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Abstract: Wireless communication tower placement arises in many real-world applications. This
paper investigates a new emerging wireless communication tower placement problem, namely, con-
tinuous space wireless communication tower placement. Unlike existing wireless communication tower
placement problems, which are discrete computational problems, this new wireless communication
tower placement problem is a continuous space computational problem. In this paper, we formu-
late the new wireless communication tower placement problem and propose a hybrid simulated
annealing algorithm that can take advantage of the powerful exploration capacity of simulated an-
nealing and the strong exploitation capacity of a local optimization procedure. We also demonstrate
through experiments the effectiveness of this hybridization technique and the good performance and
scalability of the hybrid simulated annulling in this paper.

Keywords: communication tower placement; optimization algorithm; simulated annealing; hybrid
intelligent algorithm

1. Introduction

Wireless communication tower placement arises in many real-world applications.
For example, in the deployment of a 5G communication network, we need to place a set
of base stations in a geographical area such that the 5G users in the area can send and
receive data through those base stations [1]; in the deployment of a network-based real-time
kinematic (RTK) positioning service, we need to place a set of Continuously Operating
Reference Stations (CORSs) to receive GPS measurements from satellites and process the
GPS measurements to generate positioning corrections and broadcast the corrections to
the users of the network RTK positioning service [2]; and in the deployment of a wireless
sensor network, we need to determine where the sensors should be placed in order to
minimize communication delay and energy consumption [3]; etc.

Wireless communication tower placement is an important problem in the design and
deployment of a wireless communication network. The aim is to find an optimal placement
of wireless communication towers, which is usually accomplished in two steps. The first
step is to find a number of candidate sites where a wireless communication tower can be
placed. The second step is to select a subset of sites among those candidate sites according
to the objectives and constraints of the wireless communication tower placement problem.

In the past, a candidate site needed access to power, which was a constraint of the
placement of the wireless communication tower. But now, with the advancement of new
energy technologies, such as solar power and wind power, a wireless communication
tower can be placed anywhere except for some places where it is not suitable to put a
wireless communication tower, such as ponds. As a result, today’s wireless communication
tower placement is different from what it was. In today’s wireless communication tower
placement, we do not need to select a set of wireless tower placement candidate sites.
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Instead, in today’s wireless communication tower placement, we need to determine where
the wireless communication towers should be placed in a geographical area, which is a
continuous space.

There are two types of wireless communication tower placement problems. One
wireless communication tower placement problem is to find a placement of the minimal
number of wireless communication towers covering a given geographical area. Another
is to find a placement of a fixed number of wireless communication towers that cover the
maximal number of users of the wireless communication network. Both of the wireless
communication tower placement options are continuous space optimization problems as
their search spaces for an optimal solution are both in a continuous space. This paper
concentrates on the latter problem of placement of wireless communication towers.

In this paper, the new continuous space communication tower placement problem
is formulated as a continuous function optimization problem, and a hybrid simulated
annealing (SA) is proposed, which capitalizes on the powerful exploration capability of SA
and the effective exploitation capability of a local search algorithm. In this paper, we also
prove the effectiveness of the hybridization technique and evaluate the performance and
scalability of the hybrid SA.

SA is an optimization algorithm that can be applied to a wide range of problems.
Like other metaheuristic algorithms, it is particularly suitable for solving problems where
traditional optimization methods may get stuck in local optima or struggle with com-
plex, multimodal, or nonconvex solution spaces. The main reason why we chose SA is
that the new continuous space communication tower placement problem is a continuous
optimization problem and SA is versatile in handling continuous variable optimization
problems. Furthermore, SA is not a population-based metaheuristic algorithm. Therefore,
it is computationally cheaper than those population-based metaheuristic algorithms.

The remainder of the paper is organized as follows. Section 2 discusses related work.
Section 3 formulates the new continuous space wireless communication power placement
problem. Section 4 presents our hybrid SA algorithm for the continuous space wireless
communication tower placement problem. The effectiveness of hybridization and the
performance and scalability of the hybrid SA are studied through experiments in Section 5.
Finally, we discuss and conclude the research in Section 6.

2. Related Work

There are many communication tower placement problems in the real world, such as
base station placement problems [4–9], relay station placement problems [10,11], sensor place-
ment problems [12,13], access point placement problems [14,15], edge server placement prob-
lems [16,17], cloudlet placement problems [18–20], gateway placement problems [21–23], and
CORS network placement problems [2,24]. These communication tower placement problems
are different from each other in their objectives and/or constraints.

