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Abstract: The convergence of vehicular communications, 5th generation mobile network (5G) tech-
nology, and edge computing marks a paradigm shift in intelligent transportation. Vehicular commu-
nication systems, including Vehicle-to-Vehicle and Vehicle-to-Infrastructure, are integral to Intelligent
Transportation Systems. The advent of 5G enhances connectivity, while edge computing brings
computational processes closer to data sources. This synergy holds the potential to revolutionize
transportation efficiency and safety. This research investigates vehicular communication and edge
computing dynamics within a 5G network, considering varying distances between On Board Units
and Roadside Units. Energy consumption patterns and CPU load at the RSU are analyzed through
meticulous real-world experiments and simulations. Our results show stable energy consumption at
shorter distances, with fluctuations increasing at greater ranges. CPU load correlates with commu-
nication distance, highlighting the need for adaptive algorithms. While experiments exhibit higher
variability, our simulations validate these findings, emphasizing the importance of considering
transmission range in vehicular communication network design.

Keywords: vehicular communication; edge computing; 5G networks; energy efficiency; CPU load;
NS-3 simulation

1. Introduction

The rapid evolution of computer, sensor, and wireless communication technology
has ushered in a transformative era in intelligent transportation systems (ITS). Starting
from the early phases of individual vehicle intelligence, there has been a gradual shift
towards a cooperative vehicle–infrastructure model, resulting in Cooperative, Connected,
and Automated Mobility (CCAM) [1]. Internet of Vehicles (IoV) technology is at the heart
of this evolution, integrating communication, control, and calculation technologies to
significantly enhance road utilization in urban transportation systems. This advancement
contributes to heightened transportation efficiency, reduced traffic accidents, lower energy
consumption, and the realization of sustainable development within the transportation
industry [2–9].

The Intelligent Vehicle Infrastructure Cooperative System is central to intelligent
transportation, epitomizing vehicular cooperation. This system encompasses vehicle-to-
vehicle communication (V2V), vehicle-to-infrastructure communication (V2I), vehicle-to-
pedestrian communication (V2P), and vehicle-to-Internet communication (V2N), collec-
tively referred to as vehicle-to-everything (V2X) [10–14]. It represents the optimal solution,
facilitating data exchange among vehicles and entities to provide precise knowledge of the
surrounding environment, thereby enhancing traffic safety and efficiency.

A quintessential Intelligent Vehicle Infrastructure comprises two fundamental units:
the Roadside Unit (RSU) and the On Board Unit (OBU). Data exchange between these
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units furnishes vehicles with accurate insights into their surroundings, enabling informed
decisions to enhance traffic safety and efficiency. For instance, sensor devices on RSUs can
detect approaching objects, such as pedestrians and vehicles, measure their distance and
speed, and inform the RSU. Utilizing these data, the RSU dynamically adjusts the phase
information of intelligent traffic lights, optimizing traffic flow and efficiency. Similarly, in-
telligent parking systems leverage surrounding information to model and analyze available
parking spaces, enhancing convenience for users.

5G technology is pivotal in advancing several Sustainable Development Goals (SDGs)
through its transformative capabilities. Specifically, SDG 9 (Industry, Innovation, and In-
frastructure) benefits from the contribution of 5G to enhanced connectivity, low latency,
and high throughput, fostering growth in industries and infrastructure development [15].
To promote SDG 3 (Good Health and Wellbeing), 5G facilitates telemedicine and remote
healthcare applications, enabling real-time communication between healthcare profes-
sionals and patients [16]. Smart city initiatives, aligned with SDG 11 (Sustainable Cities
and Communities), leverage 5G to optimize transportation, enable precision agriculture,
and support responsible consumption and production practices [17]. Addressing SDG 13
(Climate Action), 5G aids in environmental monitoring, utilizing sensors and devices for
real-time data collection to support climate-related initiatives. The technology also aligns
with SDG 4 (Quality Education) by providing high-speed and reliable connectivity for
remote learning, thereby ensuring access to educational resources [18]. Furthermore, 5G
contributes to SDG 17 (Partnerships for the Goals) by fostering innovation ecosystems and
economic growth to create opportunities for collaborative partnerships and initiatives that
align with sustainable development objectives. Overall, 5G directly contributes to and
advances multiple SDGs, fostering a more sustainable and inclusive global future [19].

While significant advancements have been made in vehicular communication tech-
nologies, there remains a gap in understanding how communication distances influence
the performance of edge nodes, particularly in the context of energy consumption and
computational demands. Existing studies often overlook the nuanced effects of distance
variations on edge computing in vehicular environments, necessitating a comprehensive
exploration to bridge this gap. To address this gap, our research endeavors to answer the
following questions:

• How do varying communication distances between OBUs and RSUs impact energy
consumption patterns in vehicular communication networks?

• What is the correlation between communication distance and CPU load at the RSU,
and how does it influence edge node performance?

This paper provides insights into the performance dynamics of edge computing in
5G-enabled vehicular communication systems while considering the influence of commu-
nication distances. By conducting both real-world experiments and simulations, we offer
valuable findings on energy consumption patterns and CPU load variations, contributing to
the development of efficient and resilient edge computing solutions tailored for connected
transportation systems.

