
Citation: Piazza, C.; Rossi, S.;

Smuseva, D. Efficient Algorithm for

Proportional Lumpability and Its

Application to Selfish Mining in

Public Blockchains. Algorithms 2024,

17, 159. https://doi.org/10.3390/

a17040159

Academic Editors: Alicia Cordero

and Frank Werner

Received: 24 February 2024

Revised: 7 April 2024

Accepted: 12 April 2024

Published: 15 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Efficient Algorithm for Proportional Lumpability and Its
Application to Selfish Mining in Public Blockchains
Carla Piazza 1,* , Sabina Rossi 2 and Daria Smuseva 1

1 Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università degli Studi di Udine,
Via delle Scienze, 206, 33100 Udine, Italy; daria.smuseva@unive.it

2 Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca’ Foscari Venezia, Via Torino,
155, 30123 Venezia, Italy; sabina.rossi@unive.it

* Correspondence: carla.piazza@uniud.it

Abstract: This paper explores the concept of proportional lumpability as an extension of the original
definition of lumpability, addressing the challenges posed by the state space explosion problem
in computing performance indices for large stochastic models. Lumpability traditionally relies on
state aggregation techniques and is applicable to Markov chains demonstrating structural regularity.
Proportional lumpability extends this idea, proposing that the transition rates of a Markov chain
can be modified by certain factors, resulting in a lumpable new Markov chain. This concept facili-
tates the derivation of precise performance indices for the original process. This paper establishes
the well-defined nature of the problem of computing the coarsest proportional lumpability that
refines a given initial partition, ensuring a unique solution exists. Additionally, a polynomial time
algorithm is introduced to solve this problem, offering valuable insights into both the concept of
proportional lumpability and the broader realm of partition refinement techniques. The effectiveness
of proportional lumpability is demonstrated through a case study that consists of designing a model
to investigate selfish mining behaviors on public blockchains. This research contributes to a better un-
derstanding of efficient approaches for handling large stochastic models and highlights the practical
applicability of proportional lumpability in deriving exact performance indices.

Keywords: Markov chains; lumpability; algorithms; blockchain

1. Introduction

Markov chains serve as the fundamental semantic model for a multitude of modeling
formalisms employed in the reliability analysis and performance evaluation of complex
systems, including Stochastic Petri nets [1,2], Stochastic Automata Networks [3,4], queuing
networks [5,6], and Markovian process algebras [7,8].

Although the utilization of high-level specification formalisms greatly simplifies the
creation of compositional and hierarchical quantitative models, even seemingly straight-
forward models can pose challenges due to a large number of states, making analysis a
daunting task. To tackle this problem, exploring models with extensive state spaces without
resorting to approximation or simulation techniques involves reducing the state space of
the underlying Markov chain by aggregating states that exhibit equivalent behaviors [9,10].
This state-based reduction technique is known as lumping. Various notions of lumping,
including strong and weak lumping [11], exact lumping [9,12], and strict lumping [13], have
been introduced in the literature. The lumpability method enables efficient computation of
exact performance indices [14] when the model is lumpable.

It is widely recognized that not all Markov chains are inherently lumpable, partic-
ularly those originating from real-world applications. To overcome this limitation, the
notion of quasi-lumpability was introduced in [15], suggesting that transforming a quasi-
lumpable Markov chain into a lumpable one allows for the application of steady state
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probability bounding methods [15–19] to obtain bounds on the performance indices of the
original model.

In [20], the concept of proportional lumpability was introduced, expanding upon the
original notion of lumpability. Unlike the broader definition of quasi-lumpability, propor-
tional lumpability allows for the derivation of precise performance indices for the original
process. Building on this foundation, our research in [21] delves deeper into the topic
by juxtaposing proportional lumpability with other lumping definitions, such as weak
lumpability [11,22], and the concept of exact lumpability for ordinary differential equations
(ODEs) [23,24].

The definition of proportional lumpability entails identifying a function that assigns a
positive coefficient to each state of the system. However, given the infinite set of potential
functions, devising an efficient algorithmic technique to check or compute proportional
lumpability is not immediately evident.