From the computational perspective, wireless communication tower placement prob-
lems can be categorized into discrete wireless communication tower placement problems and
continuous space wireless communication tower placement problems. In discrete wireless
communication tower placement problems, the candidate locations of the communication
towers are given. Thus, discrete communication tower placement problems involve choos-
ing a set of locations among those candidate locations to place communication devices such
that their objectives are optimal, subject to some constraints. From a computational point of
view, discrete wireless communication tower placement problems are constrained combi-
natorial optimization problems. Thus, various combinatorial optimization algorithms have
been applied to solve the problems of locating discrete wireless communication towers.

In continuous space wireless communication tower placement problems, no candidate
locations are given for the placement of wireless communication towers. Thus, continuous
space wireless communication tower placement problems involve finding locations in
a given two-dimensional area to place those wireless communication towers such that
their objectives are optimal, subject to some constraints. To handle the continuous space
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wireless communication tower placement problems, the two-dimensional area is usually
divided into grids, and the placement of the communication towers is limited to the grid
positions. In this way, a continuous wireless communication tower placement problem
can be transformed into a discrete wireless communication tower placement problem
by approximation, and the methods used to solve the discrete wireless communication
tower placement problems are used to solve the continuous communication tower place-
ment problems [9].

However, this approximation method may not find an optimal solution to the wireless
communication tower placement problem, as the approximation method omits a large
amount of continuous search space. Figure 1 shows a scenario where a discrete algorithm
cannot find an optimal solution to a wireless communication tower placement problem.
In this scenario, there are five users and four grid points, A, B, C, and D. However, if
the wireless communication tower is placed at A, B, C, or D, the wireless communication
tower cannot cover all five users. However, as illustrated in the figure, all five users can be
covered by a single wireless communication tower at the location marked ‘×’. Since the
location is not a grid point, this optimal solution is excluded by the approximation method.

Figure 1. A scenario where a discrete algorithm cannot find an optimal solution. In this figure, users
are marked with ‘◦’, A, B, C, and D are grid points where a wireless communication tower can be
placed, the solid line circle represents the coverage of the wireless communication tower placed at
marked ‘×’, and broken line circles are the coverage of the wireless communication tower placed at
the grid points A, B, C and D.

In addition, most existing methods for discrete wireless communication tower place-
ment problems use integer programming, mixed integer programming, or mixed integer
nonlinear programming. Thus, they are suitable for large-scale communication tower
placement problems, as they are not scalable.

In recent years, simulated annealing (SA) has been used to solve various tower/base
station placement problems [25,26]. The research problem addressed in [25] is a discrete
base transmitter station (BTS) problem. Its objectives are to optimize the capacity and
location of existing BTS towers to obtain telecommunication efficiency and quality of
service. The research problem addressed in [26] is a classical k-facility placement problem.
It is also a discrete placement problem, as it is assumed that all the facilities must be placed
on a grid graph. The objective is to maximize the coverage of k facilities.

This paper directly addresses the new continuous space wireless communication tower
placement problem. Given a two-dimensional area, a list of users distributed in the area,
and the number of wireless communication towers to be deployed in this area, the new
continuous space wireless communication tower placement problem is to find a placement
of the wireless communication towers in the area such that the total number of users that
can be covered by the wireless communication network is maximal.
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In this paper, we propose a hybrid simulated SA approach to the new continuous
space wireless communication tower placement problem. To our knowledge, no other
researcher has applied SA to any continuous wireless communication tower placement
problem. In this paper, we model the continuous wireless communication tower placement
problem as a continuous function optimization problem and solve it using a hybrid SA
algorithm that capitalizes on the powerful exploration capability of SA and the efficient
and effective exploitation capability of a local search procedure.

3. Problem Formulation

Given an area where a new wireless communication network will be deployed, a set
of users of the new wireless communication network in the area, and the number of wire
communication towers and the coverage of the communication towers, the new continuous
space communication tower placement problem is to find a placement of those wireless
communication towers such that the total number of users that can be covered by the
wireless communication network is maximal.

