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Abstract: The objective of task allocation in unmanned systems is to complete tasks at minimal
costs. However, the current algorithms employed for coordinating multiple unmanned systems in
task allocation tasks frequently converge to local optima, thus impeding the identification of the
best solutions. To address these challenges, this study builds upon the sheep flock optimization
algorithm (SFOA) by preserving individuals eliminated during the iterative process within a prior
knowledge set, which is continuously updated. During the reproduction phase of the algorithm,
this prior knowledge is utilized to guide the generation of new individuals, preventing their rapid
reconvergence to local optima. This approach aids in reducing the frequency at which the algorithm
converges to local optima, continually steering the algorithm towards the global optimum and thereby
enhancing the efficiency of task allocation. Finally, various task scenarios are presented to evaluate
the performances of various algorithms. The results show that the algorithm proposed in this paper
is more likely than other algorithms to escape from local optima and find the global optimum.

Keywords: multi-unmanned systems; sheep flock optimization algorithm; prior knowledge;
task allocation

1. Introduction

With the rapid development of multi-unmanned systems, these systems are increas-
ingly being utilized to replace human involvement when performing tasks that are difficult
and entail high degrees of risk. For example, multi-unmanned systems are deployed to
specific areas for search [1], rescue [2], and reconnaissance tasks [3]. To enhance the effi-
ciency of task execution in multi-unmanned systems, researchers have developed various
task allocation algorithms to address the task allocation challenges encountered by such
systems. Task allocation algorithms require the integration of task information and the
capabilities of multi-unmanned systems to effectively distribute tasks among unmanned
systems. The fundamental objective of task allocation algorithms is to maximize benefits
while minimizing costs [4]. To further enhance the cost efficiency of tasks executed by
multi-unmanned systems and augment the associated benefits, researchers have intro-
duced numerous refinements for cooperative task allocation methods in multi-unmanned
systems [5]. Throughout the task allocation process, multiple unmanned systems engage
in interaction and information sharing via a communication network, gathering task re-
quirements and system status information. By utilizing this comprehensive information,
they formulate precise task allocation decisions. Via this effective information exchange
strategy, the multiple unmanned systems can collaborate effectively, mitigating conflicts
and eliminating redundant task execution steps, thereby enhancing the overall efficiency
of the task completion process. The research task discussed in this text is centered on
collaborative coverage and search missions, which include a few relatively large task areas
and a multitude of heterogeneous unmanned surface vessels (USVs). The focus is on how
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to allocate tasks to these USVs to achieve high mission execution efficiency. The specific
details of the task background are introduced in Section 3.

Currently, two main types of cooperative task allocation methods are used for multi-
unmanned systems: centralized and distributed approaches. Centralized systems can be
uniformly controlled, but their disadvantage is that they have poor scalability. On the other
hand, distributed systems have strong scalability, but they require a higher standard for
communication systems [1,6]. The mainstream cooperative task allocation methods for
centralized multi-unmanned systems can be roughly divided into three categories: mathe-
matical programming, market auction, and intelligent optimization algorithms. However,
with the expansion of the scale of unmanned systems, mathematical programming and mar-
ket auction methods face limitations when addressing large-scale unmanned systems. For
cases with large-scale systems, a market auction method consumes considerable time and
communication resources; mathematical programming makes it difficult to establish and
solve complex cooperative work constraint models in a short period. In contrast, intelligent
optimization algorithms are suitable for large-scale systems due to their high adjustability
and flexibility levels. Therefore, using intelligent optimization algorithms to solve the
cooperative task allocation problem encountered by large-scale unmanned systems has
become a mainstream method. Currently, the classic intelligent algorithms include the
genetic algorithm (GA), ant colony optimization (ACO), particle swarm optimization (PSO),
the wolf pack algorithm (WPA), the black widow algorithm (BWO), and the sheep flock
optimization algorithm (SFOA) [7–11]. The GA has good global optimization capabilities,
but the parameters selected for this algorithm have a significant impact on its performance.
The WPA simulates the process of wolf predation, fully embodying the ideas of cooperation
and division of labour in a wolf pack. A “survival of the fittest” elimination mechanism is
also included in the wolf pack, which gives the algorithm good optimization performance.
However, when the algorithm falls into a local optimum, if no better solution is found
during the process of the wolf pack moving towards this local optimum, the algorithm
eventually falls into this local optimum. The BWO simulates the reproductive mechanism
in the black widow population. Each round of reproduction allows the information in the
population to merge, and a “survival of the fittest” mechanism is utilized. The structure of
this algorithm is simple and easy to implement. However, some steps in the algorithm are
based on a greedy strategy, which makes the algorithm prone to falling into local optima.
The SFOA simulates the process of sheep grazing. The flock continuously moves towards
the position where the grass is most fertile. Moreover, various movement mechanisms
are present among the individuals in the flock, which gives the algorithm a strong ability
to escape from local optima. Compared to the aforementioned intelligent algorithms, the
SFOA has better optimization effects under the premise of relatively simple population
behaviours and smaller populations. Therefore, this paper builds on the SFOA, constructs
a prior knowledge set using some individuals in the population, and uses this prior knowl-
edge set to guide the regeneration of subsequent populations. This method can enable the
developed algorithm to escape from local optima and find global optima more quickly.

Early research on task allocation for multi-unmanned system collaboration focused
mainly on multiobjective optimization algorithms. Sheng [12] established a dynamic multi-
objective optimization model and used an improved adaptive particle swarm algorithm to
solve it. Saeedvand [13] proposed a multiobjective task allocation algorithm considering
four optimization objectives, which achieved better results than those of other multiob-
jective evolutionary algorithms. These works laid the foundation for the application of
multiobjective optimization methods to this problem.

In addition, researchers have begun to apply various classic intelligent algorithms to
the problem of task allocation in multi-unmanned systems and have made improvements
to these algorithms [14–17]. Chen [4] proposed an improved double wolf pack search algo-
rithm to address the task allocation problem. The algorithm models the task allocation issue
as a one-dimensional array, reducing the required computational complexity. However, the
experimental section of the associated paper only addressed a limited number of tasks and
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agents and failed to validate the performance of their algorithm in situations with more
agents. Ye [18] combined the task allocation problem with GAs and introduced a novel
gene encoding method. However, this improvement did not overcome the propensity
of the GA to become stuck in local optima, nor did it consider large-scale clusters. As
research into intelligent algorithms has deepened, researchers have begun designing mixed
strategies and focusing on diverse individual behaviours to attain enhanced global search
capabilities. Abualigah [19] integrated Levy flight into intelligent algorithms to boost their
random search capabilities, but this approach lacked experimental support.

