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Abstract: In data center networks, when facing challenges such as traffic volatility, low resource
utilization, and the difficulty of a single traffic scheduling strategy to meet demands, it is necessary
to introduce intelligent traffic scheduling mechanisms to improve network resource utilization,
optimize network performance, and adapt to the traffic scheduling requirements in a dynamic
environment. This paper proposes a fine-grained traffic scheduling scheme based on multi-agent
deep reinforcement learning (MAFS). This approach utilizes In-Band Network Telemetry to collect
real-time network states on the programmable data plane, establishes the mapping relationship
between real-time network state information and the forwarding efficiency on the control plane, and
designs a multi-agent deep reinforcement learning algorithm to calculate the optimal routing strategy
under the current network state. The experimental results demonstrate that compared to other traffic
scheduling methods, MAFS can effectively enhance network throughput. It achieves a 1.2× better
average throughput and achieves a 1.4–1.7× lower packet loss rate.

Keywords: data center network; traffic scheduling; multi-agent deep reinforcement learning; in-band
network telemetry; programmable data plane

1. Introduction

With the development of modern networks and the rise of emerging technologies
such as cloud computing, data centers carry most of the current data traffic and applica-
tion functions on the Internet. The diversification of data center applications, the rapid
increase in network data volume, and the continuously growing user demands can lead to
network congestion and fail at timely forward processing [1]. Therefore, achieving effective
management of internal traffic in data center networks (DCNs) and the efficient utilization
of network resources are critical challenges that data centers need to address. How to
combine traffic characteristics, linking status and application requirements to improve
the performance of data center networks, is of great research significance for designing
reasonable and efficient traffic scheduling strategies for DCNs.

A Software-Defined Network (SDN) [2] is a novel network model that separates the
data plane from the control plane. The data plane is responsible for high-speed forwarding
while its control functions are integrated into the controller. With an SDN, a targeted traffic
scheduling model can be devised, providing a new approach to solve the traffic scheduling
issues of the data center. The use of In-band Network Telemetry (INT) technology can
provide fine-grained real-time monitoring of packet paths and the processing process
in the network. Based on real-time monitoring information provided by INT, a DCN
can achieve precise traffic scheduling and dynamically adjust traffic routing to optimize
network performance and resource utilization.

With the in-depth research and application of artificial intelligence technology in
the field of computer networks, traffic scheduling research based on deep reinforcement
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learning (DRL) [3] has achieved remarkable results in this field. Compared with the
traditional routing algorithms, the intelligent routing model that combines a SDN with
deep reinforcement learning can automatically learn the mapping relationship between
input parameters and output results by observing the empirical information provided
by the environment. This not only saves time and costs but also continuously adjusts to
output better routing strategies as the environment changes so as to achieve the purpose of
load balancing. In recent years, the proposal of multi-agent deep reinforcement learning
(MADRL) [4] has brought new hope for optimizing network performance. This method
solves large-scale complex problems based on the relationship between individual agents
collaborating with each other, which not only reduces the complexity of problem-solving
for individual agents but also improves the overall problem-solving ability of multiple
agents. In summary, by setting the network topology, the data packet processing logic is
realized on the programmable data plane using P4 language, and the intelligent machine
learning method is introduced on the control plane to effectively complete the routing
decision and the corresponding forwarding of the data packet. Therefore, applying the
MADRL method to a data center network will provide a new strategy to solve the load
balancing problem.

This paper proposes a traffic scheduling method called MAFS based on multi-agent
deep reinforcement learning. In-Band Network Telemetry was used to collect global
network state information [5], and the method customizes the environment, state space,
action space, and reward function of the model. Furthermore, it designs the CTN-MADDPG
algorithm based on a one-dimensional convolutional neural network (1D-CNN) [6] and
long short-term memory network (LSTM) [7] to realize traffic scheduling decisions centered
on the control plane.

In general, the main contributions of this proposed work include the following:
A traffic scheduling method based on multi-agent deep reinforcement learning is

proposed. In the process of traffic scheduling, the CTN-MADDPG algorithm is designed,
enabling individual agents to learn how to better collaborate in the network environment to
complete routing strategies through the joint training of deep neural networks for agents.