This new continuous space wireless communication placement problem is formulated
as follows:

Given

1. A two-dimensional continuous area, A, and a set of n users in A, U = {u1, u2, · · · , un},
where ui =< xu

i , yu
i > are the coordinates of user ui and 1 ≤ i ≤ n;

2. A set of m communication towers, C = {c1, c2, · · · , cm};
3. The coverage of the communication towers, dmax > 0;

find
a placement of the m wireless communication towers p = {< xc

1, yc
1 >,< xc

2, yc
2 >, · · · ,

< xc
i , yc

i >, · · · ,< xc
m, yc

m >}, where < xc
i , yc

i > is the coordinates of the tower ci and 1 ≤ i ≤ m,

such that
|Cover(p)| is maximum, where Cover(p) is a set of users that can be covered by p. A user

ui is said to be covered by p if there exists a communication tower rj such that the Euler distance

between ui and rj is less than or equals to dmax, that is,
√
(xu

i − xr
j)

2 + (yu
i − yr

j)
2 ≤ dmax, where

⟨xu
j , yu

j ⟩ are the coordinates of ui, ⟨xr
j , yr

j⟩ are the coordinates of rj in p, and dmax is the coverage
of the communication tower.

4. Hybrid Simulated Annealing Algorithm

SA, originally proposed by Kirkpatrick, Gelatt, and Vecchi [27] in 1983 and then by
Černy in 1985 [28], has been applied to many optimization problems of different kinds.
SA is a global optimization technique. It starts with an initial solution and performs
global optimization by iteratively generating, evaluating, and selecting a new solution from
the current solution with a controlled annealing schedule. At each step, SA considers a
neighbor of the current solution and probabilistically decides whether the current solution
should be replaced with the new solution using a probability-based acceptance strategy.
Typically, this step is repeated until the search reaches a solution that is good enough for
the application or until a given computation budget has been exhausted.

When applying conventional SA to the placement problem initially, we observed
that its exploration capacity is powerful, but its local exploitation capacity is poor (this is
discussed in the next section of this paper). Thus, we developed a hybrid SA that capitalizes
on the powerful global exploration capability of the conventional SA and the effective
and efficient exploitation capability of a local optimization algorithm. Algorithm 1 is a
high-level description of the hybrid SA algorithm.
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Algorithm 1 Hybrid SA algorithm

randomly generate an initial solution P
t = 0
T0 = 1
while (T(t) > Tlowest) and
(Cost(P) ̸= 0) do

randomly generate a neighbor of the current solution P, P′

if Cost(P′) < Cost(P) then
P is replaced by P′

else
P is replaced by P′ probabilistically

end if
if P was updated then

maximum coverage-based local optimization(P)
end if
t = t + 1

end while

In the following, we discuss the details of the hybrid SA, including cost function,
cooling schedule, neighbor generation, acceptance of a new solution, termination condition
of the hybrid SA, and the local optimization algorithm.

4.1. Cost Function

The cost of a solution, P, is defined by Equation (1).

Cost(P) =
|U| − |C(p)|

|U| (1)

where |U| is the total number of users and |C(P)| represents the total number of users that
are covered by P.

When Cost(P) equals 0, P is an optimal solution to the wireless communication tower
placement problem. It should be noted that when P is an optimal solution to a wireless
communication tower placement problem, however, Cost(P) may not be equal to 0. In
other words, Cost(P) = 0 is a sufficient condition, but it is not a necessary condition for P
to be an optimal solution.

4.2. Cooling Schedule

Assume that T(0) is the initial temperature. The temperature at time t is given by
Equation (2):

T(t) =
1

1 + t
× T(0) (2)

4.3. Neighbor Generation

A neighbor of P is a new placement of the wireless communication towers that
can be obtained by randomly changing the location of one randomly selected wireless
communication tower in P.

4.4. Acceptance of a New Solution

If a new solution (neighbor) P′ has a lower cost than the current solution P, then the
current solution P is replaced by the new solution P′; otherwise, P is replaced by P′ with
the probability determined by the acceptance function below:

e(Cost(P′)−Cost(P))/T(t) (3)
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where Cost(P′) and Cost(P) are the cost of the new solution P′ and the cost of the current
solution P, respectively, t is the current time, and T(t) is the current temperature.

4.5. Termination Condition

The hybrid SA ends when T(t) ≤ Tlowest or Cost(P) = 0, where T(t) is the temperature
at current time t, Tlowest is a preset temperature and Cost(P) is the cost of the current wireless
communication tower placement solution P.