Moreover, the use of adaptive parameter adjustment has become a crucial method for
enhancing algorithmic performance. Tripathi [20] incorporated adaptive factors into the
particle swarm algorithm to enhance its multiobjective optimization effect, but this strategy
may not be suitable for single-objective optimization problems. Omran [21] achieved
parameter self-adjustment through an adaptive mutation operator, but their algorithm
suffers from slow convergence.

Due to their excellent global search capabilities, novel optimization algorithms simu-
lating natural predation behaviours have attracted widespread attention [22]. For instance,
WU Husheng [10] simulated the cooperative strategy of a wolf pack surrounding prey,
but this algorithm tends to become trapped in local optima and struggles to escape. Yao’s
Harris-Hawk algorithm [23], which simulates the entire hunting process of hawks, is
complex and computationally demanding. Faramarzi [24] proposed a marine predator
algorithm that integrates multiple mechanisms to achieve improved global search capabili-
ties, but a specific approach for addressing local optima is lacking. Dehkordi [25] combined
the marine predator algorithm with the hill climbing algorithm; when trapped in local
optima for an extended period, the hill climbing algorithm, which is based on a greedy
strategy, is used to attempt an escape, but the probability of escaping local optima with this
method is relatively low.

The algorithms proposed in the aforementioned studies predominantly incorporate
mechanisms to escape local optima. However, these mechanisms utilize only the current
population information and neglect the data derived from individuals eliminated from
the population, leading to wasted information. Individuals excluded from the population
are typically those unable to escape local optima over extended periods. The subsequent
generation of individuals within the population should be directed away from these
eliminated individuals, thereby reducing the probability of the algorithm falling into
local optima.

The main contributions of this paper are outlined as follows.
1⃝ A prior knowledge set is proposed, and the SFOA is integrated with this prior

knowledge set to enhance the ability of the algorithm to escape local optima.
2⃝ Candidate prior knowledge sets are proposed and utilized to update the existing

prior knowledge set. It is ensured that the a priori knowledge set can assimilate the latest
knowledge, thereby enhancing the global optimization-seeking capability of the algorithm.

This paper incorporates prior knowledge and rules for updating prior knowledge in
the SFOA, reducing the frequency at which the algorithm becomes trapped in local optima
and enhancing its global optimization ability. Furthermore, the algorithm is integrated
with the context of task allocation, resulting in superior allocation outcomes.

This paper is structured as follows.
Section 2 provides an exposition of the fundamental concepts of the SFOA and the

notions behind its enhancement. Section 3 delves into the background of task allocation, en-
compassing an experimental verification and an analysis. Section 4 outlines the conclusions
drawn in this paper.

2. Introduction to the Details of the Algorithm

This paper utilizes an advanced version of the SFOA to address the task allocation
problem. In this section, the emphasis is placed on delineating the SFOA and the enhance-
ments applied within the framework of this study. The first part details the core principles
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of the SFOA, including its group structure and movement factors. The second part explores
the integration of a prior knowledge set and its amalgamation with the SFOA.

2.1. Sheep Flock Optimization Algorithm (SFOA)

The SFOA was designed to mimic the process through which a flock of sheep seeks
out fertile pastures during grazing. Throughout the grazing period, the flock endeavours
to locate areas with richer grasslands within a specified vicinity and proceeds to move.
The flock comprises two varieties of animals, goats and sheep, along with a shepherd.
The shepherd is responsible for documenting the richest grassland identified by the flock
and attempting to lead the flock towards that location. During grazing, three elements
influence sheep movement: the guidance of the shepherd, the previously identified rich
grassland, and the proximity of other sheep. Goats typically constitute 10∼20% of the
flock population. During grazing, the movement of goats is dictated by two factors: the
guidance of the shepherd and the richest grassland previously identified by the goats. As
grazing progresses, the movement of the flock persists. Whenever the flock discovers richer
grasslands, the shepherd likewise documents the details of this location. Upon completion
of the grazing process (when the algorithm reaches its maximum number of iterations), the
location noted by the shepherd represents the richest grassland.

In the SFOA, the flock consists of N sheep, each symbolizing a feasible solution. Each
sheep endeavours to locate areas with richer grasslands within its detection range [9].

rGsheep = 0.001 ∗ (upper bound − lower bound) ∗ T. (1)

rGgoat = 0.1 ∗ (upper bound − lower bound) ∗ T. (2)

T = 1 −
(

Iteration
MaxIteration

)
. (3)

In the SFOA, rGsheep is the grazing radius of the sheep, rGgoat is the grazing radius
of the goats, upper bound is the upper limit of the entire grazing area, and lower bound is
the lower limit of the entire grazing area. Iteration is the current number of iterations,
MaxIteration is the maximum number of iterations, and T is a time influence factor. The
value of T is related to the movement behaviour of the flock.

The movements of a sheep can be divided into two stages. When T > Ts, the sheep
exhibits the following three behaviours [9]:

(1) The movement vsh1,1 generated by the interest of the sheep in the globally optimal
solution (where the shepherd is located).

(2) The movement vLbest,1 generated by the interest of the sheep in the previous best
experiences.

(3) The movement vother,1 caused by the interest of the sheep in approaching other sheep.

vsh1,1 = (1 − T) ∗ C ∗ Rand(1, Dim) ∗ (XGBest − X). (4)

vLbest,1 = C ∗ Rand(1, Dim) ∗ (XLbest − X). (5)

vother,1 = C ∗ Rand(1, Dim) ∗
(

XRandomSheep − X
)

. (6)

C = 3 ∗ Rand. (7)

X represents the current position of the sheep, XGBest represents the position of the
global optimal solution found by the entire flock thus far, and XLbest represents the position
of the optimal solution found by each sheep itself. XRandomSheep is a random sheep position,
Dim is the dimensionality of the problem, and Rand(1, Dim) is a 1 × Dim-dimensional
array between 0 and 1. Rand(1, Dim) enhances the randomness of population movements.
C is a constant whose initial value is determined by Rand, and Rand is a random number
ranging between 0 and 1. Ts is usually taken as 0.3 [9].

