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Abstract: In this paper, we explore the realm of federated learning (FL), a distributed machine learning
(ML) paradigm, and propose a novel approach that leverages the robustness of blockchain technology.
FL, a concept introduced by Google in 2016, allows multiple entities to collaboratively train an ML
model without the need to expose their raw data. However, it faces several challenges, such as privacy
concerns and malicious attacks (e.g., data poisoning attacks). Our paper examines the existing EIFFeL
framework, a protocol for decentralized real-time messaging in continuous integration and delivery
pipelines, and introduces an enhanced scheme that leverages the trustworthy nature of blockchain
technology. Our scheme eliminates the need for a central server and any other third party, such as
a public bulletin board, thereby mitigating the risks associated with the compromise of such third
parties.
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1. Introduction

With the advancement of big data and artificial intelligence (AI) technologies, the
challenge of securely and reliably training machine learning (ML) models on distributed
and heterogeneous data sources without compromising privacy and integrity has become
increasingly prominent. The term federated learning (FL) was introduced by Google in
2016, at a time when the use and misuse of personal data were gaining global attention.
The Cambridge Analytica scandal awakened Facebook users and those of similar platforms
to the dangers of sharing personal information online [1]. It also sparked a wider debate on
the pervasive tracking of people on the internet, often without their consent. In response,
many countries and regions have passed or proposed data privacy laws, such as the General
Data Protection Regulation (GDPR) in Europe [2].

FL is a distributed ML paradigm that enables multiple entities to collaboratively train
a model from their local data, without exposing their raw data to each other or a central
server [3]. This approach stands in contrast to traditional centralized ML techniques, where
local datasets are merged into one location. Therefore, FL has the potential to address the
prevalent limitations and challenges in the traditional approach, particularly the critical
issues of data privacy. The main application of FL is to train models on data that are
sensitive, distributed, or heterogeneous, such as personal data on mobile phones or data
from different organizations. For example, FL can be used to improve spam filters and
recommendation tools without accessing users’ emails or preferences. It can also be used to
leverage data from sensors and smart devices for various tasks, such as anomaly detection,
predictive maintenance, and optimization.

Despite the promises of FL, two main risks persist in the distributed and decentralized
nature of the learning process, namely the privacy challenge and model quality. Privacy
concerns arise from adversaries attempting to identify sensitive patterns in local updates,
potentially compromising the global model [4–6]. Lyu et al. [7] provide a general discussion
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about privacy and robustness attacks against FL and provide some direction for mitigat-
ing them. The German BSI published a detailed report on specific privacy risks, such as
membership inference attacks and model inversion attacks [8]. Simultaneously, in terms of
model quality, integrity challenges stem from participants acting maliciously by injecting
poisoned or malformed inputs during the FL process, where even a single malicious input
can have a significant impact [9,10]. Apart from these risks, there are also other related
concerns for FL in practice, and a comprehensive survey on them is provided in [11]. To
mitigate these risks, various solutions have been proposed. For example, with secure
aggregation, instead of sharing the plaintext local update, only masked updates are trans-
mitted, so that the server can aggregate the global model correctly without the knowledge
of individual updates [12,13]. In addition, differential privacy is also widely used, adding
noise to the exchanged values to provide additional robustness [14,15]. In the literature,
one notable contribution to addressing these challenges is the EIFFeL framework [16]. By
leveraging a public bulletin board, EIFFeL aims to preserve the privacy of input data from
different clients as well as guarantee the integrity of the inputs from these clients (e.g., the
value of inputs should be in proper ranges).

Contribution and Organization

As privacy and integrity are two key challenges hindering the widespread adoption of
FL, this paper is dedicated to investigating a rigorous solution to address these challenges.
Referring to [11], FL can be categorized into two categories: cross-silo FL and cross-device
FL. In this paper, we focus on the cross-silo setting, wherein model training occurs on
siloed data belonging to several clients from different organizations. These clients can
communicate with third-party servers in a synchronous manner.

Our first contribution involves investigating the architecture and workflow of the
EIFFeL framework along with analyzing its security guarantees. To this end, we identify
specific areas where the EIFFeL framework exhibits potential risks, such as the compromise
of the central server and/or the public bulletin board. We also highlight other efficiency
concerns.

Our second contribution involves adapting the EIFFeL framework to leverage the
security guarantees of blockchain platforms. To this end, we adapt the operations in
the EIFFeL framework so that the functions of both the central server and the public
bulletin board can be replaced by a blockchain platform. To address the challenge posed by
blockchain’s limitation to only perform deterministic operations and the requirement that
no direct communication among clients is necessary, we integrate the Burmester-Desmedt
group key exchange protocol into our solution, to make sure that the clients can jointly
compute the final parameter update without breaching its confidentiality.