4.6. Local Optimization
4.6.1. Motivation

Initially, we developed a conventional SA algorithm for the wireless communication
tower placement problem. However, when conducting experiments on the conventional
SA, we observed that its exploration ability is great, but its exploitation ability is very poor,
as in the process of annealing, the conventional SA could find an area where a number of
users were clustered but could not find an optimal location for a wireless communication
tower placement to cover maximally those users in the area. Figure 2 illustrates a typical
solution found using the conventional SA algorithm.

Figure 2. A wireless communication tower location found by the conventional SA. In this figure, a
user is marked by a ‘◦’, a wireless communication tower is represented by a ‘×’, and the coverage of
a wireless communication tower is represented by a large broken line circle.

It can be seen from the figure that the conventional SA explored an area where five
users are clustered. However, the solution found by the conventional SA algorithm covers
only three of the five users. If we move the location of the wireless communication tower
to the location illustrated in Figure 3, the wireless communication tower will cover all
five users. This indicates that the exploitation capacity of the SA needs to be improved.
Thus, it is desirable to develop a local optimization algorithm that can find an optimal or
a near-optimal solution when the conventional SA algorithm explores a new search area.
The local optimization algorithm can be embedded into the conventional SA to enhance
the conventional SA’s local exploitation ability.

Figure 3. The ideal location of the wireless communication tower.
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4.6.2. Design of the Local Optimization Algorithm

The basic ideas behind it are as follows: first, it searches for uncovered users that are
close to the location of a wireless communication tower currently found by the SA; then,
it relocates the wireless communication tower so that the wireless communication tower
can cover more uncovered users, if possible. In order to find uncovered users that are close
to a wireless communication tower, the local optimization algorithm finds all uncovered
users in the radius of λ, which is a control parameter of the search. Experimental results
have shown that when λ = 2dmax, the local optimization algorithm gives the best results.
Figure 4 illustrates this idea.

2r

Figure 4. Search for uncovered users that are close to a wireless communication tower.

In order to find a new location to build a wireless communication tower to cover more
users, we initially tried moving the wireless communication tower to the geographically
central location of its covered users. However, this method did not work very well because
sometimes, after moving the wireless communication tower to the geographical center, the
number of covered users becomes smaller. Figure 5 shows this scenario. It can be seen that,
in the new location, the wireless communication tower can cover only one user.

l1

dmax

(a)

l1l2

dmax

(b)

Figure 5. Geographical center method. In this figure, (a) shows the initial location of the wireless
communication tower, l1, in which the wireless communication tower can cover three users; (b) illus-
trates the situation where the wireless communication tower has been moved to the geographical
center of the three users, l2.

From a computational perspective, this problem can be formulated as a so-called
constrained maximum covering problem. Given a circle of radius dmax and a set of points in
the Euclidean plane, S, which are enclosed in the circle, and another set of points in the
Euclidean plane, S′, the constrained maximum covering problem is to find a new enclosing
circle of radius dmax such that it encloses the maximum number of points in S′ in addition
to those points in S. We designed an algorithm to solve the constrained maximum coverage
problem, as described in Algorithm 2.
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Algorithm 2 MaxCoverage(S, S′, dmax)

1: while S′ ̸= ϕ do
2: get a point p from S′

3: S′ = S′ − {p}
4: c = MiniEnclCircle(S ∪ {p})
5: compute the radius of the minimal enclosing circle c, r
6: if r ≤ dmax then
7: S = S ∪ {p}
8: end if
9: end while

10: return c

The basic idea behind the constrained maximum enclosing circle algorithm is simple.
It iterates |S′| times, and in each iteration, it randomly picks up a point p from S′ and then
uses the randomized algorithm for the minimum enclosing circle problem proposed by
Emo Welzl [29] to find the minimum enclosing circle that encloses all points in S and the
randomly selected point from S′, p. If the radius of the minimum enclosed circle is less
than or equal to dmax, we move the randomly selected point p from S′ to S; if the radius of
the minimum enclosing circle is greater than dmax, then we remove the randomly selected
point p from S′. After S′ iterations, this algorithm finds a circle of radius dmax that encloses
the maximum number of points in S′ in addition to those points in S.

Theorem 1. The time efficiency of Algorithm 2 is O((|S|+ |S′|)|S′|).

Proof. The while statement iterates |S′| times, and in each of the iterations, one user is
removed from S′.