When T ≤ Ts, the sheep exhibits the following two behaviours:
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The movement vsh2,1 generated by the interest of the sheep in the global optimal
solution (where the shepherd is located).

The movement vLbest,1 generated by the interest of the sheep in the previous best
experiences.

vsh2,1 = C ∗ (1 − T) ∗ (XGBest − X). (8)

vLbest,1 = C ∗ Rand(1, Dim) ∗ (XLbest − X). (9)

After determining the speed of the sheep and the current position of the sheep,
x(Iteration) can be updated [9].{

Vm,1= vsh1,1+vLBest,1+vother,1 , T > Ts.
Vm,1= vsh2,1+vLBest,1 , T ≤ Ts.

(10)

x(Iteration+1) = x(Iteration) + Vm,1. (11)

where x(Iteration) represents the current position of the sheep, x(Iteration+1) denotes the
position of the sheep at the next moment, and Vm,1 is the comprehensive movement factor
of the sheep.

Similarly, the movements of a goat can also be classified into two stages. When T > TG,
a goat exhibits the following two behaviours [9]:

(1) The movement vsh1,2 generated by the interest of the goat in the globally optimal
solution (where the shepherd is located).

(2) The movement vLbest generated by the interest of goat in the previous best experi-
ences.

vsh1,2 = Rand(1, Dim) ∗ (XGBest − X). (12)

vLbest,2 = (1 − T) ∗ 2 ∗ Rand(1, Dim) ∗ (XLbest − X). (13)

TG is usually set to 0.7 [9]. When T ≤ TG, the goat exhibits the following behaviour:
The movement vsh2,2 generated by the interest of the goat in the global optimal solution

(where the shepherd is located) [9].

vsh2,2 = (1 − T) ∗ 2 ∗ Rand(1, Dim) ∗ (XGBest − X). (14)

After determining the speed of the goat and the current position of the goat, x(Iteration)
can be updated [9]. {

Vm,2= Vsh1,2+VLBest,2 , T > TG.
Vm,2= Vsh2,2 , T ≤ TG.

(15)

x′(Iteration+1) = x′(Iteration) + Vm,2. (16)

x′(Iteration) represents the current position of the goat, x′(Iteration+1) denotes the position
of the goat at the next moment, and Vm,2 represents the comprehensive movement factor of
the goat.

After updating the position of the flock, the global optimal solution and the local
optimal solution for each sheep are simultaneously updated.

Although the SFOA has advantages over other methods such as a smaller population
size and a simpler algorithmic implementation process, it does not fully utilize the informa-
tion of individuals eliminated from the population, thereby limiting the optimization effect
of the algorithm.

2.2. Real-Time Prior Knowledge-Based Sheep Flock Optimization Algorithm (RTPK-SFOA)
2.2.1. Initialization of a 2D Sheep Flock

Since the SFOA in the literature is used to solve engineering problems, the feasible
solution for each sheep is a one-dimensional space; however, the problem modelled in this
paper is a two-dimensional space. Consequently, the position and movement factors of the
flocking algorithm need to be modified from one dimension to two dimensions.
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In response to the issue of potentially initializing a dense sheep flock in the SFOA, a
threshold strategy is used for optimization: it is stipulated that the distance between two
sheep cannot be less than a specified threshold d1. This strategy can enhance the global
optimization ability of the algorithm. The formula for calculating the distance between
sheep is as follows.

dm,n =
Nu

∑
i=1

Nt

∑
j=1

|Pm
i,j − Pn

i,j|. (17)

{
minlen(SheepList)

k=1

{
dk,n

}
≥ d1 , Accession to the population.

minlen(SheepList)
k=1

{
dk,n

}
< d1 , abort.

(18)

In the above formula, Pm represents the position (two-dimensional feasible solution)
of the mth sheep, Pn represents the position of the nth sheep, Pm

i,j represents the value in
the ith row and jth column of the two-dimensional matrix Pm, and Pn

i,j represents the value
in the ith row and jth column of the two-dimensional matrix Pn. The two-dimensional
matrices Pm and Pn consist of 0 s and 1 s, respectively, and dm,n represents the distance
between the mth sheep and the nth sheep. The flock initialization pseudo-code is shown in
Algorithm 1.

Algorithm 1: Initialization of the Sheep Flock

input : Generate the number of sheep in the flock N
output : SheepList
1 : Obtain the minimum allowed distance for generating the flock (d1)
2 : Obtain the number of sheep in the SheepList (len(SheepList))
3 : i = 0, SheepList = []
4 : while(i < N)
5 : while(true)
6 : Randomly initialize one sheep n
7 : i f (minlen(SheepList)

k=1 {dk,n} ≥ d1)
8 : SheepList.append(n)
9 : break
10 : end
11 : i f (minlen(SheepList)

k=1 {dk,n} < d1)
12 : continue
13 : end
14 : i = i + 1
15 : end
16 : end

2.2.2. Two-Dimensional Sheep Flock Movement Factor

The physical meaning of the two-dimensional movement factor of the sheep flock
Φ(Pn, Pm, stepn) is that sheep n moves towards sheep m, and stepn is the moving step size
of sheep n. The movement process is as follows.

(1) Randomly select a certain row i and column j in Pn, determine the value of Pn
i,j, and

compare this value to Pm
i,j ; if the two values are equal, repeat step (1).

(2) If the value of Pn
i,j is 1, change the value of Pn

i,j to 0, and jump to step (4).
(3) If the value of Pn

i,j is 0, change the value of Pn
i,j to 1.

(4) Number of iterations + 1; if the number of iterations is less than stepn, jump to
step (1); otherwise, end the loop.

The pseudo-code for sheep movement is shown in Algorithm 2.
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Algorithm 2: Sheep Flock Movement

input : Pn; Pm; stepn

output : Pn

1 : Obtain the total number of rows in matrix Pn: line(Pn)
2 : Obtain the total number of columns in matrix Pn : col(Pn)
3 : Verification(Pn

i,j, Pm
i,j) : Determine the feasibility of swapping 0 and 1 at Pn

i,j based on specific
task constraints .

