then,
the SA‑MRWCA used weighted correlation analysis to reduce the TEP and NP signals,
reconstructing the ADP through inverse wavelet transform. Figure 6a–h displays the de‑
tected ADP and the phase after atmospheric correction of the inland test site, respectively.
Combiningwith Figure 5e–h, we find that the SA‑MRWCA correctly detected atmospheric
delay errors.
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After obtaining the atmospheric delay errors, the error equations considering the at‑
mospheric delay errors can be established, achieving height matching between DEMs and
GCPs, as well as between TPs. In addition, to construct a more stable block adjustment
solution method in fine block adjustment, we utilized the t‑test to test the significance of
model parameters and realized the adaptation of systematic errors. On this basis, since
GCPs and TPs came from two types of observation systems, and the error equations were
affected by gross errors, the RHVCE [22] was to establish an accurate posterior stochas‑
tic model for calculating the parameters. Finally, we used the error correction equation
shown in Equation (14) to correct the InSAR‑DEM in the inland test site.

The results and accuracy statistics are shown in Figure 7, where Figure 7a displays
the corrected DEM, and Figure 7b shows the error statistics histogram of the DEMs cor‑
rected by block adjustment considering and ignoring atmospheric effects compared with
ICESat‑2 elevation validation points. The block adjustment considering atmospheric ef‑
fects markedly enhanced error concentration, reducing the root mean square error (RMSE)
from 10.85m to 3.02m and resulting in a 72.2% increase in height accuracy. In order to spa‑
tially evaluatewhether systematic errors and atmospheric delay errors have been removed,
we introduced TanDEM‑X DEM as elevation reference data and conducted a local compar‑
ison at the red frame in Figure 7a. Figure 7c partially enlarges the view of the corrected
DEM. The differencemap between the InSAR‑DEMof the area and TanDEM‑XDEMunder
block adjustment considering and ignoring atmospheric effects is shown in Figure 7d,e, re‑
spectively. The red frame contains three strips. Figure 7d displays calibration considering
atmospheric effects, which removes the atmospheric delay errors and systematic errors
completely. However, Figure 7e exhibits significant residual error trends, indicating that
block adjustment ignoring atmospheric effects cannot accurately estimate the systematic
errors of each strip.
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4.2. Coastal Test Site
The coastal test site lies east of theAtlantic Ocean, characterized by scattered hills with

elevations ranging from approximately 100 to 750 m. Compared with the inland test site,
the coastal test site has amore humid atmospheric layer and amore undulating terrain. Ad‑
ditionally, as shown in Table 2, the vertical baselines in the inland test site are concentrated
between 300 and 550 m. In contrast, the coastal test site exhibits significant differences in
vertical baselines between adjacent strips, with variations exceeding 300 m, implying that
each strip has different sensitivities to the ADP and the TEP. Therefore, the coastal test site
has more difficulty detecting atmospheric delay errors and estimating systematic errors
using the proposed algorithm. The distribution of GCPs and TPs in the coastal test site is
shown in Figure 8, where Figure 8a represents the control point database, and Figure 8b
represents the GCPs and TPs after refinement and thinning.
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After making the ADP the only similar phase component between F‑DInfs and B‑
DInfs, we can detect the ADP based on the SA‑MRWCA and correct the atmospheric delay
errors, shown in Figure 9a–h, respectively. Previous studies have indicated that the tro‑
pospheric delay errors, as one of the main components of atmospheric effects, can be di‑
vided into topography‑dependent vertical stratified delay and topography‑independent
turbulent delay [26]. When comparing Figure 6a–d with Figure 9a–d, it is evident that
the ADP extracted in the coastal test site appears relatively discrete. This discreteness
can be attributed to the dispersed hills in the coastal test site, where the topography un‑
dergoes rapid changes, resulting in the incorporation of topography‑dependent signals in
the atmospheric delay. In addition, considering that the ground surface will not deform
in a short period, the positive phase at the bottom of Figure 9c should be topography‑
independent turbulence signals. After atmospheric correction, the residual phases shown
in Figure 9e–h have no apparent atmospheric delay signals. Due to the relatively shorter
vertical baselines of Path 111 and Path 113, the height of ambiguity (height change corre‑
sponding to one phase cycle) is 500 m and 410 m, respectively, leading to smaller TEP val‑
ues, as depicted in Figure 9f,h. Heightmatchingwas achieved betweenDEMs andGCPs, as
well as between TPs, through the atmospheric delay error estimated by the SA‑MRWCA.
On this basis, we utilized RHVCE in fine block adjustment to establish an accurate pos‑
terior stochastic model for resisting the influence of gross errors on the observation equa‑
tions. Finally, we calculated themodel parameters to correct the InSAR‑DEM in the coastal
test site.
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Figure 10 shows the results and the height accuracy statistics, where Figure 10a dis‑
plays the corrected DEM, and Figure 10b displays the error statistics histogram of the
DEMs corrected by block adjustment considering and ignoring atmospheric effects com‑
pared with ICESat‑2 elevation validation points. It can be seen that the errors after correc‑
tion of the block adjustment considering atmospheric effects are more concentrated, the
RMSE reduced from 16.19 m to 3.22 m, and the height accuracy increased by 80.2%. In
addition, we also introduced TanDEM‑X DEM to test the calibration effect and conducted
a local comparison in the red frame in Figure 10a. Figure 10c is a partially enlarged view of
the corrected DEM. The difference map between the InSAR‑DEM of the area and TanDEM‑
X DEM under the block adjustment considering and ignoring the atmospheric effects is
shown in Figure 10d,e. The red frame contains three strips. When comparing Figure 10d
with Figure 10e, it can be seen that the block adjustment considering atmospheric effects
completely corrected systematic errors and atmospheric delay errors. However, the block
adjustment ignoring atmospheric effects shows apparent elevation discontinuities in the
overlapping area, indicating a misestimation of systematic errors. The correction results
in the coastal test area illustrate that our algorithm is still effective when the water vapor
content is rich and the baselines between adjacent strips differ.
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5. Discussion
5.1. The Impact of Atmospheric Effects on the Estimation of Block Adjustment