Assume that S′ is implemented in a list. Thus, in the ith iteration, it takes a constant
time c1 to obtain the last point p from S′ and remove it from S′ (steps 2 and 3); a time
c2(|S|+ i) + c3 to find the minimum enclosing circle, as the MiniEnclCircle procedure has a
linear time efficiency (step 4); a constant time c4 to compute the radius of the minimum
enclosing circle c, r (step 5); a time that is no more than c5 to complete the if statement
(steps 6–8). As a result, the total computation time of the ith iteration of the while statement
is no more than c1 + c2|S|+ c3 + c4 + c5 = c2|S′|+ (c1 + c3 + c4 + c5), where c1, c2, c3, c4,
and c5 are constants.

Thus, the total computation time of the algorithm is

t(|S|, |S′|) ≤
|S′ |

∑
i=1

(c2(|S|+ i) + c6)

=
|S′ |

∑
i=1

c2|S|+
|S′ |

∑
i=1

i +
|S′ |

∑
i=1

c6

= c2|S||S′|+ c2|S′|(|S′|+ 1)/2 + c6|S′|

(4)

where c6 = c1 + c3 + c4 + c5.
Thus, the time efficiency of the algorithm is O((|S| × |S′|+ |S′|2).

Using this constrained maximum cover circle algorithm, we designed a local optimiza-
tion algorithm. The input of this local optimization algorithm is a placement of a wireless
communication tower P = {⟨xr

1, yr
1⟩, ⟨xr

2, yr
2⟩, · · · , ⟨xr

m, yr
m⟩}, where ⟨xr

i , yr
i ⟩ is the location

of the ith wireless communication tower in this wireless communication tower placement,
1 ≤ i ≤ m, and m is the total number of wireless communication towers. The result of
this local optimization is an optimized placement of the wireless communication tower.
Algorithm 3 is the high-level description of the local optimization algorithm.
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Algorithm 3 Maximum coverage-based local optimization (P)

1: for r =< xr, yr >∈ P do
2: S = ∅
3: S′ = ∅
4: for u =< xu, yu >∈ U do
5: d =

√
(xu − xr)2 + (yu − yr)2

6: if d ≤ dmax then
7: S = S ∪ {u}
8: else
9: if d ≤ 2 × dmax then

10: S′ = S′ ∪ {u}
11: end if
12: end if
13: r = ConMaxCoverCircle(S, S′, dmax)
14: end for
15: end for

The local optimization algorithm optimizes the location of wireless communication
towers one by one using the constrained maximum cover circle algorithm. For each of the
wireless communication tower locations r, the algorithm calculates all the users covered
by r, stores them in S, and identifies all users that are not covered by r, but the distance
from the location of r to the users is less than or equal to 2dmax, putting these users in S′.
Note that S′ includes all potential users that can be covered by r by moving r to a new
location without losing any user in S. Then, the algorithm uses the constrained maximum
cover circle algorithm to find a new location for r where it can cover as many users in S′ as
possible in addition to all users in S.

Theorem 2. The time efficiency of Algorithm 3 is O(|R||U|2), where |U| is the number of users
and |R| is the set of wireless communication towers.

Proof. For each wireless communication tower r, it takes a time c7|U| to computer its S and
S′ (steps 2–14), and it takes a time c8(|S||S′|+ |S′|2) to find a new location for r (step 15).
Since |S| ≤ |U| and |S′| ≤ |U|, the total computation time of each iteration is less than or
equal to c7|U|+ 2c8|U|2 ∈ O|U|2. Since there are |R| wireless communication towers, the
while loop iterates |R| times. Thus, the time efficiency of the local optimization algorithm
is O(|R||U|2).

Theorem 3. The time efficiency of Algorithm 1 is O(l|R||U|2), where |U| is the number of
users, |R| is the set of wireless communication towers, and l is the number of iterations that the
algorithm executes.

Proof. The basic operation in this algorithm is the local optimization procedure in Step 13.
In the worst case, the procedure is invoked l times, where l is the number of iterations of
the while loop. Since the time efficiency of the local optimization procedure is O(|R||U|2),
the time efficiency of Algorithm 1 is l O(|R||U|2) = O(l|R||U|2) in the worst case.

5. Experimental Analysis

This section is devoted to the experimental analysis of the hybrid SA. In this section,
we analyze the exploration and exploitation capacities of the hybrid SA, the effectiveness
of the hybridization in the hybrid SA algorithm, and the performance and scalability of the
hybrid SA.

There are two parameters in the HSA. One is the initial temperature T0; the other is the
lowest temperature Tlowest, which is used in the termination condition. In this analysis of
experiments, T0 = 1 and Tlowest = 0.00005. The values of the two parameters were obtained
by experiments.