4 : step = 0
5 : while(step < stepn)
6 : while(true)
7 : i = Rand(0, line(Pn))
8 : j = Rand(0, col(Pn))

9 : i f
(

Veri f ication
(

Pn
i,j, Pm

i,j

))
:

10 : i f
(

Pn
i,j == 0

)
:

11 : Pn
i,j = 1

12 : break
13 : end
14 : elsei f

(
Pn

i,j == 1
)

:
15 : Pn

i,j = 0
16 : break
17 : end
18 : end
19 : step = step + 1
20 : end

2.2.3. Building, Using, and Updating the Prior Knowledge Set

This paper aims to utilize the population information of a flock of sheep to address
the problem of algorithms becoming stuck in local optima. In this paper, we introduce a
prior knowledge set, which is denoted as ϑ. When the historical best fitness level of a sheep
remains unchanged for a long time, it is eliminated and stored in the prior knowledge set
ϑ. During the reproduction process of the sheep flock, the newly generated sheep must
be sufficiently far from all the sheep in the prior knowledge set ϑ to be allowed into the
generation process. When the set ϑ is sufficiently large, the algorithm can prevent the sheep
population generated through reproduction from becoming stuck in known local optima.
However, the ϑ set requires a significant amount of memory resources, and the algorithm
spends considerable time calculating distances during the reproduction phase. On the
other hand, when the set ϑ is too small, it fails to capture the population information in the
later stages, leading to the algorithm still becoming stuck in new local optima later on. To
overcome the aforementioned issues, this study introduces a secondary prior knowledge
set, which is denoted as ϑ′. When the data stored in the prior knowledge set ϑ reach its
maximum capacity, the eliminated sheep are stored in ϑ′. The purpose of ϑ′ is to preserve
the latest information from the current population and use it as the basis for updating
the prior knowledge set ϑ. This allows ϑ to utilize a smaller space to store useful and
cutting-edge population information.

As the algorithm runs, sheep are continuously eliminated. To maintain the stability
of the sheep population, this study stipulates that when the total number of sheep in the
population is less than the threshold value NumberLeast, the sheep population undergoes
a reproductive operation. The steps used to generate a sheep ∇ through reproduction are
as follows.

(1) Create a sheep denoted as ∇, and randomly initialize its position P∇.
(2) For each sheep Y in the candidate prior knowledge set ϑ, calculate the distance

d∇,Y, where ∇ represents the newly generated sheep and Y represents a sheep Y in the
prior knowledge set ϑ. d∇,Y is recorded as the Dis attribute of sheep Y, representing the
distance between the newly generated sheep ∇ and sheep Y.
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(3) If minlength(ϑ)
Y=1 {d∇,Y} > d2, where length(ϑ) is the size of the set ϑ, then the newly

generated sheep ∇ is far from all the sheep in ϑ, and the generation of sheep ∇ is allowed.
The eliminated sheep in the population are replaced with sheep ∇, and the algorithm ends.

(4) If minlength(ϑ)
Y=1 {d∇,Y} ≤ d2, where d2 represents a threshold value, this indicates

that the newly generated sheep ∇ is close to the sheep in the set ϑ. It is considered probable
that sheep ∇ will fall into a local optimum. Therefore, the generation of sheep ∇ is not
allowed, and the process returns to step (1).

The pseudo-code for the sheep reproduction operation is shown in Algorithm 3.

Algorithm 3: Pseudocode for the Sheep Reproduction Operation

input : ϑ; the index of the sheep to be replaced in the SheepList : n
output : SheepList
1 : Retrieve the k − th sheep from the flock : SheepListk[k]
2 : Retrieve the Dis attribute of Y from the prior knowledge set : Y. Dis
3 : f lag = true
4 : while( f lag)
5 : Create a sheep ∇ and randomly initialize its position P∇

6 : for Y in ϑ

7 : if d∇,Y> d2
8 : f lag = f alse
9 : end
10 : else ifd∇,Y ≤ d2
11 : f lag = true
12 : break
13 : end
14 : end
15 : end
16 : Retrieve the sheep that needs to be updated : SheepList[k]
17 : SheepListk[k] = ∇
18 : for Y in ϑ

19 : Y. Dis= Y. Dis+d∇,Y
20 : end

The prior knowledge set ϑ ensures that newly generated sheep can explore more
unknown areas, avoiding repeated explorations of the same regions and thereby preventing
their entrapment in local optima. Since the prior knowledge set ϑ does not possess the
most up-to-date population information, its role in the sheep breeding phase gradually
diminishes during the algorithmic iteration process. Therefore, it becomes necessary to
update the prior knowledge set ϑ. At this point, ϑ′ includes the most recently eliminated
sheep, and ϑ is updated with ϑ′, enabling ϑ to learn the latest information from the
population. The process of updating the prior knowledge set ϑ is as follows.

(1) For the α-th sheep in ϑ′, calculate the sum of the distances between sheep α and
all sheep in the prior knowledge set ϑ; denote this distance as Dis_allα. The formula for
calculating this sum is as follows.

Dis_allα =
length(ϑ)

∑
i=1

dα,i. (19)

(2) Select the sheep β in ϑ′ with the maximum Dis_all value and record it.
(3) Add sheep β to the prior knowledge set ϑ and clear ϑ′. To prevent ϑ from becoming

too large, it is necessary to remove one sheep from the prior knowledge set ϑ. The sheep ϵ in
the set ϑ with the maximum value for the Dis attribute is selected for removal. Additionally,
reset (set to 0) the Dis attributes for all sheep in the set ϑ.