Our research is conducted within a meticulously crafted experimental framework
deployed on a 5G testbed. The experimental setup involves a BMW car equipped with
an OBU and an RSU supplemented by a simulation environment powered by the NS-3
network simulator [20]. This dual-pronged approach meticulously captures the intricacies
of vehicular communication in both real-world and simulated scenarios. The BMW car,
serving as the platform for the OBU, becomes the focal point for in-vehicle communication,
embodying the dynamic and diverse nature of vehicular data exchange. Simultaneously,
the RSU, functioning as an edge node, plays a pivotal role in the infrastructure, facilitating
seamless communication between the vehicle and the broader network. The NS-3 simu-
lation complements the real-world experimentation, providing a controlled environment
for detailed technical analysis. Together, these components form a comprehensive ensem-
ble designed to authentically mirror the practical challenges and dynamics of connected
transportation systems. This approach ensures the relevance of our study and establishes



World Electr. Veh. J. 2024, 15, 171 3 of 19

a solid foundation for technically nuanced insights into the performance of vehicular
communication networks.

The remainder of this paper is structured as follows. In Section 2, we review related
works. Section 3 details the experimental and simulation setups employed in our investiga-
tion. Section 4 presents our results and analysis, highlighting energy consumption patterns
and CPU load dynamics across different communication distances. In Section 5, we discuss
the implications of our findings. Finally, Section 6 concludes the paper, summarizing key
insights, contributions, and potential avenues for future research.

2. Related Works

Lately, the issue of energy efficiency has attracted considerable attention in the Mobile
Edge Computing System (MECS) context [21]. In [22], the authors considered user associa-
tion and power allocation in millimeter-wave (mmWave)-based ultra-dense networks while
ensuring load balance and energy efficiency, harvesting energy from base stations, meeting
user quality of service requirements, and managing cross-tier interference. The authors
of [23] explored the optimization challenge of power control and sensing time in a cognitive
small-cell network, addressing concerns such as mitigating cross-tier interference, imperfect
hybrid spectrum sensing, and energy efficiency. Efficient energy-saving schemes [24,25],
extensively researched and widely acclaimed, stand out as one of the most prominent
avenues for achieving substantial energy savings in cellular networks. Additionally, pro-
posals for base-station sleeping (BSs) control [26–29] have garnered significant attention in
the pursuit of energy efficiency within this domain. However, integrating MEC with BSs
significantly complicates the energy-saving issue, as the BS now provide both radio access
and caching services.

Additionally, because caching resources on MECSs are limited, downloading some
content from the CN is inevitable. Consequently, energy consumption is intricately linked
to caching capacity and MECSs’ sleeping decisions over time. In this context, content popu-
larity and caching capacity emerge as two main factors influencing the MECSs’ sleeping
decisions. In [30], the researchers discussed the caching deployment problem with a given
wireless transmission rate while assuming fixed factors for the backhaul transmission rate,
MECS storage capacity, and system energy consumption. However, base stations must
account for various wireless channel states, conditions, diverse backhaul links, and sys-
tem power in practical mobile networks. Thus, it is necessary and crucial for caching
deployment and active MECS to consider the above three factors [31,32].

In [33], service delay was minimized by virtual machine (VM) mitigation in SCN,
and the impact of the mobility of UEs and the dense deployment of small cells were
discussed. In [34], the authors analyzed the coverage performance for computation tasks
within a two-tier small-cell network. Note that energy efficiency should be discussed in
these works, and the service delay requirement has been neglected thus far.

Ning et al. [35] addressed the evolving demands of vehicular services by proposing an
intelligent Internet of Vehicles (IoV) framework to minimize overall energy consumption
while meeting user delay constraints. Recognizing the limitations of vehicular fog nodes in
delivering satisfactory user experiences, the authors constructed a three-layer offloading
framework within the context of intelligent IoV. To tackle the high computational com-
plexity of the problem, it was decomposed into flow redirection and offloading decision
components. Subsequently, the researchers introduced a deep reinforcement learning
(DRL)-based scheme to solve the optimization problem efficiently. Real-world traces of
taxis in Shanghai, China were utilized for performance evaluations, demonstrating the ef-
fectiveness of the proposed methods. The results indicated a significant decrease in average
energy consumption by approximately 60% compared to the baseline algorithm. However,
despite its contributions this work lacks comprehensive simulation-based evaluations to
validate the proposed framework under various scenarios and conditions. While real-world
trace-based evaluations can offer valuable insights into the effectiveness of the proposed
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methods, simulation-based studies provide a more controlled environment for testing and
validating the system’s performance across a wide range of parameters and scenarios.

Ke et al. [36] addressed the challenges of minimizing energy consumption and data
communication delay in vehicular networks, with a particular focus on the dynamic and
time-varying nature of wireless channels and bandwidth. Leveraging MEC servers asso-
ciated with BSs, vehicles, and RSUs can offload computing tasks to enhance processing
efficiency and reduce delays. However, the unstable environment for offloading tasks to
the MECS, characterized by varying wireless channel states and available bandwidths,
poses significant challenges. To tackle this, the researchers proposed a task computation
offloading model for heterogeneous vehicular networks considering multiple stochastic
tasks and the variability of wireless channels and bandwidth. To address the complexity
of the large action space and obtain a tradeoff between energy consumption and data
transmission delay, they introduced an adaptive computation offloading method based
on deep reinforcement learning (ACORL). ACORL utilizes the Deep Deterministic Policy
Gradient (DDPG) as a deep reinforcement learning method to optimize the offloading
policy, efficiently addressing continuous action space; additionally, the method incorpo-
rates improvements to the Ornstein–Uhlenbeck (OU) noise vector for effective stochastic
exploration. Through extensive simulations under varying channel states and available
bandwidth scenarios, the researchers demonstrated the effectiveness of ACORL in adap-
tively performing local execution and offloading tasks to MEC servers, outperforming
two baseline schemes. However, while this work makes significant strides in addressing
the challenges of computation offloading in vehicular networks, the evaluation was pri-
marily conducted through numerical simulations; further validation through real-world
experiments or field trials could provide more insights into the practical applicability and
robustness of the proposed approach.