This paper explores the properties of proportional lumpability and elaborates on
three alternative characterizations. The first, proven in [21], enables efficient verification of
whether a partition of the state space is induced by an equivalence relation representing
proportional lumpability. The second, proven in [25], is used to design an algorithm to cal-
culate the coarsest proportional lumpability of a given Markov chain in time O(|S|4) with
|S| being the cardinality of the state space of the analyzed model. The third characterization
is a novel contribution, and it allows us to improve on the above complexity by obtaining
an algorithm for proportional lumpability running in O(|S|2 log |S|). Similar to partition
refinement algorithms used for the traditional concept of strong (or ordinary) lumpability,
our approach demonstrates that computing the coarsest proportional lumpability refining
a given initial partition is well defined, always yielding a unique solution. Furthermore,
we demonstrate that the maximum proportional lumpability over an initial Markov chain,
within a specified equivalence relation, can be interpreted as ordinary lumpability over a
perturbation of the original chain. Consequently, we can leverage efficient algorithms for
calculating the maximum lumpability over a Markov chain.

The effectiveness of proportional lumpability is illustrated through the presentation
of a comprehensive case study. This study involves the development and analysis of a
proportionally lumpable model specifically tailored for examining selfish mining behaviors
within a public blockchain context. Our aim is to provide valuable insights into the concept
of proportional lumpability and the broader applications of partition refinement techniques.

This work extends our prior investigations outlined in [25,26]. Expanding upon our
earlier research on proportional lumpability [25], we introduce a pivotal, novel, third char-
acterization in this paper. This result allows us to enhance the efficiency of our previously
proposed algorithm, resulting in a groundbreaking approach to proportional lumpability.
The algorithm now boasts a remarkable time complexity of O(|S|2 log |S|), where |S|
denotes the cardinality of the state space of the analyzed model, offering the potential to
substantially enhance the scalability and applicability of proportional lumpability analyses.
Furthermore, we expand on the findings in [25] by offering a thorough case study. This
study is inspired by our previous work [26], where a strongly lumpable model for a con-
crete blockchain problem was presented. The model is carefully designed to investigate
selfish mining behaviors within the framework of a public blockchain. In this paper, we
present an extended version of the model studied in [26], designed to capture a more
realistic configuration of the blockchain state under examination. Our analysis reveals that
despite this broadening, the generalized model maintains its computational manageability.
This resilience primarily stems from its adherence to a more general definition of lumpa-
bility, specifically, proportionally lumpability. Consequently, we can apply the findings
presented in this paper to conduct precise analyses of the new model. This comprehensive
approach aims to shed light on the dynamics of selfish mining in the real-world context of
blockchain technology.

The structure of this paper is as follows: In Section 2, we delve into the theoretical
underpinnings of continuous-time Markov chains and revisit the concept of strong (or ordi-
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nary) lumpability. Section 3 introduces the notion of proportional lumpability, providing a
novel characterization of it along with an efficient algorithm for its verification. We discuss
both the accuracy and complexity of the algorithm. In Section 4, we present a case study
centered around a proportionally lumpable model for selfish mining in public blockchain.
Finally, Section 5 offers concluding remarks and future directions to wrap up the paper.

2. Background

In this section, we provide a brief overview of the basics of continuous-time Markov
chains [11,27,28] and introduce the notion of lumpability [22,29,30].

2.1. Stochastic Models

In this paper, we consider Markov chains or Markov processes that are stochastic
models describing sequences of possible events in which the probability of each event
depends only on the state attained in the previous event. More specifically, we concentrate
on Continuous-Time Markov Chains.

A Continuous-Time Markov Chain (CTMC) with finite or countable state space S is a
family {X(t)| t ∈ R+} of S-valued random variables such that

Prob(X(tn+1) = sn+1 | X(t1) = s1, X(t2) = s2, . . . , X(tn) = sn) =

Prob(X(tn+1) = sn+1 | X(tn) = sn).

This condition is the natural continuous-time analogue of the Markov property. It requires
that the future behavior of the process is conditionally independent of its past evolution
given the present states.

We assume that the Markov properties under consideration satisfy the following
properties: a Markov process X(t) is

• stationary if its statistical properties do not change by time, i.e., the family of ran-
dom variables (X(t1), X(t2), . . . , X(tn)) has the same distribution as the collection
(X(t1 + τ), X(t2 + τ), . . . , X(tn + τ)) for all t1, t2, . . . , tn, τ ∈ R+.

• time-homogeneous if the conditional probability Prob(X(t + τ) = s | X(t) = s′) remains
constant regardless of t, i.e., the behavior of the system does not depend on when it is
observed. In particular, the transitions between states are independent of the time at
which the transitions occur.

• irreducible if all states in its state space S can be reached from all other states by
following the transitions of the process.