The pseudo-code for updating the prior knowledge of the sheep flock is shown in
Algorithm 4.
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Algorithm 4: Pseudocode for Updating the Prior Knowledge of the Sheep Flock

input : ϑ; ϑ′;
output : ϑ

1 : Obtain the sheep with the maximum Dis attribute value in the prior knowledge set
ϑ : MaxDisSheep(ϑ)
2 : Obtain the sheep with the maximum Dis_all attribute value in the candidate prior
knowledge set ϑ′ : MaxDisAll(ϑ)
3 : Remove all sheep from the candidate prior knowledge set ϑ′: ClearSheep(ϑ′)
4 : for α in ϑ′ :
5 : α. Disall= Dis_allα
6 : end
7 : β = MaxDisAll(ϑ′)
8 : MaxDisSheep(ϑ) = β

9 : ClearSheep(ϑ′)

This section modifies the initialization part and the movement factor of the SFOA,
making it capable of solving two-dimensional problems. To address the insufficient utiliza-
tion of population information and the tendency of the algorithm to become trapped in
local optima, the concepts of prior knowledge sets and candidate prior knowledge sets are
introduced. This prevents the algorithm from becoming stuck in local optima during the
reproduction phase and enables better exploration of unknown areas.

Notably, the computational complexity of the SFOA is O(t ∗ (n ∗ dim + Co f ∗ n)), where
t represents the number of iterations, n is the size of the sheep flock, Co f is the function
evaluation cost, and dim is the dimensionality of the problem. The computational complexity
of the RTPK-SFOA is O(t ∗ (n ∗ dim + Co f ∗ n) + t1 ∗ n1 ∗ n2 ∗ dim + t2 ∗ n2 ∗ n3 ∗ dim). Here,
t1 denotes the number of sheep flock breeding iterations, t2 is the number of updates for the
prior knowledge set, n1 is the number of sheep flocks required for breeding, n2 is the size of the
prior knowledge set, and n3 is the size of the prospective prior knowledge set. In practice, with
the introduction of prior knowledge and prospective prior knowledge sets, the RTPK-SFOA
does not incur a significant time expenditure due to the relatively low frequencies of breeding
and prior knowledge updates. Moreover, when a sheep is eliminated from the flock, it ceases
all its activities, which is a strategy that further contributes to substantial time savings.

3. Simulation Experiments and Analysis

To facilitate the reader’s understanding, this section describes how to combine the
proposed intelligent algorithm with the task allocation context. In the initial phase of the
intelligent algorithm, a flock is initialized (as shown in Algorithm 1), and the position of
each sheep can be denoted by P (P is described in Section 2.2.1); each position represents a
feasible solution in the context of task allocation. After completing the initialization process,
based on the position of each sheep (feasible solution), its fitness is calculated (according
to Equation (20)). The flock is sorted according to the fitness values, and the top 10% of
the sheep with the optimal fitness values are selected as goats, while the remaining sheep
are selected as sheep. The shepherd moves to the position of the sheep with the optimal
fitness level.

In Section 2.2.1 of this paper, the modelling approach of the proposed algorithm is
described in detail, and it is adopted to better use the algorithm for solving the task assign-
ment problem. All operations in the algorithm (Section 2.2) are based on the modelling
process described in Section 2.2.1 and therefore can be directly combined with the task
allocation problem.

3.1. Background Introduction

This paper establishes a framework for conducting autonomous search missions
involving USVs in detection scenarios. Each autonomous search mission comprises un-
derwater and surface coverage-based search tasks. Each USV is equipped with either a
surface detection sensor (exclusively for surface detection), an underwater detection sensor
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(exclusively for underwater detection), or both sensors (for both surface and underwater
detection) and initiates its journey from a starting point, carrying its respective sensors to
the designated mission area for search coverage. The mission is considered complete once
all USVs have fulfilled their individual search tasks. This detection scheme is described
further in the document.

In Figure 1, the operational area of the USVs is confined to a rectangular zone measur-
ing 5000 m by 22,000 m. The red squares represent USVs equipped with surface detection
sensors, the blue triangles indicate USVs with underwater detection sensors, and the black
dots denote USVs carrying both types of sensors. The black rectangular area at the top
represents the mission area, with each USV allocated to a maximum of one mission area
for conducting detection tasks. The capabilities of the USVs within the scenario vary,
specifically in terms of their maximum sailing speeds (5 m/s to 10 m/s), the types of
sensors carried, and their maximum coverage detection speeds (1.4 m/s to 2 m/s). The
sensors onboard the USVs are capable of detecting information within a 100 m radius of
their location.
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At this point, a set of USVs denoted as U = {u1, u2, . . . , uNu} is present, where Nu
represents the number of USVs; TASK = {task1, task2, . . . , taskNt}, where Nt denotes the
number of target areas. Once the task allocation process for the USVs is completed, they
commence their respective missions. While navigating to their task areas and initiating
their sensors to conduct searches over the designated regions, the USVs experience energy
losses. The ultimate objective of the USV task allocation process is to ensure minimal
energy depletion for all USVs while efficiently completing the area search tasks. To assess
the quality of the allocation results, this paper introduces a fitness function.

f itness = 1 −
(

w1 ∗
Energy

Energymax
+ w2 ∗

Time
Timemax

)
. (20)

Energy and Time are terms used to the quantify energy loss and temporal expenditure,
respectively, within the context of the allocation scheme. The weighting coefficients w1 and
w2 represent the relative importance levels assigned to energy conservation and expedited
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completion during the task allocation process, respectively. It is stipulated that w1 +w2 = 1.
With the aim of minimizing the total time spent, this study sets w1 to 0.1 and w2 to 0.9.
The subsequent sections detail the computational methodologies for determining Energy
and Time.

Energy =
Nt

∑
i=1

Energyi. (21)

Energyi = Energy1
i + Energy2

i . (22)

Energy1
i =

3

∑
k=1

Ni
tk

∑
j=1

disij ∗ energy1
j . (23)

Energy2
i =

3

∑
k=1

Ni
tk

∑
j=1

lengthj ∗ energy2
j . (24)

Time = maxNt
i=1{Timei}. (25)

Timei = Time1
i + Time2

i . (26)

Time1
i = max3

k=1max
Ni

tk
j=1

disij

vj
. (27)

Time2
i = max


Length1

i(
∑

Ni
u1

j=1 v′j + ∑
Ni

u3
j=1 v′j

) ,
Length2

i(
∑

Ni
u2

j=1 v′j + ∑
Ni

u3
j=1 v′j

)
. (28)

In this context, Energyi denotes the energy expended by all USVs as they navigate
to and execute area search operations within the i-th task region. The energy consumed
during navigation increases with the number of sensors equipped on each USV. Moreover,
the activation of sensors for area search tasks incurs additional energy consumption. The
baseline energy consumption for the USVs is quantified as 1 unit per 100 m travelled. For
each additional sensor carried or activated for detection purposes, an incremental energy
expenditure of 0.03 units per 100 m is incurred.