Feng et al. [37] proposed a novel approach to address the challenges in end-to-end low-
latency transmission and backhaul resources in 5G-enabled V2X networks by leveraging
MEC. By considering the crucial factors of reliability and delay in vehicle communication,
the authors introduced a joint computation and Ultra-Reliable Low-Latency Communi-
cation (URLLC) resource allocation strategy for collaborative MEC-assisted cellular-V2X
networks. To tackle the NP-hard optimization problem, the authors decomposed it into two
subproblems: URLLC resource allocation and computation resource decisions. They further
introduced non-cooperative game theory and bipartite graph techniques to reduce inter-cell
interference and optimize channel allocation for URLLC V2X communication. Additionally,
an online Lyapunov optimization method was proposed to achieve a tradeoff between
average weighted power consumption and delay, with the CPU frequency calculated using
the Gauss–Seidel method. Simulation results demonstrated the superiority of the proposed
strategy over centralized MEC-assisted V2X approaches, achieving better performance
in terms of power consumption, overflow probability, and execution delay. While the
paper presents a comprehensive strategy for addressing computation and URLLC resource
allocation in C-V2X networks, it needs real-world experimental validation. Conducting
experiments in real-world settings would help to validate the effectiveness and feasibility
of the proposed strategy under various scenarios and environmental conditions.

Sadatdiynov et al. [38] offered a comprehensive overview of optimization methods
employed in computation offloading within Edge Computing networks, addressing the
challenges of handling massive data generated by Smart Mobile Devices (SMDs). By ex-
ploring six types of optimization methods, including Lyapunov optimization, convex
optimization, heuristic techniques, game theory, machine learning, and others, the authors
provide insights into their respective objective functions, application areas, offloading
methods, evaluation methods, and time complexity. Moreover, the authors discuss open
research problems in computation offloading, providing valuable guidance for new field
researchers. While this review provides a thorough examination of existing optimization
methods, it predominantly focuses on theoretical aspects and lacks empirical validation
in real-world scenarios. Most of the methods discussed require validation through prac-
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tical implementations and experimentation in order to assess their efficacy in diverse
network environments.

Moghaddasi et al. [39] offered a pioneering approach to addressing the challenges
of data offloading in the context of 5G-enabled vehicular edge computing (VEC) environ-
ments. The authors introduced an innovative data offloading strategy designed to optimize
overall system performance by leveraging the power of deep reinforcement learning (DRL),
specifically employing a cutting-edge application known as double deep Q-networks
(DDQN). This strategy demonstrates significant improvements in operational efficiency
and effectively manages the complexities inherent in VEC environments, including dy-
namic mobility conditions and fluctuating network demands. This approach represents a
substantial advancement in connected vehicular networks, drastically reducing communi-
cation overhead, lowering energy consumption, and minimizing latency. The empirical
analysis showcases remarkable enhancements, including an 80% improvement in energy
efficiency, a 72.6% reduction in communication overhead, and a 9.8% improvement in delay
compared to existing methods. This work is a benchmark for future research endeavors
aiming to enhance real-time vehicular network services and tackle the intricate challenges
of data offloading within 5G-enabled VEC frameworks. While the presented work offers
substantial advancements in optimizing data offloading strategies for 5G-enabled VEC sys-
tems, the efficacy of the proposed approach in real-world scenarios with varying network
conditions, traffic patterns, and environmental factors remains to be fully validated.

While comprehensive in addressing various energy-related challenges, these existing
works often need to consider the impact of transmission range on energy consumption
explicitly. The communication distance between vehicles and infrastructure elements is
a crucial variable, especially in dynamic vehicular environments. Longer transmission
ranges may introduce increased signal attenuation and interference, potentially affecting
energy consumption and overall system performance.

As a consequence, designing an optimal solution to minimize energy costs while
guaranteeing high user quality of experience (QoE) is a challenging issue, and standardiza-
tion efforts play a pivotal role in this trajectory. Establishing common standards enhances
interoperability and provides a foundation for seamless integration of diverse components
within these systems. Standardized frameworks ensure consistency and compatibility,
fostering a collaborative environment where researchers and practitioners can build upon
established norms. In the context of the works mentioned above, adherence to standardized
protocols becomes crucial for scalability, reliability, and the broader adoption of energy-
efficient practices.

3. Experimental and Simulation Setup

In our research, both simulation and real-world experimentation serve complementary
purposes to comprehensively explore vehicular communication and edge computing within
a 5G network while considering varying communication distances between OBUs and
RSUs. The purpose of the simulations is to replicate controlled virtual environments
where various scenarios can be tested under specific conditions, providing insights into
system behavior and performance in idealized settings. On the other hand, the purpose
of real-world experiments is to validate the simulation results and capture the nuances
and challenges of actual deployments while considering factors such as signal interference,
environmental conditions, and hardware limitations.

3.1. Experimental Setup

The experiment was conducted at the University of Antwerp Campus Groenenborger
in Antwerp, Belgium. It involved a real-world deployment scenario with an OBU mounted
in a BMW and an RSU strategically placed on the campus, establishing a 5G connection
for communication. The goal of the experiment was to generate Cooperative Awareness
Messages (CAMs) in the OBU and send them to the RSU over the 5G connection from
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different distances while recording the energy consumption and central processing unit
(CPU) load at the RSU (see Figure 1).

Figure 1. 5G testbed at the University of Antwerp Campus Groenenborger in Antwerp.