In the CTN-MADDPG algorithm, the 1D-CNN and LSTM are combined to design the
Actor network and Critic network for each agent so that the model captures time-dependent
relationships in sequential data, enhancing the modeling and representation capabilities of
the model for time-series data and optimizing the selection of routing strategies.

The multi-step experience replay strategy is adopted in the CTN-MADDPG algorithm,
which is an extension of experience replay. It allows for agents to update the routing
strategy by using the experience of multiple consecutive time steps during the training
process. This approach maximizes the utilization of temporal correlation and improves the
learning efficiency of the model for further optimization of the routing strategy.

2. Related Works

The traffic scheduling of a DCN is used to solve the problem of when and at what
rate each data flow in the network should be transmitted. DCNs require efficient, flexible,
and secure traffic scheduling methods to optimize routing for different types of traffic.
Currently, there are numerous research efforts focused on traffic scheduling in DCNs.

Traditional traffic scheduling methods include the Shortest Path First (SPF) algorithm,
the Equal-cost Multi-path (ECMP) [8] algorithm, and the heuristic algorithms. The SPF
algorithm is simple, but it has the drawback of being unable to fully utilize network
resources. As a traditional static traffic scheduling method, ECMP lacks congestion aware-
ness and may map multiple large flows onto the same path, resulting in congestion in
the network. The current dynamic traffic scheduling algorithms, such as FDALB [9] and
DIFFERENCE [10], primarily focus on large flows. The dynamic traffic scheduling based
on SDNs on links with congestion or load imbalance can effectively reduce the probability
of link congestion and improve the transmission performance of the traffic. Among them,
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scheduling schemes such as Hedera [11], Mahout [12], Nimble [13], and Fincher are often
used to distinguish between large and small streams.

Heuristic algorithms [14] are proposed relative to optimization algorithms, which are
generally used to solve non-deterministic polynomial problems, providing approximate
optimal solutions. The swarm intelligence algorithm is a heuristic algorithm used to find
the global optimal solution. In recent years, it has been commonly used in data center
network traffic scheduling technology to find the optimal scheduling route for network
traffic efficiently and quickly. For example, Ant Colony Optimization [15] and Particle
Swarm Optimization, which belong to swarm intelligence algorithms, have been combined
with traffic scheduling problems. However, these algorithms also have certain problems
and shortcomings, such as complex computation, a slow convergence speed in the later
stage, an inability to simultaneously achieve the calculation speed and result accuracy,
a susceptibility to local optima, and an inability to guarantee the global optimality of
solutions. They are unable to cope with rapid network traffic changes and therefore cannot
perfectly meet the requirements of network performance.

In recent years, with the rapid development of machine learning technology, re-
searchers have introduced and applied it to SDNs based on the effectiveness of machine
learning technology in policy decision-making for routing scheduling issues in complex
networks and conducted many related studies. Mammeri [16] provided a comprehensive
overview of the research on utilizing reinforcement learning (RL) methods to solve routing
problems, summarizing commonly used reinforcement learning models and the current
challenges. Li Ying et al. [17–20] proposed a Q-Learning based routing algorithm for
sensor networks and opportunistic networks. When learning convergence is difficult due
to the increase in the state-space dimension, using neural networks to estimate the Q-value
can solve the problem of dimension explosion while reducing the average latency and
improving network throughput.

Reference [21] introduced RL neural networks into the QoS routing calculation; it
proposed a variable greedy function and improved the reward function to optimize the
routing decision model. This routing scheme consumes excessive controller resources and
has long computation times, resulting in poor timeliness. Zuo Y et al. [22] transformed
the path planning problem into a sequence inference problem of network nodes, using a
sequence-to-sequence model to learn forwarding paths based on network traffic. These
approaches are centered on a single node and do not consider traffic scheduling problems
from the perspective of the overall network.

Reference [23] utilized DRL agents with convolutional neural networks to improve
the performance of the routing configuration in complex networks and enhance the per-
formance of QoS-aware routing. Reference [24] proposed an off-line training routing
solution combining the Deep Q-Network (DQN) and LSTM algorithms, which used batch
reinforcement learning methods to learn the optimal control strategies from pre-collected
transition samples without interacting with the system. Reference [25] employed a frame-
work combining imitation learning and deep reinforcement learning, effectively reducing
the instability of RL algorithms.