Within a Markov process, a state is labeled persistent or recurrent if the probability of
the process eventually returning to that state is one. Otherwise, the state is called transient.
In terms of a system, the recurrent states correspond to the behavior which is repeatedly
exhibited by the system, whereas transient states correspond to a behavior which will be
no longer exhibited after a certain time. A recurrent state is termed positive-recurrent or
ergodic if the expected number of steps until the process returns to that state is less than
infinity. A Markov process is ergodic if all its states are positive-recurrent. In the context
of finite Markov chains, irreducibility alone ensures ergodicity. In this paper, we consider
Continuous-Time Markov Chains, which are time-homogeneous, irreducible, and ergodic.

An ergodic Continuous-Time Markov Chain (CTMC) possesses an equilibrium (or
steady-state) distribution, defined as the unique collection of positive real numbers π(s)
where s ∈ S , satisfying the equation:

lim
t→∞

Prob(X(t) = s | X(0) = s′) = π(s) .

It is worth noting that the above equation for π(s) is independent of s′. We denote by
q(s, s′) the transition rate from state s to state s′, where s ̸= s′. The sum of all transition
rates out of state s to any other state in the chain is denoted as q(s). A state s for which
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q(s) = ∞ is termed an instantaneous state, as it is instantaneously left upon entry. While
theoretically possible, we assume throughout that 0 < q(s) < ∞ for each state s.

The infinitesimal generator matrix Q of a CTMC X(t) with state space S is defined as
the |S|× |S| matrix. Its off-diagonal elements are the q(s, s′)’s, and its diagonal elements are
the negative sum of the off-diagonal elements of each row, i.e., q(s, s) = −∑s′∈S , s′ ̸=s q(s, s′).
For simplicity, we use q(s, s′) to denote the components of matrix Q. For s ∈ S and S ⊆ S ,
we write q(s, S) to denote ∑s′∈S q(s, s′).

Any non-trivial vector of positive real numbers µ satisfying the system of global
balance equations (GBEs) µQ = 0 is referred to as an invariant measure of the CTMC.

Given an irreducible CTMC X(t), if µ1 and µ2 are two invariant measures of X(t),
then there exists a constant k > 0 such that µ1 = kµ2. If the CTMC is ergodic, then there
exists a unique invariant measure π whose components sum to unity, i.e., ∑s∈S π(s) = 1.
In this case, π represents the equilibrium or steady-state distribution of the CTMC.

2.2. Strong (or Ordinary) Lumpability

In the field of performance and reliability analysis, the notion of lumpability introduces
a method for aggregating models. This method allows for the development of a reduced
Markov chain compared to the original one while maintaining the ability to determine
precise results for the original process.

The concept of lumpability is defined by equivalence relations that span the state space
of the Markov chain. These relations create a division within the state space of the Markov
chain, enabling the grouping of equivalent states into larger macro-states, which ultimately
decreases the total state space. When the division fulfills the strong (or ordinary) lumpability
condition [11,31], the equilibrium solution of the condensed process can provide a precise
solution for the initial one.

The definition of strong lumpability was originally presented in [11] and has been
extensively investigated in subsequent research [13,24,32–34].

Definition 1 (Strong lumpability). Consider a CTMC X(t) with a state space S , and let ∼
denote an equivalence relation over S . We define X(t) to be strongly lumpable with respect to ∼
(or, alternatively, ∼ is termed a strong lumpability for X(t)) if ∼ induces a partition on the state
space of X(t) such that for any equivalence classes Si, Sj ∈ S/ ∼ where Si ̸= Sj, and for any states
s, s′ ∈ Si, the transition rates from s to Sj and from s′ to Sj are equal, i.e.,

q(s, Sj) = q(s′, Sj) .

Therefore, an equivalence relation over the state space of a Markov process has a
strong lumpability if it divides the space into equivalence classes, ensuring that within each
class, the collective transition rates to any other class remain the same. It is important to
highlight that every Markov process exhibits strong lumpability with respect to the identity
relation, as well as the trivial relation, which comprises only one equivalence class.

In the paper by Kemeny et al. [11], it is demonstrated that for an equivalence relation
∼ over the state space of a Markov process X(t), the aggregated process remains a Markov
process for any initial distribution if and only if ∼ represents a strong lumpability for X(t).
Furthermore, the transition rate between two macro-states Si and Sj in S/ ∼ is equal to
q(s, Sj) for any s belonging to Si.