Our last contribution involves implementing our solution and shedding some light on
the computational complexities. Note that the proposed solution is blockchain platform
agnostic, so we omit the implementation details related to the blockchain part. This is
earmarked for future work.

It is worth noting that privacy protection for FL is a very challenging task. Even with
secure aggregation, some privacy risks may still remain [11]. To address this, differential
privacy, particularly local differential privacy, can be applied. Since such measures are used
to secure aggregation and can be applied independently, we leave this out in this paper.

The paper consists of the following sections: we present the background and moti-
vation of FL and blockchain in Section 2. In Section 3, we review the design and analysis
of the EIFFeL framework. Following this, an enhanced scheme is proposed; its security
analysis, along with a demonstration of performance, is presented in Section 4. Finally, we
summarize our work in Section 5.
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2. Preliminary
2.1. Federated Learning Approach

FL represents a decentralized paradigm that is reshaping traditional ML methods. In
this collaborative approach, multiple clients contribute to training a shared model without
divulging raw data. Assuming a central server and n clients Ci (1 ≤ i ≤ n), a high-level
overview of the FL workflow is summarized in Figure 1; we refer to the relevant handbook
for more details, such as [3].

1. Initial phase:
(a). The central server defines an initial model, minit, which can be chosen

based on prior knowledge or domain expertise.
(b). Each client, Ci, synchronizes the initial model, minit, from the server, and

sets its local model to be mi = minit.
2. The following training steps are iterated for a certain number of iterations until a

satisfactory model is achieved. Here, each iteration is called an Epoch.
(a). Local model training: Each client, Ci, trains its local model using its local

dataset, Di, and obtains a new local model with new parameters, ui.
(b). Model parameter sharing: Each client, Ci, sends the newly generated

model parameters, ui, to the central server.
(c). Model parameter aggregation: The central server aggregates the model

updates received from the clients to produce an aggregate update, U , and
sends it back to each client.

(d). Model update: Each client, Ci, resets its local model with the parameters,
U .

Figure 1. Federated learning approach.

As we mentioned in Section 1, while FL enhances privacy by not sharing raw data
with the central server or other devices, a crucial concern arises: the trustworthiness of the
central server. Two major challenges need to be considered: privacy challenge and integrity
challenge, as explained in Section 3.

2.2. Blockchain Overview

A blockchain is a chain of blocks; each block contains a list of transactions. These blocks
are linked and secured through cryptographic hashes, forming a continuous, unalterable
chain. The decentralized nature of a blockchain means that no single entity has control
over the entire network, mitigating the risk of a central point of failure. Transactions in a
blockchain are grouped into blocks, and each block includes a reference to the previous
block, creating a chronological chain of events. Miners, i.e., participants in the network
with computational power, play a crucial role in validating and adding transactions to
the blockchain. This sequential structure ensures the integrity of the data, as altering
information in one block would require changing all subsequent blocks, which is an
impractical and computationally infeasible task. For a more comprehensive review, we refer
to comprehensive references, such as [17–19]. Irrespective of the variations in blockchain
structures, the following properties are anticipated:

– Democracy and decentralized control: In systems utilizing proof of work (PoW) as the
consensus mechanism in permissionless scenarios, everyone has the potential to act as
a miner, possessing equal privileges to generate and approve blocks for the blockchain.
Although variations may exist in different cases, the overarching principle remains:
blockchain technology eliminates the need for a singular, fully trusted entity, thereby
averting the vulnerability of a single point of failure.

– Integrity and immutability: In the absence of an attacker or a coalition of attackers
dominating the consensus process, such as when more than 51% of the computing
power in the Bitcoin blockchain is handled by semi-honest miners, it becomes infeasi-
ble to modify agreed-upon blocks in the consensus.
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– Consistency: Despite potential attacks from robust adversaries, the chain upholds a
singular and consistent perspective, as outlined by the aforementioned assumptions.
However, it is essential to note that deviations from predefined rules by nodes can
lead to the generation of forks, resulting in different perspectives among participants,
as observed in scenarios like Ethereum.

These properties enhance auditability and transparency and improve the overall
trustworthiness of the system. Some have conceptualized blockchain as a social trust
machine (https://www.economist.com/leaders/2015/10/31/the-trust-machine (accessed
on 1 April 2024)). The trust users place in blockchain systems predominantly stems
from the cryptographic viewpoint that the majority of miners will act as semi-honest
participants. The semi-honest assumption essentially asserts that these miners will respect
the predetermined protocols, carrying out actions exactly as specified and programmed in
the blockchain software. In particular, the assumption rules out the possibility of collusion
among miners to disrupt the regular operations of the blockchain.