After several years of development, multi-agent deep reinforcement learning technol-
ogy is one of the important technological approaches to solve decision control problems in
complex environments. It has been successfully applied in various fields, such as game
confrontation, robot obstacle avoidance, drone formation control, and traffic signal manage-
ment. Gradually, it is becoming a key method to study the emergence of swarm intelligence
in multi-agent systems.

Kim et al. [26] introduced the Medium-Access Control (MAC) methods from the
communication domain into multi-agent deep reinforcement learning, proposed a Sched-
uled Communication model, which optimized the transmission patterns of information
and enabled agents to have full-time communication capability. A multi-agent team from
Tsinghua University combined the Minimax principle with the MADDPG algorithm to pro-
pose the M3DDPG algorithm [27]. The Minimax principle is used to estimate the worst-case
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scenario where the behaviors of all agents in the environment are completely hostile, and
the agent strategies are continuously updated based on this estimated worst-case scenario,
which improves the robustness of the agent learning strategies and ensures the effectiveness
of learning. Reference [28] proposed a real-time distributed learning method in mobile
edge networks. It employed an MADRL model to realize the independent routing decisions
for each edge node, overcoming the limitations of traditional turn-based DRL methods and
improving the transmission packet ratio and effective throughput.

In summary, the feature expression capabilities and autonomous learning mechanisms
of the multi-agent deep reinforcement learning model can be used to calculate the optimal
routing strategies for traffic and perform real-time forwarding. Therefore, this paper
proposes the traffic scheduling method MAFS, which intelligently realizes the packet
processing logic of the data plane and the centralized decision-making of the control plane.

3. System Scheme and Implementation
3.1. MAFS Traffic Scheduling System

This paper proposes the CTN-MADDPG algorithm based on the MADDPG algorithm
and builds the MAFS traffic scheduling system. The overall structure is shown in Figure 1.
The core of this system model is the control plane, where the controller obtains information
from the underlying network through a southbound interface to achieve centralized control
function. The current network state information is obtained using INT on the data plane
and transmitted to the control plane. The control plane preprocesses the network state
data, using it as input for a neural network to calculate the routing strategies. Subsequently,
the controller converts the optimal routing strategy into flow table rules, which are then
deployed to the data plane.

Figure 1. Architecture of MAFS traffic scheduling scheme.
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Information Preprocessing Module: This module is primarily responsible for process-
ing the obtained information from the data plane and feeding the processed data into the
traffic scheduling module. It integrates the switch load information collected by INT within
the data plane as input to the state information of the Actor network and Critic network.
Additionally, it consolidates the link load information received from the receiver feedback
into reward values, which are utilized to guide the selection of the routing strategies for
each intelligent agent.

Traffic Scheduling Module: This module primarily executes the CTN-MADDPG
algorithm, with each intelligent agent corresponding to an Actor–Critic framework. Each
intelligent agent interacts with the data plane environment to obtain the current state
information of the agent, and the distributed execution of the Actor network obtains the
optimal routing strategy. In the centralized training process, the Critic network can obtain
the global state information and the routing strategies adopted by all the intelligent agents.
It grasps the global value function to evaluate the utility of the set of routing strategies
selected by each agent to guide the update of the Actor network.

Route Conversion Module: This module is primarily used to convert the routing
selection results of the traffic scheduling module into the form of flow rules in order to
obtain new flow table rules. It dynamically modifies the flow rules executed by the switches
on the control plane and distributes them to the data plane. When a data packet enters a
switch, the switch will forward it based on the corresponding forwarding rules to achieve
dynamic data transmission.

Compared with the previous single-agent deep reinforcement learning methods, the
multi-agent deep reinforcement learning method can assign decision tasks to multiple
agents for parallel learning and decision-making. Each agent can independently ob-
serve network states and make routing decisions. By sharing experiences and learning
for each other, agents can improve their routing strategies, thereby improving overall
network performance.