Through the above analysis, we can find that the impact of atmospheric effects on
block adjustment mainly includes two aspects.

(1) Height matching between InSAR‑DEM and GCPs, as well as between TPs

DLR proposed the block adjustment based on the function model, aiming to calibrate
the systematic errors of the bistatic mode [9,10]. Therefore, the error equations of this
model only observe systematic errors. In the repeat‑pass interferometric mode, changes
in the state of the atmosphere lead to the introduction of atmospheric delay errors in the
DEM. When the relative humidity of the atmosphere changes by 20%, the resulting height
measurement deviation can reach 80~290 m [26]. In addition to systematic errors, the
height differences between DEMs and GCPs, as well as between TPs, also include atmo‑
spheric delay errors. In order to achieve height matching, it is crucial to establish an er‑
ror equation that considers systematic errors and atmospheric delay errors. As shown in
Figures 7e and 10e, without considering the atmospheric effects, the estimated model pa‑
rameters through block adjustment are inaccurate, resulting in residual trend signals in
DEM. In contrast, Figures 7d and 10d depict the difference maps between the DEMs cor‑
rected by our algorithm and TanDEM‑X DEM, which observe no residual trend errors. It
demonstrates the effectiveness of our algorithm in overcoming the atmospheric effects on
height matching and accurately rectifying systematic errors.

(2) The long‑wavelength signals of atmospheric effects are mixed with systematic errors

Since the trajectory of SAR satellites in space is relatively smooth, systematic errors
caused by inaccurate orbit positions usually exist in the form of long‑wavelength
signals [28]. However, the ionospheric delay errors of the atmospheric effects are also
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long‑wavelength signals, which have a similar distribution to the systematic errors [29].
Therefore, it will interfere with the estimating of systematic errors. However, combined
with the height control of GCPs and the height consistency constraint of TPs, block adjust‑
ment is more resistant to the interference of atmospheric delay errors than scene‑by‑scene
polynomial fitting.

Systematic errors exist as the orbit error phase at the interferometric phase. As shown
in Figure 5b,f, the ionospheric delay phase in the red frame is absorbed by the polynomial
of the fitted orbit error phase when correcting the systematic error scene by scene, caus‑
ing an underestimation of the top system error. When the orbit error phase is removed
using the systematic error estimated by the block adjustment, the ionospheric delay phase
appears in the remaining phase component, indicating that the two are well separated.
Taking the inland test site as an example, the systematic errors estimated by scene‑by‑
scene fitting and block adjustment are shown in Figure 11a–h, respectively. Due to the
limited orbit position accuracy, the systematic error trends shown in Figure 11 are rela‑
tively changeable. Benefiting from the significance test based on the t‑test, the systematic
error estimation of block adjustment can achieve adaptive estimation for each strip. The
systematic errors estimated by the above methods are pretty different. Figure 11i–l dis‑
plays the difference maps between the two. Due to the interference of atmospheric delay
errors, the systematic error estimated scene by scene in Figure 11c shows local overfitting.
Combining Figures 5c,g and 11g, it can be seen that the block adjustment overcomes the
problem of local overfitting. The above analysis demonstrates that the block adjustment
considering atmospheric effects can still estimate the complex systematic errors under the
interference of atmospheric delay errors.