Energy1
i and Energy2

i represent the energy loss induced by all USVs travelling to the
i-th mission area and the energy loss of each USV performing the search task, respectively.
Ni

tk represents the number of USVs carrying the k-th type of sensor in the i-th mission area
(k = 1 for the surface detection sensor, k = 2 for the submerged detection sensor, and k = 3
for both types of sensors). disij represents the distance between the j-th USV carrying the
k-th sensor and the i-th mission area. energy1

j represents the energy loss induced by the
USVs during navigation. lengthj denotes the path length required by the j-th USV carrying
the k-th sensor for area detection. energy2

j denotes the energy loss induced by the USVs
during area detection (when their sensors are activated).

Timei denotes the total time spent by all USVs travelling to the i-th mission area
and performing the coverage search task. Time1

i denotes the time consumed by all USVs
to travel to the i-th target. vj denotes the maximum navigational speed of the j-th USV
carrying the k-th sensor when travelling to the mission area. Length1

i denotes the total
length required for surface sounding in the i-th mission area. Length2

i denotes the total
length to be covered for underwater detection in the i-th mission area. v′j denotes the
maximum speed of the j-th USV when travelling to the mission area.

In this paper, the quality of the allocation scheme is assessed using the f itness level,
which has a value between 0 and 1. A higher value of f itness indicates a better alloca-
tion scheme.

To better relate the context of this paper to intelligent algorithms, an example of
utilizing the RTPK-SFOA is illustrated. In the task scenario, each task assignment scheme
is modelled as a two-dimensional array. In the RTPK-SFOA, the position of each sheep
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represents a task allocation scheme (a feasible solution), and the fitness of each sheep
indicates the quality of the corresponding allocation scheme. The extent of the pasture
represents the entire solution space. The goat may be a randomly selected sheep after
the initialization of the flock. During the iterative process of the algorithm, the shepherd
represents the global optimum solution (the feasible solution with the highest fitness value).
For the flock, the speeds of the sheep and the goats are related to the dimensions of the
feasible solutions. The specific speed values can be determined according to the specific
problem, and an appropriate speed can accelerate the convergence of the algorithm.

To give the reader a better understanding of the variables used in this paper, the
variables that appear in the theory section of the algorithm are described in Table 1.

Table 1. Variable descriptions.

Variables

rGsheep
the grazing radius of
the sheep P the position of the

sheep

rGgoat
the grazing radius of
the goats m, n mth /nth sheep

upper bound the upper limit of the
entire grazing area i, j Row, Column Index

lower bound the lower limit of the
entire grazing area d distance

T time influence factor d1 hyperparameter

Iteration current number of
iterations d2 hyperparameter

MaxIteration maximum number of
iterations step the moving step size

of the sheep
Ts hyperparameter ϑ prior knowledge set

v mobility factor ϑ′ secondary prior
knowledge set

C hyperparameter sheep numbering
index

X location of an
individual Y sheep numbering

index

Dim, dim dimensionality of the
problem α

sheep numbering
index

Lbest the optimal solution β
sheep numbering
index

RandomSheep a random sheep t
the number of sheep
flock breeding
iterations

V comprehensive
movement factor n the number of sheep

flocks

TG hyperparameter Co f the function
evaluation cost

3.2. Experimental Setup

The CPU used in the experiments of this article is an AMD Ryzen 7 7840HS CPU at
3.80 GHz with 40 GB of memory.

To ensure that the algorithm has good real-time performance and can be applied to
practical scenarios, it is specified in this article that the algorithm should run within 120 s
and 100 iterations. Based on this, various algorithm parameter settings are determined, as
shown in Table 2 (for the SFOA, PK-SFOA, RTPK-SFOA, WPA, GA, and BWO).
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Table 2. Algorithm parameter settings.

SFOA PK-SFOA RTPK-SFOA

Population Size: 200
Number of Goats: 20

Number of Sheep: 180
Goat Step Size: 2

Sheep Step Size: 1

Population Size: 200
Number of Goats: 20

Number of Sheep: 180
The Size of ϑ: 20
Goat Step Size: 2
Sheep Step Size: 1

d1: 2
d2: 2

Population Size: 200
Number of Goats: 20

Number of Sheep: 180
The Size of ϑ: 20
The Size of ϑ′: 80
Goat Step Size: 2
Sheep Step Size: 1

d1: 2
d2: 2

WPA GA BWO

Population Size: 400
Number of Scout Wolves: 209
Number of Fierce Wolves: 190
Number of Alpha Wolves: 1

Capture Radius: 4
Roaming Step Size: 2
Assault Step Size: 1

Siege Step Size: 1

Population Size: 1000
Cross Probability: 0.44

Mutation probability: 0.01

Population Size: 1000
Reproduction Rate: 0.6
Cannibalism Rate: 0.44

Mutation Rate: 0.4

Experimental Scenario 1: The task is an area search task containing three task areas.
The specific attributes are shown in Table 3.

Table 3. Task scenario attributes.

taskx(m) tasky(m) taskarea(m2)

Task 1 1000 2000 20,000,000
Task 2 2500 2000 20,000,000
Task 3 4000 2000 20,000,000

taskx represents the x-axis coordinate of the bottom centre point of the task area, tasky
represents the y-axis coordinate of the bottom centre point of the task area, and taskarea
represents the size of the task area. All task areas require areas searches both on the surface
of the water and underwater. The relevant attributes of the unmanned boats are shown in
Table A1 (located in Appendix A).

Ux represents the x-coordinate of the starting point of the unmanned boat, Uy repre-
sents the y-coordinate of the starting point of the unmanned boat, Uv represents the maxi-
mum cruising speed of the unmanned boat towards the task area, U′

v represents the maxi-
mum cruising speed of the unmanned boat during the area search process, UProbeCategory
represents the type of detection sensor carried by the unmanned boat, UProbeCategory = 1
represents that the boat is carrying a surface detection sensor, UProbeCategory = 2 represents
that the boar is carrying an underwater detection sensor, and UProbeCategory = 3 represents
that the boat is carrying both types of detection sensors.