The MAFS traffic scheduling method proposed in this paper designs the CTN-MADDPG
algorithm in the traffic scheduling module, which is based on the MADDPG algorithm of
MADRL. The MADDPG algorithm is a deep deterministic policy gradient algorithm for a
multi-agent environment. Each agent corresponds to an Actor–Critic network structure,
adopting the mode of centralized training and distributed execution. It combines the advan-
tages of the action-value function and policy gradient method, utilizing the information of
the action-value function to guide the policy update, thereby addressing the deterministic
policy optimization problem in a continuous action space. In general, the structure of
the Actor network and Critic network of the MADDPG algorithm are composed of three
fully connected layers, which may not be able to capture complex feature information. In
addition, the model has fewer parameters, which can easily lead to overfitting or lower
learning efficiency.

The CTN-MADDPG algorithm is based on the MADDPG algorithm model, which
combines the one-dimensional convolutional neural network (1D-CNN) and long short-
term memory network (LSTM) to form a compact network model and introduces temporal
information to design a multi-step experience replay strategy. It can extract the structural
and temporal features of network state information. The network state information that
occurred in the past time is transferred to the calculation of the present time. Therefore, the
action information of the last time can be used to make an effective selection of the next
routing action. The CTN-MADDPG algorithm can match the traffic to the optimal path
based on real-time network state information, thereby achieving balanced distribution and
effective transmission of traffic in the DCN.

3.2. CTN-MADDPG Intelligent Network Model

This paper constructs a hybrid deep reinforcement learning model based on the 1D-
CNN and LSTM concatenated for each agent. The Actor–Critic network model structure
consists of three network modules: the one-dimensional convolution module, LSTM mod-
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ule, and fully connected layer module. CTN-MADDPG utilizes the one-dimensional con-
volutional neural network layer to learn the features of the network state information and
extracts the temporal information of the learned features through the LSTM layer, which
can effectively improve the generalization ability and traffic prediction capability of the
model and achieve optimal routing and forwarding. The structure of the CTN-MADDPG
intelligent network model is shown in Figure 2.

Figure 2. The structure of CTN-MADDPG intelligent network model.

In this algorithm, the one-dimensional convolutional network module is added to
the Actor–Critic architecture, which consists of a one-dimensional convolutional layer
(Conv1d), max-pooling layer (MaxPool1d), and ReLU activation function layer.

Furthermore, the second network module in the Actor–Critic architecture of this paper
is the LSTM module. The LSTM module is used to learn the feature vectors processed
by the one-dimensional convolutional layer, exploring their internal rules and obtaining
their hidden layer states. By combining LSTM, the effective temporal information from
action values and observed states can be introduced and processed. Based on the action
information from the previous time step, the actions to be taken at the current time step
can be effectively predicted and properly adjusted so as to accelerate the training efficiency
of the network and achieve a better control effect.

In this paper, LSTM is applied to the traffic scheduling task of the data center, which
makes LSTM learn how to predict the state and reward. Through this approach, it infers that
the network states obtained by each agent interact with the network topology environment.
At the point, the agent wants to obtain the action- and state-value functions of the model
output when forwarding data packets, which depends not only on the current state s but
also on the additional auxiliary signal ht−1 from the self-propagation of the LSTM memory
unit, which contains the key features extracted from the network topology in the previous
states. The forward propagation of all states relies on the same LSTM, which runs through
the entire episode. The cell state and hidden state transmitted inside the LSTM serve as the
long-term memory and short-term memory of the agent, respectively, helping the agent
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to better grasp the global information and cope with the problem of hidden states in the
current state in real situations.

In this paper, the third network module of the Actor–Critic architecture is the fully
connected layer module. The last layer of the Actor network outputs the routing actions.
The last layer of the Critic network changes the output dimension to 1, which serves as
feedback from the Critic network to the Actor network, guiding the Actor network to
update and select the optimal action strategy.

3.3. Multi-Step Experience Replay Strategy

The experience replay buffer stores previous experiences in a buffer so that agents can
more efficiently utilize these experiences for learning when training neural networks. It
can provide training stability in multi-agent scenarios.