There is a vast body of literature on utilizing blockchain to address security issues in
FL, more information can be found in recent survey papers, such as [20,21].

3. EIFFeL Framework and Security Analysis

The EIFFeL framework [16] presents an innovative FL approach that effectively tackles
the challenges of data privacy and integrity. Moving beyond the conventional server–
client architecture, as outlined in Section 2.1, EIFFeL incorporates a public bulletin board,
which broadcasts intermediary information for secure aggregation and integrity checks.
This unique architecture positions all clients as verifiers for each other, with the server
playing a collective role. In more detail, secure aggregation enables each client to conceal its
parameter update within the aggregated value, by leveraging secret sharing and encryption
techniques. The integrity property is ensured through non-interactive proof techniques
and the adoption of a public bulletin board. In summary, EIFFeL is designed to tolerate
multiple malicious client interventions while ensuring the proper aggregation of model
parameters.

3.1. Threat Model

In EIFFeL, it assumes that all honest clients correctly follow the protocol and have
properly structured inputs. Two types of malicious adversaries are considered:

– Malicious clients: Multiple malicious clients can arbitrarily deviate from the protocol.
They may (1) compromise the aggregate by submitting malformed updates; (2) cause
the honest clients to complete an integrity check; (3) violate the privacy of honest
clients, which may collude with the server.

– Malicious server: It aims to violate the privacy of clients by trying to recover their raw
updates. A malicious server may (1) mark the inputs from honest clients as invalid;
(2) mark the inputs from malicious clients as valid, so as to decide which one will
be aggregated.

3.2. Scheme Architecture and Workflow

As mentioned previously, EIFFeL consists of a public bulletin board B, a single server
S , and n clients, Ci (1 ≤ i ≤ n). It is designed to tolerate a limited number of malicious
m <

⌊ n
3
⌋
. A high-level sketch of the interactions among a client and other entities is shown

in Figure 2 while a detailed description of the EIFFeL scheme is shown in Figures 3 and 4.
Note that, for simplicity, we only show one client in the diagram. The numbering of the
iteration steps corresponds to the description in Figure 4. In order to ensure (1) privacy
for all honest clients, and (2) input integrity, where the server is motivated to verify if all
individual updates are well-formed, all clients function as verifiers for each other, while
the server also participates collectively in this role. Verification remains achievable even in
the presence of m malicious clients.

https://www.economist.com/leaders/2015/10/31/the-trust-machine
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Figure 2. System Architecture of the EIFFeL Scheme.

To achieve the designated security guarantees, EIFFeL relies on several cryptographic
building blocks (we omit the detailed definition of algorithms; refer to [16] for the full
definitions), with each serving a specific purpose in enhancing the scheme’s security:

– Shamir’s t-out-of-n secret sharing scheme [22]: This cryptographic method facilitates
the distribution of a secret among n participants, and it requires at least t participants
(the threshold) to collectively reconstruct the original secret. Two algorithms are de-
fined, SS.share(·) is for generating secret sharing and SS.recon(·) is for reconstructing
the secret. Assuming m malicious clients, t is set as m + 1 in EIFFeL.

– Reed–Solomon error correcting code [23]: It is an error-correcting code used in digital
communication and data storage. Reed–Solomon codes add redundant symbols to the
original data, allowing the receiver to detect and correct errors during transmission.
EIFFeL uses the [n, m + 1, n−m] Reed–Solomon error correcting code, where any set
of shares containing m <

⌊ n
3
⌋

malicious shares can be used to recover the secret with
robustRecon(·).

– Key agreement protocol: It enables two or more parties to agree upon a shared secret
key. It involves three algorithms: KA.param(·) is used to generate the parameters,
KA.gen(·) is used to generate a public/private key pair, and KA.agree(·) is used to
agree on a common secret key.

– Authenticated encryption: A cryptographic process that combines encryption and
message authentication to guarantee the integrity and confidentiality of transmitted
data. It includes the algorithms of key generation AE.gen(·), encryption AE.enc(·),
and decryption AE.dec(·).

– Secret-shared non-interactive proofs (SNIPs) [24]: These are cryptographic protocols
that allow multiple parties to jointly prove the truth of a statement without revealing
their individual inputs. These proofs are constructed in such a way that the validity
of the statement can be verified without requiring interaction between the parties. A
public validation predicate Valid(·) is defined to conduct the integrity check.