By running various algorithms, algorithm allocation results (Table A2 (located in
Appendix A)) and a schematic diagram of the iteration process are obtained (Figure 2).
The fitness values in Figure 2 are capable of assessing the quality of the tested allocation
schemes. A higher fitness value indicates that the corresponding allocation scheme enables
the USVs to complete tasks in a shorter period with less energy expenditure. In Figure 2,
the larger the fitness value at the convergence time of an algorithm, the better the allocation
scheme obtained by that algorithm.
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According to Figure 2, compared to the SFOA [9], due to the presence of prior knowl-
edge, the PK-SFOA can better escape from local optima and achieve better convergence.
Compared to the PK-SFOA, the RTPK-SFOA introduces an updating mechanism based on
prior knowledge, which enhances its ability to escape local optima and guide the population
towards the optimal solution. Moreover, the RTPK-SFOA outperforms other algorithms,
such as the GA [7], BWO [11], and WPA [10], in terms of the optimization effect.

Due to the random nature of intelligent algorithms, this paper runs the various
algorithms 30 times against the background of experimental scenario 1 and statistically
analyses the final results, as shown in Figure 3. In Figure 3, the mean values represent
the average fitness levels of the algorithms after 30 runs, which represent the average
performance of the algorithms. The best and worst values are the best (upper limit) and
worst (lower limit) fitness values produced by the algorithms after 30 runs, respectively,
and the Std values are the standard deviations of the fitness levels of the algorithms after
30 repeated runs; the smaller a value is, the more stable the corresponding algorithm is.

As shown in Figure 3, the PK-SFOA with a priori knowledge significantly improves
the mean fitness, best fitness and worst fitness values over those of the SFOA [9]. This is
because the a priori knowledge helps to prevent the algorithm from falling into a local
optimum. However, since the a priori knowledge is not updated, underexplored regions
may be located near the a priori knowledge set, which may result in the algorithm failing
to find the optimal solution if the optimal solution occurs in that region. Compared with
the PK-SFOA, the RTPK-SFOA updates the a priori knowledge set to better explore the
previously underexplored regions. As a result, the RTPK-SFOA obtains better mean fitness
and worst fitness values than those of the PK-SFOA. Figure 3a,b show that the RTPK-SFOA
has a greater mean fitness and a lower standard deviation value than those of the SFOA,
PK-SFOA, GA [7], BWO [11] and WPA [10]. This indicates that the RTPK-SFOA is more
stable and able to obtain better allocation schemes in a shorter period.

Due to the presence of both prior and candidate prior knowledge sets in the RTPK-
SFOA, the algorithm effectively reduces the probability of falling into a local optimum. As
a result, compared to all other algorithms, the RTPK-SFOA has a higher mean (indicating
better performance) and a smaller standard deviation (indicating greater stability). How-
ever, the disadvantage of the RTPK-SFOA is that it requires more computational resources
and has a longer computation time than the other algorithms.
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To prove that the improved algorithm proposed in this paper performs well in different
experimental scenarios, the location and size of the task area are modified, and a new task
scenario 2 is constructed for testing (the relevant information concerning the USVs remains
unchanged).

Experimental Scenario 2: The task area properties are reset (The specific attributes are
shown in Table 4).

Table 4. Task scenario attributes.

taskx(m) tasky(m) taskarea(m2)

Task 1 1000 1500 10,000,000
Task 2 2500 1500 10,000,000
Task 3 4000 1500 10,000,000

Various algorithms are run to obtain algorithmic assignment results (Table A3 (located
in Appendix A)), and a schematic diagram of the iteration process is shown in Figure 4.

According to Figure 4, the PK-SFOA outperforms the SFOA, and the final fitness of
the PK-SFOA is greater than that of the SFOA because the PK-SFOA introduces an a priori
knowledge set. Since the RTPK-SFOA introduces a set of prior knowledge and a set of
candidate prior knowledge, which reduces the probability of the algorithm falling into a
local optimal solution, the RTPK-SFOA converges faster and has the highest adaptability.
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Due to the random nature of the intelligent algorithms, to verify the average per-
formance of the algorithms, this paper runs each algorithm 30 times in Scenario 2 and
statistically analyses their final results. The results are shown in Figure 5.
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After changing the task scenario, it can be seen from Figure 5a,b that compared with
other algorithms, the RTPK-SFOA has a smaller standard deviation, the highest average
adaptation, and better performance. Figure 5b–d show that although the best adaptations
of the WPA [10] and BWO [11] are better than those of the RTPK-SFOA proposed in this
paper, their worst adaptations are lower, and their standard deviations are larger, which
indicates that these algorithms are less stable and cannot guarantee the acquisition of the
optimal solution in a short period.

The experimental part of this paper simulates real task scenarios and proves that
the RTPK-SFOA has good performance and stability. However, compared with other
algorithms, the RTPK-SFOA needs more parameters to be defined and requires more
computational resources. In real-world applications, if the CPU performance at the control
centre is inferior, extended durations might be needed to obtain allocation results.

4. Conclusions

Currently, the mainstream approach for solving the task allocation problem of het-
erogeneous multi-unmanned systems is to utilize intelligent algorithms. However, many
intelligent algorithms fail to make full use of population information, resulting in poor
global optimization capabilities. To address this problem, this paper utilizes the information
eliminated from a population to establish a set of a priori knowledge, which provides a
reference for the reproduction of the population and ultimately forms a task allocation
algorithm based on real-time a priori knowledge updates. To verify the superiority of
the algorithm proposed in this paper, two task scenarios are constructed, and ablation
experiments are conducted. Figure 3a,b and Figure 5a,b show that the improved algorithm
proposed in this paper performs better (with a higher mean) and more stably (with a
smaller standard deviation) than the other tested algorithms. It is proven that the improved
algorithm (the RTPK-SFOA) proposed in this paper can effectively combine the parame-
ters of USVs and mission area information and reasonably carry out the cooperative task
allocation process.