Based on experience replay, agents not only update the parameters of neural networks
using the current interaction experiences but also conduct batch learning by randomly
sampling a batch of past experiences from the buffer. This helps to avoid the model only
learning the current specific contexts and improve sample efficiency, that is, using a limited
number of interactions and sampling through reasonable strategies to interact with the
environment, and a more comprehensive exploration of the environment is achieved to
optimize strategies.

The experience information randomly sampled during the experience replay can be
represented by a tuple (st, at, rt, st+1), including the current state, action, reward, and next
state. However, randomly sampling only one set of network information may disrupt the
temporal correlation in the state sequence. In traffic scheduling tasks, the network state
information at certain moments may be closely related to previous or subsequent network
states. If only the information from the current state is randomly sampled, it may lose
this temporal structure, thereby affecting the learning effect. In some cases, a continuous
sequence of states may contain more information about the environment, and random
sampling taking only one set of state information may not capture this continuity.

Therefore, this paper sets up a multi-step experience replay strategy, which considers
sampling a continuous sequence of network states rather than just single network state
points. Retaining a certain number of continuous state experiences allows for making more
use of temporal information and capturing more contextual information. The structure of
the multi-step experience replay buffer is shown in Figure 3.

Figure 3. Multi-step experience replay of MAFS.
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The MAFS method introduces temporal correlation information by extending the
experience tuples stored in the experience replay buffer. Add the previous time-step state,
action, and reward of the agent to the experience information, forming the new tuple
as follows:

(st−1, at−1, rt−1, st, at, rt, st+1), (1)

The optimized experience information is stored in the experience replay buffer and
sampled randomly. In order to improve the computational performance, effective di-
mensionality reduction and consolidation of the data are conducted. In the distributed
execution of the CTN-MADDPG algorithm, the input data of the Actor network is the
network state information from the previous time step and the current time step. The
Critic network not only inputs the current state information and routing strategy of all
agents but also includes information from the previous state. In the centralized training
process, the input information of the Target Actor network includes the network state
information of the current moment and next moment so as to output the routing strategy of
the next time step, which is then passed to the Target Critic network to update the network
parameters. The input information in the Target Critic network includes the current and
next state information of all the agents, as well as the routing strategies they have made.
Temporal features are introduced in the training process of the CTN-MADDPG algorithm to
optimize the updating process of the network parameters. By extending and optimizing the
experience information stored and sampled from the experience replay buffer, multi-agent
systems can more effectively utilize past experiences, thereby accelerating the convergence
process of deep reinforcement learning.

Considering the temporal relationships between states, the simultaneous use of ran-
dom sampling and temporal experience cannot only ensure the temporality of the neural
network model training under the current state but can also be used in conjunction to
enhance the stability of the deep reinforcement learning model training, thereby improving
the sample efficiency.

4. Implementation of MAFS Traffic Scheduling Algorithm
4.1. Key Parameter Setting

The CTN-MADDPG algorithm is deployed on the control plane, and the network state
information is first collected by INT and defined as the input data for the network model.
The network topology environment is constructed based on the traffic scheduling scenarios
in the DCN. The key elements of the CTN-MADDPG algorithm are designed, namely, the
state space, action space, and reward function. The trained CTN-MADDPG algorithm can
determine the optimal routing path through the current network environment.

(1) State space: The network state obtained between two terminal hosts through INT.
The network state is defined as the load information of the switches in the current link.

s = (o1, o2, · · · , on), (2)

oi = {swidi, qdepthi, port_idi}, (3)

where oi represents the ith observed state, and each observed state is composed of a set of
switch identifiers, queue depths, and output port numbers for each switch. It is the global
state information obtained after integrating the state information of individual agents.

(2) Action space: The set of shortest paths that can be scheduled between the source
node and the destination node. When selecting an action ai, the ith path among the n
shortest paths is preferred.

a = (a1, a2, · · · , an), (4)

(3) Reward: The reward value obtained through training the neural network based
on the current environment and actions taken. The reward function for each agent is set
as follows:

ri = log ti − log di, (5)
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where ti represents the average throughput in the ith observed state, which focuses on the
data transmission capacity of the network. di represents the delay in the ith observed state,
which focuses on the time that the current packet experiences in the links. Considering both
these two indicators can provide a comprehensive evaluation of the network performance,
and the routing strategies based on these indicators can help to optimize the network and
improve the overall performance. By using the logarithmic function to converge parameter
values to a certain range, the magnitude difference between the two parameters can be
narrowed to balance the influence of different parameters, which helps to predict the
network performance more accurately.