Proposition 1 (Aggregated process for strong lumpability). Consider a CTMC X(t) with
a state space S , infinitesimal generator Q, and equilibrium distribution π. Let ∼ be a strong
lumpability for X(t) and X̃(t) be the aggregated process with state space S/ ∼ and infinitesimal
generator Q̃ defined by, for any equivalence class Si, Sj ∈ S/ ∼,

q̃(Si, Sj) = q(s, Sj)
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for any s ∈ Si. Then, the equilibrium distribution π̃ of X̃(t) is characterized by the property that
for any equivalence class S ∈ S/ ∼,

π̃(S) = ∑
s∈S

π(s) .

3. Proportional Lumpability

The notion of proportional lumpability made its debut in [20]. Much like the notion
of quasi-lumpability [15], which is also known as near-lumpability in [13], proportional
lumpability builds upon the initial concept of strong lumpability. Furthermore, in contrast
to the broader scope of quasi-lumpability, proportional lumpability allows for the precise
derivation of a solution for the original process.

Definition 2 (Proportional lumpability). Consider a CTMC X(t) with a state space S , and let
∼ denote an equivalence relation over S . We define X(t) to be proportionally lumpable with respect
to ∼ (or, alternatively, ∼ is termed a proportional lumpability for X(t)) if ∼ induces a partition on
the state space of X(t) such that for any equivalence classes Si, Sj ∈ S/ ∼ where Si ̸= Sj, and for
any states s, s′ ∈ Si,

q(s, Sj)

κ(s)
=

q(s′, Sj)

κ(s′)
.

where κ is a function from S to R+ . We say that X(t) is κ-proportionally lumpable with respect
to ∼ (or, alternatively, ∼ is a κ-proportional lumpability for X(t)) if X(t) is proportionally lumpable
with respect to ∼ and function κ.

The next theorem proven in [20] establishes that proportional lumpability facilitates
the calculation of a precise solution for the original model.

Theorem 1 (Aggregated process for proportional lumpability). Consider a CTMC X(t) with
a state space S , infinitesimal generator Q, and equilibrium distribution π. Let κ denote a function
from S to R+, ∼ be a κ-proportional lumpability for X(t), and X̃(t) be the aggregated process over
the state space S/∼ and with infinitesimal generator Q̃ defined by, for any equivalence classes
Si, Sj ∈ S/∼ where Si ̸= Sj, and for any state s,∈ Si,

q̃(Si, Sj) =
q(s, Sj)

κ(s)
.

Then, µ̃ such that for any equivalence class S ∈ S/∼,

µ̃(S) = ∑
s∈S

π(s)κ(s) (1)

is an invariant measure of X̃(t).

Definition 3 elucidates a technique for perturbing a CTMC that is proportionally
lumpable, transforming it into one that is strongly lumpable. Unlike earlier perturbation
approaches, Theorem 2 furnishes a method to calculate the stationary probabilities of a
proportionally lumpable chain by leveraging those of the perturbed lumpable chain. The
proof of Theorem 2 is available in [20].

Definition 3 (Perturbed Markov chains). Consider a CTMC X(t) with a state space S and
infinitesimal generator Q. Let κ denote a function from S to R+. We say that a CTMC X′(t) with
infinitesimal generator Q′ is a perturbation of X(t) with respect to κ if X′(t) is obtained from X(t)
by perturbing its rates such that for all s, s′ ∈ S with s ̸= s′,
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q′(s, s′) =
q(s, s′)

κ(s)
.

Theorem 2 (Equilibrium distribution for proportional lumpability). Let X(t) be a CTMC
with state space S , infinitesimal generator Q, and equilibrium distribution π. Let κ be a function
from S to R+. For any perturbation X′(t) of the original chain X(t) with respect to κ, as per
Definition 3, where X′(t) has an infinitesimal generator Q′ and equilibrium distribution π′, the
equilibrium distribution π of X(t) adheres to the following property: let K = ∑s∈S π′(s)/κ(s),
then for all s ∈ S ,

π(s) =
π′(s)
K κ(s)

.