The RTPK-SFOA proposed in this paper requires a greater computational load than the
SFOA. If the parameters in the RTPK-SFOA are not properly configured, the performance
of the algorithm can be greatly reduced. In addition, although the RTPK-SFOA can run
on low-end hardware, a population that is too large or a task that is too complex can
result in long run times. Future research directions will include designing a strategy to
reduce the computational effort required by the RTPK-SFOA while keeping its optimization
capabilities intact to ensure that the algorithm can compute quickly on low-end hardware.
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Appendix A

Tables A1–A3.

Table A1. Attributes of the unmanned boats.

Ux (m) Uy (m) Uv (m/s) U’
v (m/s) UProbecategory

USV1 2622 65 5.9 2 1
USV2 2716 56 5.1 2 2
USV3 2131 220 6.9 2 2
USV4 2150 172 5.8 2 2
USV5 2801 352 5.6 2 3
USV6 2287 170 5.6 2 1
USV7 2514 362 6.3 1.7 2
USV8 2441 131 6.7 1.4 2
USV9 2590 243 6.6 2 3

USV10 2190 392 6.7 2 3
USV11 2825 300 5.1 2 2
USV12 2929 44 6.9 1.7 1
USV13 2920 319 7.9 2 1
USV14 2385 239 6.1 2 1
USV15 2033 395 7.8 1.4 1
USV16 2665 26 7.5 1.4 1
USV17 2669 219 6.7 1.4 1
USV18 2131 346 5.6 1.7 2
USV19 2010 305 5.3 1.4 1
USV20 2159 362 6.0 2 1
USV21 2548 381 7.1 2 2
USV22 2712 298 7.2 2 3
USV23 2830 338 5.2 2 1
USV24 2301 91 6.2 1.7 2
USV25 2964 170 7.1 1.7 1
USV26 2993 53 6.7 2 1
USV27 2326 45 7.5 1.4 2
USV28 2253 312 5.2 2 2
USV29 2199 147 6.9 2 2
USV30 2774 291 6.0 2 2
USV31 2125 400 7.4 2 2
USV32 2503 11 5.2 1.4 1
USV33 2894 118 5.4 2 3
USV34 2308 225 6.7 1.7 2
USV35 2519 51 7.6 2 1
USV36 2914 81 5.8 1.7 3
USV37 2874 347 7.8 1.7 3
USV38 2670 123 7.9 2 3
USV39 2712 328 5.8 2 1
USV40 2810 52 6.5 2 2
USV41 2035 164 7.3 2 1
USV42 2997 226 7.3 2 1
USV43 2850 364 7.7 1.4 2
USV44 2614 141 6.2 1.7 2
USV45 2093 207 7.0 1.4 3
USV46 2017 5 5.1 1.7 1
USV47 2281 19 6.6 2 3
USV48 2863 42 6.2 1.4 2
USV49 2390 79 7.7 2 2
USV50 2162 55 5.2 2 1
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Table A2. Allocation results.

Task 1 Task 2 Task 3

SFOA 3 7 12 15 17 20 22 27 31
34 38 40 41 42 47 48 50

2 4 5 6 13 14 16 18 21 24
29 33 37 39 45 46

1 8 9 10 11 19 23 25 26 28
30 32 35 36 43 44 49

PK-SFOA 4 6 9 22 25 26 27 28 32 35
37 40 42 44 45 49

2 3 10 12 13 14 17 18 19
23 24 31 33 34 36 43 50

1 5 7 8 11 15 16 20 21 29
30 38 39 41 46 47 48

RTPK-SFOA 3 5 6 8 9 16 19 21 24 27 30
38 39 42 44 46 50

1 11 14 22 25 26 28 31 32
33 37 40 41 45 48 49

2 4 7 10 12 13 15 17 18 20
23 29 34 35 36 43 47

WPA 6 7 9 13 16 18 21 23 27 35
36 38 40 42 44

1 2 10 11 14 17 20 22 26
28 29 30 32 46 47 48 50

3 4 5 8 12 15 19 24 25 31
33 34 37 39 41 43 45 49

GA 3 7 9 16 19 23 24 26 28 31
33 37 40 42 43 46 50

1 5 8 15 17 20 25 29 30 34
35 38 44 45 47 49

2 4 6 10 11 12 13 14 18 21
22 27 32 36 39 41 48

BWO 1 4 5 6 9 16 17 18 24 26 27
28 31 34 41 46 47

8 11 14 20 21 22 23 25 29
32 33 35 37 40 44 45

2 3 7 10 12 13 15 19 30 36
38 39 42 43 48 49 50

Table A3. Allocation results.

Task 1 Task 2 Task 3

SFOA 1 10 11 12 13 14 21 22 24
30 32 34 36 40 43 46 50

2 7 17 18 19 23 25 26 27
28 33 35 37 39 44 47 49

3 4 5 6 8 9 15 16 20 29 31
38 41 42 45 48

PK-SFOA 3 4 5 8 12 13 15 21 27 31
35 37 38 41 42 46 49

1 6 9 16 17 22 23 24 25 26
28 29 34 40 43 44 45

2 7 10 11 14 18 19 20 30
32 33 36 39 47 48 50

RTPK-SFOA 3 4 12 13 18 19 22 26 27
28 33 35 44 46 47 49 50

1 2 5 6 8 11 15 17 20 23 24
30 32 34 36 38 43

7 9 10 14 16 21 25 29 31
37 39 40 41 42 45 48

WPA 9 11 15 18 19 20 28 33 34
35 44 48 49 50

1 2 6 8 13 17 21 22 24 25
26 31 32 36 38 45 46 47

3 4 5 7 10 12 14 16 23 27
29 30 37 39 40 41 42 43

GA 3 7 8 14 16 17 20 22 23 27
28 30 33 34 35 36 41 43

1 2 5 9 11 15 19 21 31 32
38 39 44 46 49 50

4 6 10 12 13 18 24 25 26
29 37 40 42 45 47 48

BWO 3 5 7 9 14 16 17 21 27 31
34 35 38 39 42 49 50

4 11 12 13 18 19 24 25 26
29 33 41 43 44 45 46 47

1 2 6 8 10 15 20 22 23 28
30 32 36 37 40 48
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