4.2. The Algorithm of MAFS

During the operation of MAFS, the SDN controller monitors the global network states
in real time by establishing a connection with the switches for data interaction. Through
continuous iterative training and updating, the CTN-MADDPG algorithm can optimize
its own network model and continuously learn network states to generate the optimal
forwarding paths, thereby achieving load balancing.

The CTN-MADDPG algorithm assumes that there are N agents, where the policy
representation of each agent is πi, which is the mapping of the network state information to
the routing policy. The policy set is π = {π1, π2, · · · , πN}, and the set of policy parameters
is θ = {θ1, θ2, · · · , θN}. The computation process of MAFS is outlined in Algorithm 1.

Algorithm 1 MAFS Method

Require: Data plane information collected by INT;
Ensure: Optimal path;

1: Set the state and action; initialize Actor Network parameters θ = {θ1, θ2, · · · , θN} and
Critic Network parameters ϕ = {ϕ1, ϕ2, · · · , ϕi} for each agent;

2: for episode = 1 to MAX_EPISODE do
3: Reset the environment, obtain initial state st;
4: for step t = 1 to MAX_STEP do
5: for agent i = 1 to N do
6: action←mafs.action(s);
7: Select scheduling path as ai, and controller execute the ai;
8: end for
9: Observe reward rt and next state st+1;

10: st ← st+1;
11: Store (st−1, at−1, rt−1, st, at, rt, st+1) in experience replay buffer D;
12: for agent i = 1 to N do
13: Sample a random minibatch of S samples from D;

14: Set y = ri + γQµ′

i
(
s, s′, a1, · · · , aN , a′1, · · · , a′N

)
|a′j=µ′j(oj)

;

15: Update Critic Network by minimizing the loss L(θi);
16: Update Actor Network using the sampled policy gradient ∇θi J(µi);
17: end for
18: Update target network parameters for each agent i: θ′i ← τθi + (1− τ)θ′i ; ϕ′i ←

τϕi + (1− τ)ϕ′i :
19: end for
20: end for

The MAFS method updates the network model by providing a reward indicator of the
current data center network load balancing based on the current network state st and the
selected scheduling path at. By maximizing the cumulative reward, the load in the data
center network becomes more balanced. The cumulative expected reward for each agent is
given by:
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J(θi) = Es∼ρπ ,ai∼πθi

[
∞

∑
t=0

γtri, t

]
, (6)

where θi represents the parameters in the ith policy network, and ri represents the reward
value of the ith agent, which is composed of the average throughput and end-to-end delay
in the current network.

In the process of solving the traffic scheduling problem in the DCN, if the random
policy is adopted, and the selection of the action is made according to the probability
distribution, the process of policy optimization will be affected by large fluctuations and
lead to the instability of the training. In contrast, the deterministic policy based on the
CTN-MADDPG algorithm enables each agent to choose a specific action based on the
current network environment information to make a specific routing decision, which makes
the agent have better stability and convergence in the process of making a traffic scheduling
decision. At the same time, the deterministic policy can more flexibly adjust the traffic
scheduling strategies to adapt to different network topology environments and traffic load
situations, thus improving the global network performance.

Therefore, the deterministic policy is adopted in this paper. In a given network
state, each agent directly outputs a complete routing path based on the current network
environment information. This makes the behavior of agents more stable and controllable,
helping to coordinate the behavior of each agent and enabling better routing strategy
optimization and path selection. In the case of deterministic strategies µθi , the policy
gradient is given by:

∇θi J(µi) ≈
1
S ∑

j
∇θi µi(ai|oi)∇ai Q

µ
i (s, a1, · · · , aN)|ai=µi(oi)

, (7)

where oi represents the observation information of the ith agent, and s = [o1, o2, · · · , oN ]
denotes the observation vector, which is the network state information. The routing policy
of each agent is updated through gradient descent, and the resulting routing policy is
improved by interacting with other agents.