Future Internet 2024, 16, 117 10 of 16

5.1. Exploration and Exploitation Capacities

The exploration capacity of a search algorithm is the capacity to discover new promis-
ing search regions, and the exploitation capacity of a search algorithm is the capacity to
exploit the discovered promising regions. If the exploration capacity of a search algorithm
is not powerful, then some promising search regions may be missed by the search algo-
rithm, and therefore, it cannot find the region where the optimal solution is situated; if
the exploitation capacity of a search algorithm is limited, then the search algorithm cannot
find the optimal solution even if the search region where the optimal solution is situated is
discovered by the search algorithm.

To evaluate the exploration and exploitation capacities of the hybrid SA, we generate
a number of test problems whose promising search regions and optimal solutions are
known (the generation of such test problems is discussed later in this section) and use the
hybrid SA to solve the test problems. Thus, we know if all the promising search regions
are explored and if the solutions are the optimal ones for those test problems. If the hybrid
SA does not discover any of the promising search regions, then the exploration capacity of
the hybrid SA is questionable; if the hybrid SA explores all the promising search regions
of a problem but cannot find the optimal solution or a near-optimal solution, then the
exploitation capacity of the hybrid SA is limited.

To generate a test problem with known promising search regions and the optimal
solution, firstly, we randomly generate m wireless communication tower locations in a geo-
graphical area, making sure that the distance between any pair of wireless communication
tower locations is greater than 2 × dmax. In this way, we can guarantee that there will be
no user that can be covered by more than one wireless communication tower. Secondly,
for each of the wireless communication towers, we randomly generate k user locations sur-
rounding it so that all users can be covered by the wireless communication tower. Thirdly,
we remove those wireless communication tower locations and obtain a test problem with
m × k users and m wireless communication towers. The test problem is to find the locations
of m wireless communication towers in the geographical area.

Figure 6 illustrates this test problem generation process where m = 3 and k = 5. In the
first step, we create three wireless communication tower locations, as shown in Figure 6a.
Then, in the second step, we randomly generate five users surrounding each of the three
wireless communication towers, as illustrated in Figure 6b. Finally, in the third step, we
remove the three wireless communication towers and obtain a test problem, as shown in
Figure 6c.

The number of wireless communication towers in a test problem gives the number
of promising search areas. In a test problem generated in this way, the users are clustered
around the randomly generated wireless communication tower locations. Thus, if an algo-
rithm can reach at least one user from each of the user clusters, the algorithm’s exploration
capacity is excellent, as it explores all the promising search areas of the problem. Let us say
that the number of wireless communication towers is m and the number of users is k. Then,
if the algorithm can find m × (k − 1) + 1 or more users, then it explores all the promising
search areas of the test problem. To evaluate the exploitation capacity of an algorithm, we
look at the total number of users that are covered in a solution generated by the algorithm
in a promising area.

It can be seen from the test problem shown in Figure 6c that the users are clustered
in three regions, which are three promising regions to which the hybrid SA should reach;
otherwise, the hybrid SA will not find the optimal or near-optimal solution for the test
problem. If the hybrid SA finds a solution that does not cover any user in any of the three
regions, then we know that the hybrid SA did not explore all the promising regions and,
therefore, its exploration capacity is of concern. If the hybrid SA finds a solution that covers
at least one user in each of the regions but does not cover all or the majority of the users
in the regions, then we know the hybrid SA explores all the promising regions but cannot
exploit well in the regions. If the hybrid SA can find the optimal or a near-optimal solution
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for the test problem, then it indicates that both the exploration capacity and the exploitation
capacity of the hybrid SA are fine.

(a)

(b)

(c)

Figure 6. The process of generating a wireless communication tower placement problem with known
promising regions and an optimal solution. In the figure, ‘×’ represents the location of a wireless
communication tower, and ‘◦’ stands for the location of a user, and a large broken line circle shows
the coverage of a wireless communication tower.

Using the aforementioned test problem generation ideas, we developed a program
and used it to randomly generate two classes of test problems. In one class of test problems,
the number of wireless communication towers was fixed at 10, but the number of users in
the test problems ranged from 100 to 1000 with increments of 100. In the other class of test
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problems, the number of users was fixed to 500, but the number of wireless communication
towers varied from 10 to 100 with increments of 10. Parameter dmax was set to 70 in all
test problems. The reasons for generating the two classes is that the size of a test problem
depends on both the number of wireless communication towers and the number of users
and we are interested in how the computation time of the hybrid SA increases when the
number of wireless communication towers increases and how the computation increases
when the number of users grows in addition to the exploration and exploitation capacities
of the hybrid SA.