Example 1. Consider the classic reliability problem concerning a system comprising N components.
Each component i ∈ 1, . . . , N follows an exponential distribution with rate µi for time to failure,
independent of the other components. This system type has been extensively researched, as seen in
various works such as [35–39]. Following the approach in [38], we posit that upon system failure,
it is restored to a new "good" state, and the restoration time follows an exponential distribution
with rate λ. At any given time, the system state can be represented as a boolean vector of size
N, x̄ = (x1, . . . , xN), where xi = 1 signifies the i-th component functioning and xi = 0 denotes
failure. Consequently, the set of all feasible states is S = {0, 1}N . Under these conditions, the
system’s state evolution over time can be modeled by a continuous-time Markov chain. The Markov
process for a system with 3 components (i.e., N = 3) is illustrated in Figure 1. Notably, this system
is proportionally lumpable with respect to the given partition: Sn = {x̄ ∈ S : ∑ xi = n} with
n ∈ {0, 1, 2, 3}, i.e.,

S0 = {(0, 0, 0)}
S1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
S2 = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}
S3 = {(1, 1, 1)}

and the function κ such that for each state s ∈ S1 ∪ S2, κ(s) = q(s), while for s ∈ S0 ∪ S3,
κ(s) = 1. Consequently, we can examine the aggregated Markov chain depicted in Figure 2.
Utilizing Theorems 1 and 2, we are able to calculate the precise solution for the original model.

(1,0,1)(1,1,1)

(0,1,1)

(1,1,0)

(0,0,1)

(0,1,0)

(1,0,0)

(0,0,0)

µ1

µ2

µ3

λ

µ2

µ1

µ3

µ2

µ1µ1

µ2

µ3

µ3

Figure 1. CTMC representing the reliability of a system with 3 components.
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S3 S2 S1 S0
µ1 + µ2 + µ3 1 1

λ

Figure 2. Aggregated CTMC representing the reliability of the system in Figure 1.

3.1. Three Alternative Characterizations of Proportional Lumpability

We introduce three alternative characterizations of proportional lumpability. The first
one, proven in [21], provides an efficient method to determine if a partition of a Markov
chain’s state space is induced by proportional lumpability. The second characterization,
outlined in [25], has been utilized to describe an algorithm for computing the coarsest pro-
portional lumpability of a given Markov chain in O(|S|4) time. The third characterization
is new, and it allows us to improve on the above complexity of obtaining an algorithm
running in O(|S|2 log |S|).

First, for a given equivalence relation ∼ over the state space of a CTMC, we denote by
q∼(s) the sum of all transition rates from the state s to any state t such that s ̸∼ t, i.e., for all
s ∈ S ,

q∼(s) = ∑
t ̸∼s

q(s, t).

The following theorem shows that proportional lumpability can be characterized in
terms of q∼(s) by replacing κ(s) with q∼(s) in the original definition.

Theorem 3 (Characterization 1 of proportional lumpability [21]). Let X(t) be an ergodic
CTMC with state space S and ∼ be an equivalence relation over S . The relation ∼ is a proportional
lumpability for X(t) if and only if for any equivalence classes Si, Sj ∈ S/∼ with Si ̸= Sj and
s, s′ ∈ Si,

1. q∼(s) ̸= 0 if and only if q∼(s′) ̸= 0
2. if q∼(s) ̸= 0 then

q(s, Sj)

q∼(s)
=

q(s′, Sj)

q∼(s′)
.

While the aforementioned characterization is useful for efficiently verifying whether
a given relation conforms to proportional lumpability, its direct application in an algo-
rithm for computing proportional lumpability refinement from an initial relation is not
immediately apparent. As we will demonstrate below, if the relation undergoes changes
during computation, q∼ also changes. Consequently, an equality from item 2 that is false
in the current step might become true later. Conversely, the following characterization
of proportional lumpability is more straightforward to employ in defining a partition
refinement algorithm for proportional lumpability.

Theorem 4 (Characterization 2 of proportional lumpability [25]). Consider a CTMC X(t)
with a state space S , and let ∼ denote an equivalence relation over S . The relation ∼ is a proportional
lumpability for X(t) if and only if for any equivalence classes Si, Sj, Sk ∈ S/∼ where Si ̸= Sj,
Si ̸= Sk, and s, s′ ∈ Si,

1. q(s, Sk) ̸= 0 if and only if q(s′, Sk) ̸= 0 and
2. if q(s, Sk) ̸= 0, then

q(s, Sj)

q(s, Sk)
=

q(s′, Sj)

q(s′, Sk)
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In order to introduce our new characterization, we need to recall that, as for strong
lumpability, also in the case of proportional lumpability the equivalence relation S × S is
always a proportional lumpability. However, this is not useful in the applications. On the
other hand, the problem of “refining” a given initial equivalence relation in order to obtain
a proportional lumpability is a challenging one.