The above gradient formula adopts the experience replay technique to extend the
experience replay buffer, which contains several pieces of information, with its elements
represented as a tuple (st−1, at−1, rt−1, st, at, rt, st+1).

The Actor network is updated using the above gradient descent method, and the traffic
in the data center network is forwarded through the routing policy selected by the Actor
network. The Critic network is updated by the loss function through backpropagation. Its
input is the global information about the network state and routing actions, with the loss
function calculation formula as follows:

L(θi) =
1
S ∑

(
Qµ

i
(
s, s′, a1, · · · , aN , a′1, · · · , a′N

)
− y

)2
, (8)

where y = ri + γQµ′

i
(
s, s′, a1, · · · , aN , a′1, · · · , a′N

)
|a′j=µ′j(oj)

, Qµ′

i represents the target net-

work, and µ′ =
{

µ′1, · · · , µ′N
}

is the set of target policies. The policies of other agents can
be obtained through fitting approximation without the need for further communication
interaction.

The process of multi-agent systems training is similar to that of single-agent training.
A centralized Critic network can alleviate the difficulty of convergence caused by the
dynamic environmental changes in multi-agent scenarios. After the training is completed,
each Actor network can adopt the corresponding routing actions based on its own network-
observed states.
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5. Experiment
5.1. Experimental Environment Setting

Based on the MADDPG algorithm, this paper designs an intelligent network model
and a multi-step experience replay mechanism on the basis of the original code [29].
The CTN-MADDPG algorithm is proposed, and the MAFS traffic scheduling method is
implemented by designing functional modules on the control plane and data plane.

The description of the simulation experiment environment of the traffic scheduling
method in the programmable data plane is shown in Table 1.

Table 1. Descriptions of simulation experiment environment.

Simulation Tool Description

Operating System Ubuntu 18.04 64-bit

Network Simulation Platform Mininet 2.2.2

Virtual Switch Bmv2 Software Switch

Programming Languages Python, P4

Traffic Generation Tool iperf

Python Management Software Anaconda

The specific parameter values of the network model structure in the MAFS traffic
scheduling method are shown in the following Table 2.

Table 2. Network model parameter values of MAFS.

Parameter Name Value Description

BATCH _SIZE 1024 Size of mini-batch sampling

MEMORY _CAPACITY 10,000 Capacity of buffer pool

MAX _EPISODE 500 Maximum number of episodes

MAX _STEP 25 Maximum number of steps per episode

LR _A 0.01 Actor network learning rate

LR _C 0.02 Critic network learning rate

GAMMA 0.99 Discount factor

TAU 0.01 Target network hyperparameter

5.2. Experimental Results and Analysis

In order to verify the performance of MAFS, this paper compares it with the ECMP
algorithm and traffic scheduling schemes based on DDPG and MADDPG through an
experimental simulation and analyzes the experimental results under different performance
indexes. To analyze the differences between the different schemes, the link bandwidths are
adjusted to 100 Mbps, 500 Mbps, 1000 Mbps, and 2000 Mbps, respectively.

The experimental results indicate that under different bandwidth settings, the average
throughput of MAFS is higher than that of the ECMP, DDPG, and MADDPG traffic schedul-
ing schemes, while the average round-trip delay, packet loss rate, and flow completion
time of MAFS are lower than the other three comparison methods.

The average throughput is used to evaluate network performance, which represents
the capability of the traffic in the network as it is forwarded along paths. As depicted in
Figure 4, the comparison of the average throughput shows that compared to the ECMP,
DDPG, and MADDPG methods, the MAFS method increases the average throughput by
54.19%, 24.79%, and 16.93% when the bandwidth is set to 100 Mbps, respectively. These
results indicate that the proposed MAFS method can update routing strategies through
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continuous learning historical experience and training, selecting the optimal forwarding
path for the traffic, thereby achieving network load balancing.

Figure 4. Average network throughput.