The EIFFeL framework includes a setup phase and a model training phase. In the
model training phase, each training epoch consists of four primary steps, as summarized
in Figure 1: (1) local model training, (2) model parameter sharing, (3) model parameter
aggregation, and (4) model update. We briefly recap the set and training phases in Figure 3
and Figure 4, respectively, which visually encapsulate the essence of its mechanism.

– Setup:
• All parties are given the security parameter, k, the number of clients, n,

the threshold for malicious clients, m, and a field F for secret sharing usage.
All clients honestly generate pp← KA.gen(k), and the server, S , initializes
the malicious client list, C∗ = ∅, and lists Flag[i] = ∅ for clients that have
flagged the client, Ci, as malicious.

Figure 3. Setup of EIFFeL scheme.
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1. Local model training:
Each client Ci :

– Generates its key pair (pki , ski)
$← KA.gen(pp) and announces the public key on the public bulletin board B.

Server S :
– Publishes the validation predicate Valid(·) on the public bulletin board B.

2. Model parameter sharing: The following steps are performed:
(a). Each client, Ci , generates its protected parameters as follows:

i. Establishes n− 1 common secret keys ski,j ← KA.agree(pk j , ski) with each of the other clients.

ii. Generates a proof πi = (hi , (ai , bi , ci)), hi ∈ F[X], (ai , bi , ci) ∈ F3, ai · bi = ci for the computation
Valid(ui) = 1, where ui ∈ Fd is its local update with d dimensions.

iii. Creates shares of its update ui for all clients, denoted as {(1, ui,1], · · · , (n, ui,n), Ψui } ← SS.share(u,
[n], m + 1).

iv. Creates shares of its proof πi for other clients: {(1, hi,1], · · · , (n, hi,n), Ψhi } ← SS.share(hi , [n] \
i, m + 1), {(1, ai,1], · · · , (n, ai,n), Ψai } ← SS.share(ai , [n] \ i, m + 1), {(1, bi,1], · · · , (n, bi,n), Ψbi } ←
SS.share(bi , [n] \ i, m + 1), {(1, ci,1], · · · , (n, ci,n), Ψci } ← SS.share(ci , [n] \ i, m + 1).

v. Publishes the encrypted proof strings, ∀Cj ∈ C\i , (j, uj,1)||(j, π j,1) ← AE.encski,j ((j, ui,j)||(j, πi,j)),

πi,j = hi,j ||ai,j ||bi,j ||ci,j on the public bulletin board B with its check strings (Ψui , Ψπi ).

(b). The protected parameters are verified as follows:

(i) Verifying validity of secret shares:
Each client Ci :

(A). Retrieves and decrypts the shares pertaining to it (i, uj,i)||(i, π j,i) ← AE.decpki,j ((i, uj,i)||
(i, π j,i)).

(B). Verifies the shares uj,i(π j,i) using check string Ψui (Ψπi ).
(C). If any share fails to be decrypted or verified, flag its creator on B.

Server S :
(A). Upon receiving a report (e.g., Ci flags Cj), updates Flag[j] = Flag[j] ∪ Ci .
(B). Updates C∗ as follows:

– If |Flag[i]| > m, Ci is marked as malicious: C∗ = C∗ ∪ Ci .
– If any client, Ci , reported more than m clients, it is considered as malicious: C∗ = C∗ ∪ Ci .
– For a client Ci that has been reported, but with |Flag[i]| ≤ m, server S intervenes for

further verification. S requests the shares (in clear) from Ci for the clients who flagged it
(e.g., ((j, ui,j)||(j, πi,j)) generated by Ci for Cj), and verifies the contents with the relevant
check string (e.g., (Ψui , Ψπi )). If the verification fails, Ci is marked as malicious; otherwise,
Cj is instructed to use the released share for its computations.

(C). Announces the updated C∗ on the public bulletin board B.
(ii) Generation of proof summaries by the clients:

Server S :

– Announces a random number, r ∈ F, on the public bulletin board, B.

Each client Ci :

– Generates a summary, σj,i , of the proof string, π j,i , based on r and SNIP, ∀Cj /∈ C∗ , and publishes
it on the public bulletin, B.

(iii) Verification of proof summaries by the server:
Server S :

– Collects and verifies all proof summaries from C \ C∗ with robustRecon(·), and updates C∗
based on the result.

(iv) Each client Ci :

– If Ci ∈ C∗ , it can initiate a dispute by transmitting the transcript of the reconstruction of σi . If
any successful dispute occurs, all clients abort the protocol, since the server, S , is considered
malicious by withholding the valid updates.

– Otherwise, it sends the aggregate Ui = ∑Cj /∈C∗ uj,i to the server S .