3.1.1. Network Architecture

The network architecture encompassed advanced components in both the RSU and
OBU (see Figure 2). The RSU featured a General Purpose Compute Unit (GPCU) with
an Intel Xeon E5-2620 processor, 32 GB RAM, and a 1 TB SSD. In addition, it included
a Cohda MK5 RSU and Cohda MK6c EVK for IEEE 802.11p and Cellular V2X (C-V2X)
connectivity, both equipped with built-in Global Navigation Satellite System (GNSS) re-
ceivers. A Universal Software Radio Peripheral (USRP) N310 Software-Defined Radio
(SDR) facilitated high-speed data transfer with multiple antennas and a wide frequency
range, while a Septentrio AsteRX-m2 ensured high-precision GNSS reception.

Figure 2. RSU architecture.
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Similarly, the OBU incorporated an Intel Nuc 7i7DNKE with an Intel Core i7-8650U
processor, 8 GB RAM, and a 250 GB SSD. The Cohda MK5 OBU and Cohda MK6c EVK
provided IEEE 802.11p and C-V2X connectivity, complemented by a USRP B210 SDR for
flexible communication. An NVidia Jetson AGX Xavier contributed a robust GPU for
processing tasks, enhancing the overall communication capabilities. Finally, the Septentrio
AsteRX-m2a delivered high-precision GNSS data.

3.1.2. The Experiment

The experiment focused on measuring the energy consumption of the RSU, specifically
at the edge node, under varying communication ranges such as 30 m, 50 m, 70 m, and 80 m.
Data packets were transmitted from the OBU in the BMW to the RSU, simulating different
distances to assess the impact on energy efficiency (see Figure 3). Metrics included the
recording of energy consumption and CPU load, providing insights into the performance
of the edge node in a 5G communication scenario. To measure energy consumption, we
managed a Power Distribution Unit (PDU) contained in the RSU, which was used to
remotely power-cycle stuck components an to measure the energy consumption of the
devices connected to it. We deployed a monitoring system [40] to record and monitor
the CPU load. This system was encapsulated within an LXD container to ensure smooth
management and monitoring of the RSU. A Prometheus server with key agents such
as Node Exporter and cAdvisor was hosted within this container. These components
actively gathered real-time performance metrics and health statuses, relying on a Grafana
Dashboard as a centralized interface to visualize dynamic performance data and receive
status updates.

Figure 3. Experiment architecture.

3.2. Simulation Setup

The simulation experiment was run on NS-3 version 3.33. NS-3 stands out as an open-
source discrete-event network simulator, providing the capability to trace internal events,
a flexible configuration system, and diverse modules for simulating other technologies
such as ethernet, Long Term Evolution (LTE), and WiFi in multi-technology scenarios. This
versatility allows different segments of the same network modeled and different systems to
be interconnected when required. The widely adopted NS-3 simulator is well recognized in
research and academia, diligently maintained by an active community, and often supported
by the Google Summer of Code as a flagship open-source project [41].

Our simulations aimed to replicate a 5G-enabled vehicular communication scenario
featuring an OBU and an RSU within a virtual urban environment. The OBU was modeled
as a mobile node that generates messages and establishes 5G connections with a strategically
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placed stationary RSU. The experiment focused on assessing the energy consumption
induced by the impact of 5G communication, with variable transmission range settings on
the edge node (RSU) to simulate distances of 30 m, 50 m, 70 m, and 80 m. The simulation
was executed for multiple scenarios and the resulting data were analyzed to understand
how the communication distance influenced the energy consumption of the edge node in
the 5G vehicular communication system.

3.2.1. Network Architecture and Implementation

Simulation was conducted to evaluate the energy consumption performance at the 5G
Next-Generation Node Base (gNB) within a 5G non-standalone (NSA) deployment [42].
The network architecture was based on a scenario featuring a single 5G NR gNB. The gNB
was co-deployed with a 4G Evolved Packet Core (EPC) network and the User Equipment
(UE) was configured with multi-connectivity between a co-deployed LTE evolved Node
Base (eNB) and the 5G NR gNB. In the simulation, the distance parameter, denoted as “dist”,
was varied within the range of 30 m, 50 m, 70 m, and 80 m in order to analyze its influence on
gNB energy consumption under diverse communication ranges. The simulation employed
the User Datagram Protocol (UDP) as the transport protocol to transmit the messages
generated by the OBU. UDP was chosen for its lightweight and connectionless nature,
which aligns with the requirements of edge computing scenarios. To model the energy
consumption, we adapted a base station power consumption model based on Physical
(PHY) states (see Figure 4), considering the absence of the RRC_INACTIVE state in the
Radio Resource Control (RRC) state machine implemented in the ns3 mmWave module.
The PHY states (IDLE, RX_CTRL, RX_DATA, and TX) were used to emulate the power
consumption behavior over the RRC states of an eNB/gNB. The net energy consumption
of the base station was expressed as P(Ps×ts), where Ps and ts respectively represent the
power consumption and time taken in a specific PHY state (IDLE, RX_CTRL, RX_DATA,
TX), as shown in (1):

Etotal = ∑
S∈S

(PS × tS), (1)

where:

• Etotal represents the total energy consumption
• S represents the PHY states: IDLE, RX_CTRL, RX_DATA, and TX
• PS represents the power consumption of each PHY state S
• tS represents the dwell time of each PHY state S.

Figure 4. Energy model.