The comparison of the average round-trip delay is shown in Figure 5. When the band-
width is set to 1000Mbps, the average round-trip delay of the MAFS method is reduced
by 33.30%, 24.27%, and 19.70%, respectively, compared with the ECMP, DDPG, and MAD-
DPG methods. These results demonstrate that the MAFS method can effectively reduce
the average round-trip delay, improve the traffic transmission efficiency, and alleviate
link congestion.

Figure 5. Average round-trip delay.

The comparison of the packet loss rate is shown in Figure 6. Under different bandwidth
settings, the MAFS method can effectively control the packet loss rate within a small range.
Compared with ECMP, DDPG, and MADDPG, the loss rate of the MAFS method is kept
below 15.54%, which can intelligently allocate forwarding paths for traffic, alleviate link
loads to a certain extent, effectively reduce the packet loss rate, and ensure the effective
transmission of packets.
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Figure 6. Packet loss rate.

As shown in Figure 7, with different bandwidth settings, the MAFS method can
effectively reduce the flow completion time. Particularly, when the bandwidth is set to
100Mbps, the flow completion time of the MAFS method is reduced by 36.84%, 26.47%,
and 13.46% compared with the ECMP, DDPG, and MADDPG methods, respectively. The
results demonstrate that the MAFS method can achieve faster data transmission, thereby
making more efficient use of the available bandwidth to improve network utilization.

Figure 7. Flow completion time.

Figure 8 shows the execution time of the intelligent algorithm for the MAFS traffic
scheduling scheme and other comparative traffic scheduling methods during the network
model training process. Specifically, it starts from the agent obtaining network state
information and continues until a new routing strategy is calculated through an intelligent
network model and converted into flow rules for issuance. The experimental results show
that the CTN-MADDPG traffic scheduling algorithm of the MAFS method has a shorter
execution time, which means that it can complete the model learning and routing decision
faster and can respond more quickly to the changes in the network environment to reduce
the routing decision delay. Therefore, the MAFS traffic scheduling method has higher
computational efficiency.
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Figure 8. The execution time varies with the episodes.

Figure 9 records the changes in the throughput of MAFS, DDPG, and MADDPG with
the training episodes. In the early stages of system operation, the throughput changes in
DDPG, MADDPG, and MAFS are not very different due to the limited number of algorithm
training steps. With the increase in the training period, the network throughput of MAFS
is significantly better than the other two traffic scheduling methods, and the throughput
continues to improve and tends to stabilize. Figure 10 records how the delay varies for
MAFS, DDPG, and MADDPG with the training episodes. Compared with the DDPG and
MADDPG algorithms, the delay of MAFS is kept at a small value, which steadily decreases
and stabilizes over time. Figure 11 records the changes in the reward values of MAFS,
DDPG, and MADDPG with the training episodes. Although the reward values of the
MAFS method in the training process have a certain jitter, they are relatively stable after
425 episodes and reach a convergence state. Various agents cooperate with each other to
complete the task of maximizing the network utility.

The experimental results demonstrate that the MAFS traffic scheduling method can
effectively reduce network delay and improve network throughput with good convergence
and stability.

Based on the above results analysis, the MAFS method can formulate optimal traffic
scheduling strategies based on real-time state information. Compared with the ECMP, DDPG,
and MADDPG methods, it can effectively improve network performance and avoid congestion
in the network to ensure effective data transmission and achieve load balancing.

Figure 9. Throughput varies with the episodes.
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Figure 10. Delay varies with episodes.

Figure 11. Reward varies with episodes.

6. Conclusions

Comprehensively considering the influence of the queue depth, throughput, and delay
factors on routing decisions, this paper proposes a traffic scheduling scheme based on
multi-agent deep reinforcement learning. In this paper, the traffic scheduling problem is
modeled. The system architecture of the MAFS intelligent traffic scheduling scheme is
designed, and the network model is designed to optimize the network model by combining
the one-dimensional convolutional neural network and long short-term memory neural
network. In addition, the multi-step experience replay mechanism is used to make traffic
scheduling strategies based on continuous network state information. The performance
testing results of the proposed algorithm on the experimental platform show that compared
with the existing traffic scheduling schemes, the proposed method can effectively alleviate
network congestion and achieve higher throughput with a lower delay and packet loss rate.
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