3. Model parameter aggregation: Server S recovers the final aggregate, U ← robustRecon({i,Ui)}Cj /∈C∗ , and sends it

to clients.

4. Model update: Each client, Ci , resets its local model with the parameters, U .

Figure 4. One iteration/epoch of the EIFFeL scheme.

3.3. Analysis of the EIFFeL Framework

In [16], the authors performed an analysis of the EIFFeL framework and showed
that the framework achieves the pre-defined privacy and integrity properties. In the
following, we analyze the assumptions made in their analysis and also demonstrate several
observations on the design of the framework.

First of all, the existence of the required public bulletin board and the associated
assumptions is very tricky. To guarantee the security of EIFFeL, the public bulletin board
should offer the following guarantees:
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– It should be corrupt-resistant against all entities, including the server, clients, and
other attackers. The data should not be changed, deleted, or manipulated by malicious
entities in any manner.

– It should be able to validate the identities of clients (and the server) according to some
public key infrastructure (PKI). By default, some PKI information should be stored on
the bulletin board so that it can validate the identity claims of its users.

– It should be able to establish a secure channel with its users so that the integrity and
authenticity of the users’ data can be guaranteed during the transmission.

Public bulletin boards have been used in many scenarios [25], and they can certainly
play an important role in FL. However, how to achieve the last two guarantees is not trivial.
In particular, the involvement of a PKI means that there will be another fully trusted third
party. The trust relationship among all the entities in the solution needs to be clarified in
order to guarantee that all threats are properly present.

Secondly, there is some ambiguity in remark 1 of reference [16]. It states that EIFFeL
prevents the server from “Mark the input of an honest client as invalid and include it in
the final aggregate”. In fact, the server can manipulate the final aggregate without being
noticed, in step 3 of the model parameter aggregation. This is equivalent to invalidating
the input of honest clients, as the final aggregate no longer appears to be an aggregation
of inputs from all honest clients. This implies that EIFFeL cannot guarantee the integrity
of the aggregate in the presence of a malicious server. Note that this observation does not
conflict with the desired security properties, i.e., against the server, only privacy is expected.
In addition, if the server deviates from the protocol, Lemma 4 from [16] will not hold. This
lemma states that “The final aggregate must contain the updates of all honest clients or
the protocol is aborted”. In fact, the server can maliciously change the aggregate without
being detected, as we said before. Although this observation does not show a security flaw
in the EIFFeL framework, we regard it as a drawback, and ideally, we should avoid such
potential “attacks”. This is also motivated by some recent findings (e.g., [26]), which show
that failure of integrity (e.g., data poisoning) can lead to privacy breaches.

Thirdly, there are two inefficient designs in the solution. One is about the parameter
generation in Step 1 and the key agreement at the beginning of Step 2. During the FL
process, all four steps will be iterated hundreds of times in order to reach convergence.
According to the description, the key materials need to be repeated in each iteration. This
unnecessarily increases the complexity of the solution. These parameters can be set up
in the setup phase so that the key materials can be used in all the training iterations (or,
epochs). The other involves the usage of authenticated encryption. In the solution, it is
assumed that the public bulletin board does not allow any manipulation of the stored data;
therefore, the encrypted data in Step 2 will not be manipulated regardless of whether the
encryption is authenticated or not. Therefore, standard symmetric encryption will suffice.

Fourthly, the result of the server’s operation in Step 2 is confusing. For client Ci, which
has been reported but |Flag[i]| ≤ m, server S intervenes for further verification. S requests
the shares (in clear) from Ci for the clients who flagged it (e.g., ((j, ui,j)||(j, πi,j)) generated
by Ci for Cj), and verifies the contents with the relevant check string (e.g., (Ψui , Ψπi )). If the
verification fails, Ci is marked as malicious; otherwise, Cj is instructed to use the released
share for its computations. The server’s operation occurs because either Ci is maliciously
flagged Cj or Cj is sent the wrong ciphertext to Ci, on purpose (note that Cj can disclose
the right plaintext to make the server’s verification pass). However, neither party will be
determined as malicious according to the protocol. It is unclear why this is the case.

4. The Enhanced Scheme

In this section, we describe the enhanced scheme that eliminates the need for any third-
party server or bulletin board by integrating blockchain technology. It is worth emphasizing
that this scheme aims to address the existing privacy and security challenges in the EIFFeL
framework, particularly those related to the third-party bulletin board. Certainly, in our
design, we attempt to minimize the complexity overhead for all the involved entities.
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Our scheme eliminates the need for a central server and any other third party, such
as a public bulletin board, thereby mitigating the risks associated with the compromise of
such third parties.