For each of the parameter configurations, we randomly generated 30 different instances
in order to make sure that the experimental results were statistically significant, and for each
of the instances, we used the hybrid SA algorithm to solve it. The ratio of the number of
users covered by the wireless communication towers in the solution generated by the hybrid
SA and the total number of users, namely, coverage rate, was recorded. The coverage rate
indicates both the exploration capacity and the exploitation capacity of a search algorithm.

Table 1 shows the statistics of the experimental results for the two classes of test
problems. The top 10 rows in the table show the statistics of the experimental results
for the first class of test problems, and the bottom 10 rows show the statistics for the
experimental results of the second class of test problems. Each row shows the statistics of
30 runs for 30 different test problems with the same configuration. The total number of test
problems was 600.

Table 1. Statistics of the experimental results on the exploration and the exploitation capacities of the
hybrid SA.

Index Towers (#) Users (#)
Ave

Coverage
Rate

Best
Coverage

Rate

Worst
Coverage

Rate

Standard
Deviation

1 10 100 0.997 1.00 0.97 0.0084
2 10 200 0.997 1.00 0.98 0.0061
3 10 300 0.994 1.00 0.97 0.0086
4 10 400 0.996 1.00 0.97 0.0072
5 10 500 0.996 1.00 0.98 0.0077
6 10 600 0.995 1.00 0.97 0.0082
7 10 700 0.998 1.00 0.98 0.0041
8 10 800 0.995 1.00 0.97 0.0094
9 10 900 0.993 1.00 0.96 0.0115

10 10 1000 0.995 1.00 0.98 0.0078
11 10 500 0.996 1.00 0.98 0.0077
12 20 500 0.996 1.00 0.98 0.0057
13 30 500 0.998 1.00 0.98 0.0048
14 40 500 1.000 1.00 1.00 0.0000
15 50 500 0.997 1.00 0.98 0.0064
16 60 500 1.000 1.00 1.00 0.0000
17 70 500 1.000 1.00 1.00 0.0000
18 80 500 1.000 1.00 1.00 0.0000
19 90 500 1.000 1.00 1.00 0.0000
20 100 500 0.997 1.00 0.99 0.0045

It can be seen from Table 1 that, among the 600 tests, the hybrid SA found an optimal
solution for the test problem and that, in the worst scenario, the hybrid SA still found a
solution with a coverage ratio of 0.96. Thus, it can be concluded that both the exploration
capacity and the exploitation capacity of the hybrid SA are excellent, as the hybrid SA
explored all the promising search areas for each of the test problems and found almost all
the users in each of the promising regions.
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5.2. Effectiveness of the Hybridization

The hybrid SA is the hybridization of conventional SA and a local optimization
algorithm. To examine the effectiveness of the hybridization, we simply compare the
performance of the conventional SA with the local optimization algorithm, i.e., the hybrid
SA, to that of the conventional SA without the local optimization algorithm using those
test problems that were used for evaluating the exploration and exploitation capacities of
the hybrid SA previously.

For each of the test problems, we used the two SA algorithms to solve them. The
quality of the solutions (coverage rate) was recorded. Considering the stochastic nature
of the two SA algorithms, we performed each experiment 30 times. Table 2 shows the
statistics of the experimental results.

Table 2. Statistics of the experimental results on the conventional SA and the hybrid SA for random
test problems.

Index Towers (#) Users (#)
Conventional SA Hybrid SA

Ave Best Worst StdDev Ave Best Worst StdDev

1 10 100 0.790 0.87 0.72 0.0335 0.997 1.00 0.97 0.0084
2 10 200 0.783 0.86 0.69 0.0347 0.997 1.00 0.98 0.0061
3 10 300 0.797 0.87 0.71 0.0379 0.994 1.00 0.97 0.0086
4 10 400 0.761 0.83 0.70 0.0349 0.996 1.00 0.97 0.0072
5 10 500 0.789 0.86 0.72 0.0036 0.996 1.00 0.98 0.0077
6 10 600 0.779 0.84 0.70 0.0082 0.995 1.00 0.97 0.0082
7 10 700 0.769 0.84 0.72 0.0098 0.998 1.00 0.98 0.0041
8 10 800 0.770 0.83 0.69 0.0338 0.995 1.00 0.97 0.0094
9 10 900 0.777 0.86 0.73 0.0310 0.993 1.00 0.96 0.0115