Definition 4 (Maximum Proportional Lumpability Problem). Let X(t) be a CTMC with state
space S and let R be an equivalence relation over S . The maximum proportional lumpability
problem over X(t) and R consists of finding the largest equivalence relation ∼ such that ∼⊆ R
and ∼ is a proportional lumpability for X(t).

In [25], we proved that the maximum proportional lumpability problem has always
a unique solution that can be computed in time O(|S|4). The following characterization
allows us to improve such time complexity result. We recall that given an equivalence
relation R, qR(s) denotes the sum of all transition rates from s to any state t such that
(s, t) ̸∈ R. Notice that in Theorem 3, we referred to a generic equivalence relation ∼; hence,
since we consider only ergodic CTMCs, the first item is only necessary to cover the case in
which the relation ∼ is the total relation S × S . In the following result, we do not have to
explicitly deal with it, since we consider an equivalence relation R which is not total.

Theorem 5 (Characterization 3 of proportional lumpability). Let X(t) be an ergodic CTMC
with state space S and R be an equivalence relation over S with R ̸= S × S . The relation ∼ is
the maximum proportional lumpability over X(t) and R if and only if it is the largest equivalence
relation included in R such that for any equivalence classes Si, Sj ∈ S/∼ with Si ̸= Sj and
s, s′ ∈ Si,

q(s, Sj)

qR(s)
=

q(s′, Sj)

qR(s′)

Proof. ⇒) Suppose that ∼ is the maximum proportional lumpability over X(t) and R.
This means that ∼ is the largest equivalence relation included in R for which there exists a
function κ from S to R+ such that ∼ is a κ-proportional lumpability. This means that ∼ is
such that for any equivalence classes Si, Sj ∈ S/ ∼ with Si ̸= Sj and s, s′ ∈ Si

q(s, Sj)

κ(s)
=

q(s′, Sj)

κ(s′)

Let B be a union of equivalence classes of ∼. It holds that q(s, B) ̸= 0 if and only if
q(s′, B) ̸= 0. Moreover,

q(s, B)
κ(s)

=
q(s′, B)

κ(s′)

If q(s, B) ̸= 0, this is equivalent to

κ(s)
q(s, B)

=
κ(s′)

q(s′, B)

As a consequence,

q(s, Sj)

q(s, B)
=

q(s, Sj)

κ(s)
κ(s)

q(s, B)
=

q(s′, Sj)

κ(s′)
κ(s′)

q(s′, B)
=

q(s′, Sj)

q(s′, B)
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Let Bi be the equivalence class of R to which s and s′ belong. It holds that Si ⊆ Bi. Moreover,
S \ Bi is a union of equivalence classes of ∼. Since X(t) is ergodic, R ̸= S × S , and s ∼ s′,
it has to be q(s,S \ Bi) = qR(s) ̸= 0 and q(s′,S \ Bi) = qR(s) ̸= 0. Hence, ∼ satisfies

q(s, Sj)

qR(s)
=

q(s′, Sj)

qR(s′)

Finally, ∼ has to be the largest equivalence relation included in R that satisfies such
equations, since any equivalence relation included in R satisfying such equations is a
proportional lumpability and ∼ is by hypothesis the largest proportional lumpability
included in R.

⇐) Suppose that ∼ is the largest equivalence relation included in R that satisfies
the equations

q(s, Sj)

qR(s)
=

q(s′, Sj)

qR(s′)

Since R ̸= S × S and X(t) is ergodic, it holds that qR(s) is greater than 0 for each
s ∈ S . Hence, ∼ is a proportional lumpability included in R. We still have to prove that it
is the largest one. Let us assume by contraddiction that there exists another proportional
lumpability ≈ included in R and larger than ∼. There exists a function κ from S to R+

such that ≈ is a κ-proportional lumpability. This means that for any equivalence classes
Ti, Tj ∈ S/ ≈ with Ti ̸= Tj and s, s′ ∈ Ti,

q(s, Tj)

κ(s)
=

q(s′, Tj)

κ(s′)

As a consequence, if B is a union of equivalence classes of ≈, it holds that

q(s, B)
κ(s)

=
q(s′, B)

κ(s′)

Hence, if q(s, B) ̸= 0,
κ(s)

q(s, B)
=

κ(s′)
q(s′, B)

Let Bi be the equivalence class of R to which s and s′ belong. The set S \ Bi is a union of
equivalence classes of ≈. Therefore ≈ also satisfies

q(s, Tj)

qR(s)
=

q(s′, Tj)

qR(s′)

which contradicts the fact that ∼ was the largest satisfying such equations.