Similar to EIFFeL, the enhanced scheme assumes a blockchain platform and multiple
(n) clients, and it relies on the same building blocks. In each iteration/epoch, the interactions
are shown in Figure 5, where the setup phase is shown in Figure 6 and the numbering
of steps corresponds to the description in Figure 7. The overall design of the enhanced
scheme is agnostic to any blockchain platform; however, the interaction details between
clients and the blockchain (i.e., the smart contracts) may differ in the implementation. To
keep the generality and simplicity, we skip the details in our description. The design of
smart contracts for the proposed scheme is quite straightforward based on the following
fact: when invoking a smart contract, the requester (i.e., a client) can pass the location of
necessary input parameters (i.e., where these data are located on the blockchain) so that
the smart contract can fetch the data and perform the desired operations in a deterministic
manner.

    1. Local model training

    2.(a). Protected parameter generation

    2.(b). Parameter verification

    2.(c). Dispute resolution and
             parameter sharing

    3. Model parameter aggregation

    4. Model update

N
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n

Data storage

Data storage & retrieval

Data storage & retrieval 2.(b).

Client 

Client 

Client 

Client 

...

Blockchain

Figure 5. System architecture of enhanced scheme.

To start FL training, the setup phase is depicted in Figure 6, and the training epoch,
shown in Figure 7, will be iterated until a satisfactory global model is achieved. By its nature,
information stored on a blockchain is not supposed to be updated. In our description in
Figure 7, if a piece of information is stored in the blockchain, then it means that a transaction
is made to the blockchain to store the information. When we say that a piece of information
is updated (e.g., C∗), we simply mean that a new version of this information is stored
on the blockchain, and all follow-up computations should be based on this new version
of information.

– Setup:

• Prepare all the necessary smart contracts for the chosen blockchain.
• Generate a security parameter, k, the number of clients, n, the threshold for malicious clients,

m, and a filed F for secret sharing usage. Initialize the malicious client list, C∗ = ∅, and lists
Flag[i] = ∅ of clients that have flagged the client, Ci , as malicious. A validation predicate,
Valid(·), is chosen to guarantee integrity, and a collision-resistant hash function H is chosen. All
the parameters are stored on the blockchain.

• A group, G, and its generator, g, are generated for the Burmester-Desmedt group key agreement
protocol (Burmester et al., 2005); G and g are stored on the blockchain.

• Generate pp← KA.gen(k) for a two-party key agreement scheme, KA. Based on pp, each client,

Ci , generates its key pair (pki , ski)
$← KA.gen(pp) and stores the public key on the blockchain.

Note that pp is also stored on the blockchain. Choose a standard symmetric key encryption
scheme, SE (e.g., AES in the counter mode), and store its information on the blockchain.

• Each client, Ci , establishes n− 1 common secret keys ski,j ← KA.agree(pk j, ski) with every other
client. It stores the hash values H(ski,j||i||j) (1 ≤ j ̸= i ≤ n) on the blockchain.

• All clients check the hash values of secret keys generated by others and resolve any mistakes, if
there are any. Note that ski,j can be computed by both clients, Ci , and Cj, so that they can check
each other’s hash values.

Figure 6. Setup of the Enhanced scheme [27].
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1. Local model training:
Each client Ci :

• Generates its local update, ui ∈ Fd , which is a value of d dimensions.

2. Model parameter sharing: The following steps are performed:

(a). Each client, Ci , generates its protected parameters as follows:

i. Generates a proof πi = (hi , (ai , bi , ci)), hi ∈ F[X], (ai , bi , ci) ∈ F3, ai · bi = ci for the computation
Valid(ui) = 1.

ii. Creates shares of its update ui for all clients, denoted as {(1, ui,1], · · · , (n, ui,n), Ψui } ← SS.share(u,
[n], m + 1).

iii. Creates shares of its proof πi for other clients: {(1, hi,1], · · · , (n, hi,n), Ψhi } ← SS.share(hi , [n] \
i, m + 1), {(1, ai,1], · · · , (n, ai,n), Ψai } ← SS.share(ai , [n] \ i, m + 1), {(1, bi,1], · · · , (n, bi,n), Ψbi } ←
SS.share(bi , [n] \ i, m + 1), {(1, ci,1], · · · , (n, ci,n), Ψci } ← SS.share(ci , [n] \ i, m + 1).

iv. Publishes the encrypted proof strings ∀Cj ∈ C\i , (j, uj,1)||(j, π j,1) ← SE.encski,j ((j, ui,j)||(j, πi,j)),

πi,j = hi,j ||ai,j ||bi,j ||ci,j with its check strings (Ψui , Ψπi ) on the blockchain.