The implementation in NS-3 leveraged the ns3-mmWave [42] and 5G-LENA [43] mod-
ules, which integrate the MAC, PHY, and RLC layers per 3GPP specifications. The mmWave
simulation utilized an Energy Source Model and a Device Energy Model. The mmWaveSpec-
trumPhy object within the mmWaveEnbNetDevice provided a trace source for PHY state
changes, and the device energy model utilized a trace sink to update the total energy
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consumption based on the PHY state power values. The NR module originated as a
divergence from the NS-3 mmWave simulation tool, initially developed by New York
University (NYU) and the University of Padova [42]. The mmWave simulation model
incorporates essential LTE features from the NS-3 LTE module (LENA) [43], entirely crafted
at the Centre Tecnològic de Telecomunicacions Catalunya (CTTC). The mmWave module is
inherited from the NS-3 LTE module (LENA), making both the mmWave and NR modules
heavily influenced by the LTE module’s previous design. Specifically, both modules reuse
higher protocol components (Radio Link Control (RLC), Packet Data Convergence Protocol
(PDCP), Radio Resource Control (RRC), Non-Access Stratum (NAS)) and the Evolved
Packet Core (EPC) from LTE. This simulation framework allowed us to analyze the energy
consumption patterns of the RSU at varying communication distances, providing insights
into the efficiency of the 5G network under different scenarios.

3.2.2. Simulation Parameters

The 5G network was deployed in non-standalone (NSA) mode, indicating its reliance
on a 4G Evolved Packet Core (EPC) network, mirroring practical scenarios where both 4G
and 5G technologies coexist.

For the user equipment (UE) configuration, a multi-connectivity approach was adopted,
enabling simultaneous links with both the LTE eNB and the NR gNB. The LTE eNB served
as a local traffic anchor within the core network, with data packets transmitted to and from
the mmWave gNB using split bearers. This configuration, detailed in [44], ensures efficient
flow management.

The simulation scenario involved initiating an end-to-end data flow from the UE
directed towards the gNB while sustaining a constant bitrate of 100 Mbit/s to analyze
energy consumption comprehensively under varying distances and realistic operational
conditions. Parameters defining the simulation setup included a bandwidth of 1 GHz for
mmWave eNBs operating at a carrier frequency of 28 GHz with a transmission power of
30 dBm; for LTE eNBs the bandwidth was set to 20 MHz, operating at a carrier frequency
of 2.1 GHz with a downlink (DL) transmission power of 30 dBm and an uplink (UL)
transmission power of 25 dBm. This system accounts for a noise figure of 5 dB and a
minimum Signal Interference Noise Ratio (SINR) threshold of −5 dB. Both eNB and UE
utilized Uniform Planar Array (UPA) Multiple-Input Multiple-Output (MIMO) arrays,
with sizes of 8 × 8 and 4 × 4, respectively. The scanning directions for eNB and UE were
each set to 1. The Simulation Reference Signal (SRS) duration was 10 µs, with an overhead
of 5% and a period of 200 µs between SRS transmissions. The UE speed was maintained
at 0 m/s, and the RLC buffer size was set to 10 MB. The one-way delay on X2 links was
configured as 1 ms, while the one-way MME delay was set to 10 ms. The UDP payload size
for data transmission was specified as 1024 bytes (see Table 1).

Table 1. Simulation parameters.

Parameter Value

Bandwidth of mmWave eNBs 1 GHz
mmWave carrier frequency 28 GHz

mmWave transmission power 30 dBm
Bandwidth of the LTE eNB 20 MHz

LTE carrier frequency 2.1 GHz
LTE DL transmission power 30 dBm
LTE UL transmission power 25 dBm

Noise figure 5 dB
Minimum SINR threshold −5 dB
eNB UPA MIMO array size 8 × 8
UE UPA MIMO array size 4 × 4
eNB scanning directions 1
UE scanning directions 1

SRS duration 10 µs
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Table 1. Cont.

Parameter Value

Overhead 5%
Period between SRSS 200 µs

UE speed 0 m/s
RLC buffer size 10 MB

One-way delay on X2 links 1 ms
One-way MME delay 10 ms

UDP payload size 1024 byte

The simulation was meticulously designed to capture the nuances of edge node
performance in a 5G deployment while taking into account distance variations. The primary
focus was on assessing energy consumption patterns and efficiency in the specified network
configuration, which provide valuable insights for evaluating system performance in
practical 5G deployment scenarios.

3.3. Performance Metrics

In exploring vehicular communication within the edge computing domain, our at-
tention is directed towards two fundamental metrics: energy consumption and CPU load.
These metrics carry profound implications for the sustainability and efficiency of communi-
cation processes in dynamic vehicular environments.

Energy consumption played a central role in our investigation, mirroring its signif-
icance in vehicular communication day-to-day operations. As vehicles exchange critical
information with RSUs, the energy expended in these communication processes becomes
a pivotal factor. The optimization of energy consumption is not merely an operational
concern, it is an ecological imperative; the optimization of energy consumption is a cru-
cial factor that influences the longevity and environmental impact of the entire vehicular
communication network [45].

The CPU plays a pivotal role in handling the computational demands associated with
the processing and transmitting of CAMs between OBUs and RSUs. As our investigation
delves into the dynamics of vehicular communication over a 5G network at varying
distances, the CPU emerges as a critical component in the edge node responsible for
real-time data processing [46].

In the context of our study, the CPU operates as the core computational hub, and is
responsible for computational demands associated with the processing and transmitting
of CAMs between OBUs and RSUs. The significance of the CPU load metric becomes
pronounced in scenarios where rapid and concurrent communication between vehicles is
indispensable. It serves as a critical parameter reflecting the computational intensity and
efficiency required to facilitate seamless data exchange in dynamic vehicular environments.

As vehicles exchange crucial information with RSUs, the CPU of the RSU becomes the
focal point for handling the intricate computational demands associated with the processing
and transmission of CAMs. The CPU is engaged in tasks such as data parsing, protocol
processing, and message forwarding. Moreover, the CPU load metric becomes a critical
parameter in the context of rapid and concurrent communication between vehicles [47].