10 10 1000 0.762 0.86 0.71 0.0291 0.995 1.00 0.98 0.0078
11 10 500 0.789 0.86 0.72 0.0356 0.996 1.00 0.98 0.0077
12 20 500 0.750 0.80 0.68 0.0313 0.996 1.00 0.98 0.0057
13 30 500 0.763 0.80 0.70 0.0226 0.998 1.00 0.98 0.0048
14 40 500 0.741 0.77 0.70 0.0201 1.000 1.00 1.00 0.0000
15 50 500 0.760 0.79 0.73 0.0159 0.997 1.00 0.98 0.0064
16 60 500 0.755 0.78 0.71 0.0185 1.000 1.00 1.00 0.0000
17 70 500 0.760 0.79 0.73 0.0158 1.000 1.00 1.00 0.0000
18 80 500 0.762 0.80 0.74 0.0172 1.000 1.00 1.00 0.0000
19 90 500 0.777 0.82 0.74 0.0171 1.000 1.00 1.00 0.0000
20 100 500 0.806 0.83 0.77 0.0135 0.997 1.00 0.99 0.0045

It can be seen from the statistics of the experimental results that the hybrid SA algo-
rithm (the SA with the local optimization algorithm) found an optimal solution for all the
test problems in the 30 runs. In fact, it found an optimal solution in most of the 30 runs for
every test problem. On the contrary, the conventional SA algorithm (the SA without the
local optimization algorithm) never found an optimal solution to any test problem in any
run. The average coverage rate of the wireless communication tower placement solutions
found by the hybrid SA algorithm for the test problems is between 0.993 and 1.000, whereas
the average coverage rate of the wireless communication tower placement solutions found
by the conventional SA for the same test problems is only between 0.741 and 0.806. In other
words, the hybrid SA algorithm could always find an optimal or near-optimal solution,
but the conventional SA could not. Since the only difference between hybrid SA and
conventional SA is whether they use the hybridization technique or not, the experimental
results show that the hybridization technique is effective.

5.3. Scalability

To test the scalability of the hybrid SA, we check if the hybrid SA can find an optimal
or near-optimal solution in a reasonable time when the problem size increases. In previous
experiments, we also recorded the computation time of the hybrid SA algorithm for each of
the test problems. Figure 7 shows how the computation time of the hybrid SA algorithm
increases linearly as the number of potential users increases. Figure 8 shows how the
computation time of the hybrid SA algorithm also increases linearly as the number of
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wireless communication towers increases, although there are some skews in the curve.
All experiments were conducted on a desktop computer with an Intel Core 2 Duo CPU
of 3.00 GHz and 4.00 GB RAM. It can be seen from the figure that the time efficiency of
the hybrid SA is bounded by O(n), where n is the total number of users. Thus, it can be
concluded that the hybrid SA is scalable.
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Figure 7. The computation time with respect to the number of users.
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Figure 8. The computation time with respect to the number of wireless communication towers.

6. Conclusions and Discussion

In this paper, we identify a new emerging communication tower placement problem
and formulate the continuous communication tower placement problem as a continuous
function optimization problem. We also propose a hybrid SA algorithm for the new
communication tower placement problem. The hybrid SA algorithm employs the powerful
exploration capability of SA to explore the continuous search space and enhances its
local exploitation capability by incorporating an effective local optimization procedure.
In addition, in this paper, we demonstrate through experiments the effectiveness of the
hybridization, the performance, and the scalability of the hybrid SA.

In this paper, we focus on the core of the new communication tower placement. The
hybrid SA algorithm can be extended to handle pre-deployed communication towers by
simply removing users that have already been covered by those pre-deployed communica-
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tion towers before applying the hybrid SA algorithm to solve the wireless communication
tower placement problem. It can also be extended to consider the situation in which there
exist sites that are not suitable for placing a communication tower, such as ponds, by not
accepting any new neighbor (new solution) in which there exists a communication tower
that is located at a place where a communication tower cannot be deployed.

Finally, the local optimization algorithm is not specific to this hybrid SA. It can be used
in other continuous space communication tower placement algorithms to further improve
the quality of their solutions.
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