(b). The protected parameters are verified as follows:

i. Verifies validity of secret shares:
Each client Ci :

(A). Retrieves and decrypts the shares pertaining to it: (i, uj,i)||(i, π j,i) ← SE.decpki,j ((i, uj,i)||
(i, π j,i)).

(B). Verifies the shares uj,i(π j,i) using the check string Ψui (Ψπi ).
(C). If any share fails to be decrypted or verified, flag its creator on the blockchain.
Blockchain (via smart contract):
(A). Upon receiving a report (e.g., Ci flags Cj), updates Flag[j] = Flag[j] ∪ Ci .
(B). Updates C∗ as follows:

• If |Flag[i]| > m, Ci is marked as malicious: C∗ = C∗ ∪ Ci .
• If any client, Ci , is reported as more than m clients, it is considered malicious: C∗ = C∗ ∪ Ci .
• For every client Cj that has been reported, but |Flag[j]| ≤ m, suppose that Ci has flagged

Cj ; perform the following steps:

(I). Asks Ci and Cj to publish ski,j and sk j,i on the blockchain.
(II). Compares these keys to the hash values from the setup phase; if some of them do

not match, then flag the owner and update C∗ . Note that these keys should be equal
and their hash values should be equal to that stored in the setup phase.

(III). Uses ski,j to decrypt the encrypted share from Cj to Ci , and verifies the result. If ev-
erything passes, update C∗ = C∗ ∪ Ci ; otherwise, update C∗ = C∗ ∪ Cj .

ii. Generation of proof summaries:
Blockchain (via smart contract):

• Hash the current data on the blockchain to generate a random number r ∈ F.

Each client Ci :

• Generates a summary σj,i of the proof string π j,i based on r and SNIP, ∀Cj /∈ C∗ , and publishes
it on the blockchain.

iii. Verification of proof summaries:
Blockchain (via smart contract):

• Collects and verifies all proof summaries from C \ C∗ with robustRecon(·), and updates C∗
based on the result.

(c). Each client Ci :

i. If Ci ∈ C∗ , it can raise a dispute. If any successful dispute occurs, all clients abort the protocol.
ii. Selects a random number, ri , and generates the Burmester-Desmedt group key agreement material

gri , publishes gri on the blockchain.

iii. Generates tki = ( gri+1

gri−1 )
ri and publishes it on the blockchain.

iv. Computes the Burmester-Desmedt group key as eki = (tki−1)
l·ri · (tki)

n−1 · · · tki−2, supposing l clients
are participating at this stage; publishes H(eki ||i) on the blockchain.

v. Checks that all other clients possess the same ephemeral key as eki .
vi. If so, publishes the aggregate SE.enceki (Ui), where Ui = ∑Cj /∈C∗ uj,i , on the blockchain.

3. Model parameter aggregation: Each client, Ci , recovers the final aggregate U ← robustRecon({x,Ux)}Cx /∈C∗ ,
after obtaining all the Ux after decryption.

4. Model update: Each client, Ci , resets its local model with the parameters, U .

Figure 7. Training procedures in one iteration/epoch.

4.1. Security Analysis

Similar to other setup phases in cryptosystems, we assume this phase is performed
in a trusted manner. Depending on the precise FL scenario, some trusted entity might
be needed to supervise and help carry out this phase. The chosen blockchain platform
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should be tamper-resistant and will not collude with any entity in the FL system (i.e., none
of the clients should be able to collude with the blockchain). For simplicity, we assume
there is a secure channel between the blockchain and any client, in the sense that the client
will be authenticated for its access to the blockchain, and the communication is protected
regarding its integrity. Similar to EIFFeL, we assume that, at most, m <

⌊ n
3
⌋

malicious
users are tolerated, and the threshold of Shamir’s t-out-of-n secret sharing scheme is also
set as t = m + 1. We omit attacks with the single purpose of denial of service (DoS). In
practice, such attacks can be prevented by additional security mechanisms.

In comparison to the EIFFeL scheme, the major philosophy of the enhanced scheme
is to use the blockchain platform to replace both the public bulletin board and the server.
To this end, all the actions performed by the blockchain platform are deterministic. Apart
from the new setup phase, the following major changes have been made: (1) regarding
the fourth comment in Section 3.3, a new verification procedure has been proposed for the
blockchain platform to trace the malicious client. (2) Leveraging the blockchain platform,
the clients execute a Burmester-Desmedt group key agreement protocol [27] to generate a
shared group key. The validity of the key is checked as well. (3) Instead of asking a third
party to compute the aggregate, the clients store the encrypted shares under the group key
on the blockchain platform, so that they can recover the aggregate locally. In contrast to the
EIFFeL scheme, the need for a dedicated server has been eliminated. As a result, the risks
following the compromise of the server are also eliminated. By asking the clients to share
the credentials and intermediary results on the blockchain platform, the clients can check
by themselves the validity of the credentials and results from other users. This is facilitated
by making the validation operations deterministic.