The CPU load metric quantifies the extent to which the CPU is utilized at any given
time. In scenarios where vehicles communicate rapidly and concurrently, the CPU load
provides a quantitative measure of the computational burden on the RSU’s CPU. High
CPU load values indicate increased demand for processing power, potentially affecting the
system’s responsiveness and efficiency.

Therefore, the relevance of monitoring the CPU load in real time lies in its direct corre-
lation with the system’s ability to handle the dynamic and demanding nature of vehicular
communication. It serves as a tangible indicator of the computational stress experienced by
the RSU’s CPU during periods of intense data exchange, offering insights into the system’s
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performance and its capacity to sustain reliable and efficient communication in dynamic
vehicular environments.

The intersection of energy consumption and CPU load in vehicular communication net-
works establishes a quantifiable link between real-time computational demands and system
performance. As vehicles exchange critical information with RSUs, the CPU’s engagement
in tasks such as data parsing and message forwarding is reflected in its load metric, provid-
ing a tangible measure of computational intensity. High CPU load values correspond to
increased energy consumption, emphasizing the direct relationship between computational
demands and energy expenditure [48]. This interplay influences system responsiveness,
with elevated CPU load potentially impacting prompt data processing. Understanding
this dynamic intersection is pivotal for optimizing efficiency and reliability. Leveraging
these metrics can inform the development of edge computing solutions, ensuring adaptive
resource allocation and enhanced sustainability in vehicular communication networks.

4. Results and Analysis

As described in Section 3, our experiment involved a setting in which a car generated
a CAM and transmitted it to an RSU over a 5G connection. Distances between the OBU
and RSU were varied between 30 m, 50 m, 70 m, and 80 m, reflecting common scenarios
encountered in urban and highway environments, where shorter communication distances
are common due to the presence of intersections, traffic signals, and closely spaced in-
frastructure elements. Communication distances may be longer in highway scenarios,
reflecting the relatively open and linear nature of highways. This experiment allowed us to
explore the impact of communication range on the performance of the edge node in terms
of energy consumption (see Figure 5 and Table 2) and CPU load (see Figure 6 and Table 3),
which is crucial for the seamless operation of vehicular communication networks.

Table 2. Experimental and simulated energy consumption (J/s).

30 m 50 m 70 m 80 m

Time(s) Exp Sim Exp Sim Exp Sim Exp Sim

0 57 67.9168 57 67.9168 57 66.6398 57 66.6398
1 59 68.452 60 68.452 63 68.452 64 68.452
2 60 69.11 61 69.23 65 69.76 66 69.82
3 60 69.06 62 69.65 67 69.64 68 69.65
4 60 69.06 61 69.29 64 69.42 66 69.88
5 60 69.06 63 70.94 66 70.94 67 70.93
6 61 69.66 62 69.64 65 69.76 66 70.12
7 60 69.06 62 69.65 65 69.66 66 69.65
8 62 71.4 62 69.64 65 69.65 66 69.77
9 67 76.34 61 69.18 65 69.65 66 69.66

10 60 69.15 62 69.97 65 70.33 67 70.91
11 60 69.06 61 69.06 64 69.07 65 69.06
12 60 69.06 62 69.84 65 69.64 66 69.65
13 67 75.67 63 70.7 68 73.06 68 71.64
14 61 69.59 63 70.7 66 71.12 67 71.24
15 61 69.6 63 70.7 66 71.2 69 72.6
16 60 69.1 62 69.6 65 69.6 66 69.6
17 60 69.2 62 69.6 65 69.8 66 69.6
18 60 69.2 62 69.6 65 69.7 66 69.6
19 61 69.5 62 69.5 65 70.3 66 69.6
20 60 69.2 67 75 65 69.5 66 69.5
21 65 74 62 69.6 71 76.3 64 68.4
22 60 69.3 61 69.3 65 69.8 66 70
23 60 69 61 69.3 64 69.3 65 69.3
24 60 69.3 61 69.3 65 70 67 70.7
25 66 75 63 70.9 67 72.1 71 75.2
26 60 69.3 62 70.2 66 71 67 71
27 61 69.6 64 72.3 71 76.4 66 70.2
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Table 2. Cont.

30 m 50 m 70 m 80 m

Time(s) Exp Sim Exp Sim Exp Sim Exp Sim

28 60 69.3 62 69.6 64 69.3 67 70.8
29 60 69.4 64 71.5 69 73.6 66 70.2
30 59 68.3 60 68.3 61 68.3 59 68.3

(a) Experimental results (30 m). (b) Simulation results (30 m).

(c) Experimental results (50 m). (d) Simulation results (50 m).

(e) Experimental results (70 m). (f) Simulation results (70 m).

Figure 5. Cont.
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(g) Experimental results (80 m). (h) Simulation results (80 m).

Figure 5. Experimental and simulation energy consumption results.

Table 3. CPU load of the edge node.

Time(s) 30 m 50 m 70 m 80 m

0 7.14% 10.89% 12.66% 13.11%
0.5 11.41% 11.79% 17.19% 13.07%
1 12.30% 11.86% 16.78% 13.50%

1.5 12.19% 10.66% 14.91% 17.95%
2 13.07% 15.69% 15.57% 14.67%

2.5 12.93% 15.33% 16.03% 12.24%
3 12.97% 16.58% 17.27% 12.42%

3.5 12.93% 17.75% 17.22% 13.11%
4 12.94% 17.67% 17.49% 13.67%

4.5 13.02% 17.42% 17.87% 19.50%
5 13.09% 16.13% 16.50% 15.72%

5.5 12.97% 15.54% 15.55% 20.02%
6 13.06% 15.49% 18.53% 16.49%

6.5 13.07% 16.55% 18.43% 13.45%
7 10.89% 10.43% 13.41% 13.11%

Figure 6. CPU load.
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A parallel simulation was conducted to validate and augment our findings in tandem
with our real-world experiment. The simulation aimed to replicate the conditions of
the experiment in order to provide a comprehensive view of the system’s behavior in a
controlled virtual environment.