5.2. The Impact of Slope on DEM Calibration
In the block adjustment model considering atmospheric effects, the slope is another

influencing factor besides atmospheric effects. Since the SAR uses side‑looking imaging,
geometric distortion can occur in steep slopes, resulting in limited DEM accuracy [26]. In
addition, areas with large slopes often include mountains and hills, which are likely to
contain topography‑dependent tropospheric delay errors [26]. Based on the above factors,
we divided the established control point database into five groups according to slope and
then conducted height accuracy verification. The grouping situation is shown in Table 4.

Table 4. The count of checkpoints in each category after being grouped by the slope.

Test Sites 0~5◦ 5~10◦ 10~15◦ 15~20◦ >20◦

Inland 151,680 102,129 27,047 6448 2403
Coastal 71,292 50,441 15,840 3641 1064

We used the grouped checkpoints to assess InSAR‑DEMs’ accuracy in the inland and
coastal test sites and then compared themwith TanDEM‑X DEM, SRTMDEM, and ASTER
GDEM, respectively. The results are shown in Figure 12, where Figure 12a,c,e and
Figure 12b,d,f are the RMSE, mean absolute error (MAE), and standard deviation (STD)
of the inland and coastal test sites, respectively. With increasing slopes, the RMSE, MAE,
and STD of the above DEMs decrease. However, compared with the original DEM, the
accuracy indicators of the corrected DEM are significantly improved at each slope. In ad‑
dition, the accuracy indicators of the corrected DEM are closer to TanDEM‑X DEM and
SRTM DEM produced by the zero‑time baseline, which can prove the reliability of our
algorithm in calibrating atmospheric delay errors and systematic errors.
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6. Conclusions
Aiming at the block adjustment being interfered with by atmospheric effects for the

BIOMASS mission, we proposed a block adjustment model considering atmospheric ef‑
fects. This method separated systematic errors and atmospheric delay errors and then
utilized the SA‑MRWCA to detect atmospheric effects without relying on external water
vapor data. Subsequently, the error equations containing the systematic errors and atmo‑
spheric delay errors can be established, achieving height matching between GCPs and
DEMs, as well as between TPs. Finally, we used a significance test based on the t‑test
to achieve adaptive systematic error correction. Building on this foundation, we assessed
the weights of GCPs and TPs by using the stochastic model estimated by RHVCE and then
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estimated the model parameters of block adjustment. Therefore, the atmospheric delay
errors and systematic errors can be calibrated simultaneously, achieving block adjustment
that overcomes the influence of atmospheric effects.

Through experiments with different climate conditions, we substantiated the algo‑
rithm’s effectiveness. Furthermore, a precision comparison was conducted between the
original DEM, corrected DEM, and global DEM products at varying slopes. Compared
with the original DEM, the height accuracy of the corrected DEM is closer to TanDEM‑X
DEM and SRTM DEM at each slope, indicating the algorithm can simultaneously correct
atmospheric delay errors and systematic errors. In addition, the computational complexity
and processing time depend on the quality of the satellite orbit, the reliability of the GCPs
and TPs, and the distribution of systematic errors and atmospheric delay errors.

Since there are no available spaceborne P‑band data, L‑band data are the best means
of simulation. The P‑band has a longer wavelength than the L‑band, which will cause
it to experience more severe ionospheric delay errors. Furthermore, the P‑band and L‑
band have different penetration capabilities into the forests, resulting in different forest
responses to SAR signals. Therefore, future research should validate the proposed model
using the actual BIOMASS data. What is particularly important is that to avoid forest
signal interference with systematic error observations, existing studies mainly select the
GCPs and TPs on bare earth. However, the core monitoring object of BIOMASS is the for‑
est. An even distribution of the GCPs and TPs is necessary to ensure accurate observation
of systematic errors. Therefore, it is urgent to establish a P‑band scattering model that
considers differences in penetration depths to forests and then overcomes their impact on
DEM calibration.
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