As a consequence, the maximum proportional lumpability over a CTMC X(t) included
in a given equivalence relation R can be seen as a lumpability over the perturbed chain
X′(t) in which the rate q(s, s′) is divided by qR(s).

Corollary 1. Let X(t) be an ergodic CTMC with state space S and let R be an equivalence relation
over S with R ̸= S × S . The relation ∼ is the maximum proportional lumpability over X(t)
and R if and only if it is the largest lumpability included in R over the CTMC XR(t) whose
infinitesimal generator QR is defined as

qR(s, s′) =
q(s, s′)
qR(s)

Hence, we can exploit any efficient algorithm for computing the maximum lumpability
included in a given equivalence relation in order to compute the maximum proportional
lumpability included in the same equivalence relation, as illustrated in Algorithm 1.
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Algorithm 1 Computation of the Maximum Proportional Partition

1: function MAXPROP(S , Q,R)
2: if R = S × S then return R
3: for s ∈ S do
4: qR(s) = 0
5: for s′ ∈ S do
6: if (s, s′) ̸∈ R then
7: qR(s) = qR(s) + q(s, s′)
8: for s ∈ S do
9: for s′ ∈ S do

10: qR(s, s′) = q(s, s′)/qR(s)
11: return MAXLUMP(QR ,R)

The correctness of the described algorithm is immediately followed by Corollary 1,
while its complexity depends on the complexity of the subroutine used for computing the
maximum lumpability.

Corollary 2 (Correctness and Complexity). Let MAXLUMP be an algorithm that, given the
infinitesimal generator Q′ of a CTMC X′(t) and an equivalence relation R over the states of
the chain, computes the largest lumpability of X′(t) included in R. Let Q be the infinitesimal
generator of a CTMC X(t) over state space S and R be an equivalence relation over S . It holds that
MAXPROP(S , Q,R) returns the largest proportional lumpability of X(t) included in R. Moreover
MAXPROP has the same time complexity as MAXLUMP.

Currently, the fastest algorithm for computing the largest lumpability runs in time
O(|S|2 log |S|) if the infinitesimal generator of the chain is provided as a matrix [40,41].

3.2. Comparison with Lumpability of the Embedded Markov Chain

We contrast proportional lumpability with the lumpability of the embedded Markov
chain, as defined in [21]. Examples 2 and 3 offer fresh insights into this comparison.

One common method for determining the stationary probability distribution of an
ergodic continuous-time Markov chain X(t) involves examining its embedded Markov
chain XE(t). Technically, the embedded Markov chain is a regular discrete-time Markov
chain (DTMC), sometimes referred to as its jump process. For a given X(t) with state space
S , each entry of the one-step transition probability matrix of the corresponding embedded
Markov chain is denoted by p(s, s′), signifying the conditional probability of transitioning
from state s to state s′. This probability is defined as follows:

p(s, s′) =
q(s, s′)

q(s)
for s ̸= s′

while p(s, s) = 0. Let us assume that XE(t) is aperiodic, and let π∗ be its steady-state
distribution. Therefore, we can compute the equilibrium distribution π of X(t) in the
following way: let W = ∑s∈S π∗(s)/q(s), then

π(s) =
π∗(s)
Wq(s)

.

It is important to note that our definition of q∼(s) differs from that of q(s) in general.
Therefore, the proportionally lumpable property of X(t) does not necessarily imply that the
corresponding embedded Markov chain XE(t) is lumpable. Conversely, if XE(t) exhibits
lumpability, then X(t) is proportionally lumpable with respect to the function κ from S to
R+, where κ(s) = q(s) for all s ∈ S . In summary, we can affirm that if X(t) possesses a
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strongly lumpable embedded process, then it is also proportionally lumpable. However,
the reverse is not necessarily true.

Example 2. Let us reconsider the reliability problem for a system comprising N components.
Suppose our focus now shifts to determining the number of operational components at any given
time. Thus, the state space S = Ci : 0 ≤ i ≤ N, where Ci represents the system state with i
functioning components. We posit that in each state Ci, the time to failure of a component follows an
exponential distribution with rate µi. Additionally, each component can undergo restoration with a
rate of λ. In certain scenarios, system failures may occur due to the simultaneous malfunctioning
of components resulting from common underlying factors. These common-cause failures could
stem from issues like shared power supply failures, environmental conditions (such as earthquakes,
floods, humidity, etc.), common maintenance issues, and so forth. Simultaneous failures attributed
to common causes may happen at a rate of µc. The state transition diagram for this system repair
model is depicted in Figure 3.