4.1. Energy Consumption

The simulated energy consumption started at 67.92 J/s and maintained stability at
around 69 J/s throughout the first 10 s of the simulation, with a slight peak at 76.34 J/s
around the 9 s mark. After that, it stabilizes again at 69 J/s throughout the remaining time
of the simulation. The minor fluctuations observed in the experimental data were present
in the simulation as well, reflecting the arrival of the CAM at the RSU (see Figure 5b).

Next, we changed the distance between the RSU and OBU to 50 m (see Figure 5c,d).
The data recorded in the real world indicate noticeable fluctuations in energy consumption,
ranging from 60 to 65 J/s with occasional peaks and dips. The energy consumption
remained stable within the first 9 s at around 61 J/s. After that, it peaked at 65 J/s
around the 9s mark, then started fluctuating with peaks at 67 J/s and dips at 61 J/s, before
eventually decreasing toward the end of the experiment (see Figure 5c).

The simulated energy consumption started at 67.92 J/s and maintained stability at
around 69 J/s throughout the first 10 s of the experiment, with a peak at 76.34 J/s around
the 9 s mark. After that, it stabilizes again at 69 J/s throughout the remaining time of the
simulation. The minor fluctuations observed in the experimental data were present in the
simulation as well, reflecting the arrival of the CAM at the RSU (see Figure 5d).

We then raised the distance again to 70 m (see Figure 5e,f). In the experimental setup,
the energy consumption values gradually increased over time in the first 21 s, starting from
57 J/s and maintaining a value ranging from 64 J/s to 68 J/s, eventually reaching a peak at
71 J/s after 21 s. There was a noticeable fluctuation ranging between 64 J/s and 71 J/s in
the remaining time of the experiment, which decreased towards the end (see Figure 5e). On
the other hand, the simulation data demonstrate a steady increase from 66.64 J/s to a peak
of 77.53 J/s at the 3.1 s mark. After this, it stabilizes at 69 J/s throughout the simulation,
with random fluctuations ranging from 75 J/s to 77 J/s before eventually stabilizing again
at 68 J/s towards the end (see Figure 5f).

Finally, we raised the distance to 80 m (see Figure 5g,h). In the experimental setup,
similar to the previous setup with a distance of 70 m, we noticed a gradual increase in the
energy consumption values, ranging from 57 J/s to 67 and fluctuating over time. Halfway
through the duration, we noticed a peak at 71 J/s, then stabilizing at 66 J/s. Multiple
peaks are observed towards the end at 71 J/s, eventually decreasing towards the end of the
experiment (see Figure 5g).

On the other hand, the simulation results show a more controlled energy consumption
pattern, with values ranging from 66.64 J/s to 77.53 J/s, then stabilizing at 69 J/s and
spiking to 77.47 J/s around the 9 s mark. After that, we see fluctuations ranging from 69 J/s
to 76 J/s until it stabilizes at 68 J/s towards the end (see Figure 5h).

4.2. CPU Load

The CPU load at the edge node (RSU) was monitored only in the experimental setup across
different communication distances: 30 m, 50 m, 70 m, and 80 m (see Figure 6). The recorded
percentages represent the proportion of CPU load overtime during CAM transmission.

At 30 m, the CPU load demonstrates a relatively stable pattern. The initial utilization
hovers around 7.14%, indicating a moderate load on the edge node. There is a noticeable
increase as CAM transmission commences, peaking at around 13.09%. The CPU load then
gradually decreases, reaching 10.89% as transmission stops.

When the distance was increased to 50 m, the CPU load exhibited a more varied trend.
Utilization started at approximately 10.89% and rose significantly during CAM transmis-
sion, with peaks reaching 17.75%. A decline in CPU load was observed after transmission
cessation, stabilizing at around 10.43%.
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At 70 m, the CPU load demonstrates further variability. The initial CPU load was around
12.66%, escalating during CAM transmission and reaching peaks of approximately 18.53%.
The post-transmission period saw a decline in CPU load, stabilizing at around 13.41%.

The 80 m distance scenario presented distinct CPU load patterns. The initial CPU load
was around 13.11%, escalating during CAM transmission, with peaks reaching 20.02%.
After transmission concluded, the CPU load gradually decreased, reaching 13.11% and
eventually stabilizing at the initial values.

5. Discussion

Our exploration of vehicular communication and edge computing over a 5G network
at varying distances between the OBU and RSU sheds light on critical insights for real-world
deployments. Our investigation combining both real-world experiments and simulations
allows us to draw nuanced conclusions regarding the performance of the edge node in
CAM processing.

In our real-world experiments, the observed fluctuations in energy consumption were
a direct result of the dynamic and evolving nature of vehicular communication. This
phenomenon can be attributed to several factors inherent in the vehicular communication
environment. Specifically, changes in communication distances between the OBU and RSU
introduce variations in the strength and quality of the wireless signals.

As vehicles move, signal strength may vary due to factors such as obstacles, interfer-
ence, and the inherent mobility of the communicating entities. These fluctuations in signal
strength directly influence energy consumption patterns as the communication system
adapts to maintain a reliable connection. Moreover, environmental conditions such as
reflections, multipath effects, and signal attenuation contribute to the observed variations
in energy consumption.