It is worth stressing that the enhanced scheme preserves all the privacy and integrity
properties of the EIFFeL scheme due to the fact that all the security and integrity mecha-
nisms have been kept in the new scheme.

4.2. Performance Analysis

We implemented the enhanced scheme in Python with several existing libraries, such
as NumPy [28] and Cryptography [29] (the source code of the enhanced scheme instanti-
ation is available at https://github.com/MoienBowen/Blockchain-Federated-Learning
(accessed on 1 April 2024)). In the experiment, we used a PC as the simulation platform,
with an Intel® Core™i7-4770 CPU @ 3.4 GHz processor with 16 GB RAM.

Dataset. Given our primary focus on 5G security, we selected a dataset tailored to
this domain: the 5G-NIDD dataset [30], a robust compilation of network intrusion data
specifically designed for 5G wireless networks, containing 1,215,890 records. This dataset
was meticulously generated on an operational 5G testbed, part of the 5G test network
(5GTN) at the University of Oulu, Finland. It features an extensive range of simulated
attack scenarios, offering a valuable dataset for AI/ML model training. Detailed categories
and their respective distributions are presented in Table 1.

Setup. Our parameter selection was guided by our goal of 128-bit security. For
example, we used the Secp256r1 curve for the Burmester-Desmedt group key agreement
protocol [27], AES-CTR for encryption, SHA-256 for hashing, and a 256-bit prime field as F.
Moreover, we considered that there were n = 50, 100, 150, and 200 clients, tolerating up to
m = n

10 malicious ones, with d = 1000 as the size of the update gradient vector. Each client
owned 24,053, 12,156, 8100, and 6075 records, respectively (each category of the dataset
was divided equally and randomly into n copies). We omitted the consensus time of the
blockchain but this did not affect the representation of the protocol performance.

https://github.com/MoienBowen/Blockchain-Federated-Learning
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Table 1. The 5G-NIDD dataset attack categories and distribution.

Category Number of Records

Benign 477,737

ICMPFlood 1155

HTTPFlood 140,812

SlowrateDos 73,124

SYNFlood 9721

SYNScan 20,043

TCPConnectScan 20,052

UDPFlood 457,340

UDPScan 15,906

Results. In Table 2, we emphasize the runtime of Step 2—model parameter sharing and
Step 3—model parameter aggregation, as the performance mainly depends on the number
of clients. The values represent the average execution times of single iterations/epochs
over 10 runs.

Table 2. Runtime of proposed scheme in ms.

Step Participant
Runtime (ms)

n = 50 100 150 200

2.(a).
Client 491.37 974.21 1477.88 1990.13

Blockchain - - - -

2.(b).
Client 1073.43 2106.11 3204.75 4283.49

Blockchain 995.14 1997.64 3091.71 4107.93

2.(c).
Client 2079.58 4215.38 6314.49 8284.27

Blockchain - - - -

3.
Client 171.21 354.14 498.87 637.61

Blockchain - - - -

Regarding the blockchain in Step 2, we calculate the computational time on the PC we
use. In practice, the computational time will be based on the mining nodes. Moreover, the
complexity will also come from the consensus protocol used in the blockchain platform.
Obtaining precise running time statistics on chosen blockchain platforms will be looked at
in future work.

5. Conclusions

This paper culminates with an in-depth discussion of the enhanced scheme for FL,
which harnesses the power of blockchain technology. The scheme eliminates the need for a
dedicated server and a public bulletin board in the EIFFeL scheme, thereby reducing the
risks associated with the compromise of these entities. The clients share credentials and
intermediary results on the blockchain platform, allowing them to verify the validity of
credentials and results from other users. This paper provides a performance analysis of the
enhanced scheme, demonstrating its efficiency and effectiveness in the realm of FL. This
paper shows that blockchain technology can enhance the privacy and integrity of FL and
open up new possibilities for collaborative ML in various domains.

There are several directions for future work. Here, we only mention two examples.
One is to fully implement the proposed scheme, particularly by selecting a blockchain
platform, and encoding the desired operations into smart contracts. This will help us
understand the overall complexity of the proposed scheme. The other one is to incorporate
the concept of differential privacy to further reduce the privacy risks. To this end, it
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is interesting to see how privacy enhancement could affect accuracy and other metrics.
This will help us understand the precise trade-offs between privacy protection and the
performance of FL.
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