At shorter distances (30 m and 50 m) we observed stable energy consumption patterns,
emphasizing the reliability of the system in closer proximity. However, more pronounced
peaks and troughs were evident at greater distances (70 m and 80 m), suggesting potential
challenges in maintaining stability as the communication range increases. These challenges
may stem from factors such as signal attenuation, increased propagation delay, interference,
and the dynamic nature of the vehicular communication environment.

Our simulation results closely resembled the experimental results, validating the
efficacy of our virtual model. The simulated energy consumption patterns demonstrated
a controlled increase and occasional spikes, aligning with the corresponding real-world
scenarios. This correspondence reaffirms that we see a general upward trend in energy
consumption as the distance between the vehicle and the RSU increases, emphasizing
the importance of considering transmission range in the design of efficient vehicular
communication networks.

Notably, our real-world experiments exhibited higher variability, especially in the sce-
narios with greater distances. Factors such as signal interference, environmental conditions,
and the inherent unpredictability of real-world deployments contributed to fluctuations
that were not entirely mirrored in the controlled simulation environment.

To optimize edge computing in vehicular communication networks, future efforts
should focus on developing algorithms that are resilient against real-world variations.
Adaptive strategies that dynamically adjust computational loads, energy consumption,
and communication protocols based on real-time conditions will be instrumental in ensur-
ing reliable performance across diverse scenarios.

Our examination of the CPU load at the edge node (RSU) in different communication
scenarios revealed crucial insights into the computational dynamics of vehicular communi-
cation networks. A noticeable correlation emerged between the communication distance
and CPU load, indicating the distance-dependent computational challenges faced by the
edge node. As the distance between the OBU and RSU increases, there is a corresponding
intensification in CPU load, highlighting the heightened computational demands associated
with CAM processing over longer ranges.
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Initiation of CAM transmission consistently triggers a surge in CPU load, underscoring
the substantial impact of real-time data processing on the edge node. The observed peaks
during transmission emphasize the necessity for robust computational capabilities to
handle the instantaneous influx of vehicular information. Post-transmission, the CPU
load exhibits varying degrees of stability, reflecting the adaptability of the edge node; this
adaptability is crucial for the efficient operation of vehicular communication networks, as
it can ensure swift recovery and preparation for subsequent communication events.

Furthermore, each distance scenario presents unique peaks in CPU usage during
CAM transmission, indicating distance-specific computational demands. This highlights
the need for tailored computational resources based on the communication range. Thus,
adaptive algorithms capable of dynamically adjusting computational loads in response to
distance-specific demands become imperative for optimizing edge node performance.

These findings underscore the importance of optimizing edge computing solutions
for varying communication distances. Future system design should prioritize adaptive
algorithms capable of dynamically allocating computational resources based on real-time re-
quirements. This adaptability can ensure efficient resource utilization and minimize the risk
of performance bottlenecks, especially in scenarios with extended communication ranges.

When integrated with previous findings on energy consumption patterns, the in-
terplay between energy consumption and CPU load emphasizes the multidimensional
nature of optimizing edge computing in vehicular communication networks. In conclusion,
the analysis of CPU load provides a comprehensive view of the computational challenges
and opportunities associated with varying communication distances, contributing to foun-
dational knowledge for developing resilient and efficient edge computing systems tailored
for real-world vehicular communication deployments.

6. Conclusions

In conclusion, our investigation into vehicular communication and edge computing
within a 5G network while considering varying communication distances between the
OBU and the RSU has illuminated essential insights. Both real-world experiments and
simulations consistently portrayed energy consumption patterns showcasing stable opera-
tion at shorter distances and increased fluctuations at greater ranges. The analysis of the
CPU load at the RSU underscored the correlation between communication distance and
computational demands, emphasizing the need for adaptive algorithms to optimize edge
node performance.

The results obtained from our investigation offer valuable insights for academia
and industry. Our findings highlight the importance of developing adaptive algorithms
capable of dynamically allocating computational resources based on real-time requirements,
especially in scenarios with varying communication distances. These algorithms can help
to optimize edge node performance, ensuring efficient resource utilization and minimizing
the risk of performance bottlenecks. System designers can leverage these insights to
develop more robust and adaptive systems capable of handling the dynamic nature of
vehicular communication environments. Moreover, they can help to shape policies aimed
at promoting sustainability, efficiency, and reliability in connected transportation systems.

Overall, the obtained results provide a solid foundation for advancing the state of
the art in the fields of vehicular communication and edge computing. Researchers can
build upon our work to explore additional aspects of communication scenarios, integrate
emerging technologies, and develop novel algorithms and solutions to address the evolving
challenges and opportunities in connected transportation systems.

However, it is crucial to acknowledge the limitations of our study. Our valuable
real-world experiments exhibited higher variability due to factors such as signal interfer-
ence and environmental conditions. These uncontrollable elements influenced fluctuations
that were not entirely mirrored in the controlled simulation environment. Additionally,
while our focus on CAM transmission represents a specific aspect of vehicular commu-
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nication, future studies may benefit from a more comprehensive exploration of diverse
communication scenarios.

For future works, efforts should prioritize the development of adaptive algorithms re-
silient against real-world variations, with the aim of optimizing edge computing in diverse
vehicular communication scenarios. To mitigate the limitations of our study, it would be
possible to explore a broader spectrum of communication aspects in future investigations.
This exploration would involve considering factors such as data types, network congestion,
and the coexistence of various communication technologies. Additionally, investigating
the integration of emerging technologies such as machine learning and blockchains in
vehicular communication networks holds promise for enhancing efficiency and reliability
in real-world deployments.
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