CN · · · C3 C2 C1 C0

µN µ4 µ3 µ2 µ1

µc

λλλλλ

µc

µc

µc

µc

Figure 3. CTMC for system repair model with common-cause failures.

We can prove that this model is proportionally lumpable with respect to the relation ∼ over
S given by the reflexive, symmetric, and transitive closure of {(Ci, Cj) : 1 ≤ i, j ≤ N}, and the
function κ such that κ(Ci) = q∼(Ci) for i ∈ {0, . . . , N}. This relation induces two equivalence
classes, named S0 = {C0} and S1 = {C1, . . . , CN}, and the model in Figure 3 results to be
proportionally lumpable, whose aggregated chain is depicted in Figure 4.

S1 S0

1

1

Figure 4. Aggregated CTMC for system repair model with common-cause failures.

In this case, the model in Figure 3 does not have a strongly lumpable embedded process due to
the fact that q(Ci) ̸= q∼(Ci) for each i ∈ {0, . . . , N}.

Example 3. Consider the model described in Example 1. We showed that the CTMC depicted in
Figure 1 is proportionally lumpable. It is easy to see that this model has also a strongly lumpable
embedded process. Indeed, this is trivially followed by Theorem 3 and the fact that q(s) = q∼(s)
for all s ∈ S where ∼ is the relation inducing the partition Sn = {x̄ ∈ S : ∑ xi = n} with
n ∈ {0, 1, 2, 3}.

4. A Case Study

To articulate our case study, we introduce Performance Evaluation Process Algebra
(PEPA) [8] as a high-level formal specification language that is used to study either be-
havioral or performance properties of complex systems (see, e.g., [42]). This enables us to
precisely describe the system slated for analysis.
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4.1. The Process Algebra PEPA

In this section, we aim to provide a concise overview of Performance Evaluation
Process Algebra (PEPA) and shed light on its notable advantages. One of the primary
strengths of PEPA lies in its compositional nature. This inherent compositional quality
allows for a modular and scalable approach in modeling complex systems. Further, each
PEPA specification corresponds to an underlying stochastic process that, under specific
assumptions, takes the form of a continuous-time Markov process.

The practical utility of PEPA is enhanced by the availability of a dedicated tool seam-
lessly integrated into the Eclipse environment, known as the PEPA Eclipse Plug-in [43]. This
tool facilitates the application of PEPA, offering a user-friendly environment for modeling
and analysis within the Eclipse framework.

A fundamental aspect of a PEPA system specification is its representation as a collection
of active agents or components. These components collaboratively engage in activities to
collectively shape the overall system behavior. This cooperative behavior is encapsulated
by the interaction of components and their respective activities, forming a structured
framework for system analysis.

Importantly, the behavior of each individual component within the PEPA framework
is characterized by its activities, providing a nuanced understanding of its role within the
larger system context. Moreover, the influence of the environment on each component
adds a layer of realism to the model, accounting for external factors that may impact the
system dynamics.

To facilitate a clear and standardized representation, the syntax for PEPA terms is
rigorously defined by a specific grammar as described below:

P ::= P ��
L

P | P/L | S S ::= (α, r).S | S + S | A

In this context, the symbols used carry specific meanings within the framework of PEPA.
The variable S denotes a sequential component, highlighting a distinct, ordered execution
of activities. On the other hand, the variable P represents a model component, which
can be obtained as the cooperation of sequential terms, signifying cooperative behavior
among them. The operators in PEPA hold distinctive meanings. For instance, (α, r).S
denotes an operation where the activity (α, r) is performed, involving an action type α and
a corresponding rate r. Subsequently, the system behaves as P. The operator P + Q signifies
a system that can exhibit the behavior of either P or Q. The choice combinator + represents
competition between components. The term P + Q enables all the current activities of both
P and Q. The first activity to complete distinguishes one of the components, P or Q. The
other component of the choice is discarded. The component P/L operates by behaving as
P but with a modification: any activity of type within the set L undergoes relabeling with
the unknown type τ.

Introducing constants, denoted by symbols like A, involves defining equations, such
as A

def
= P. This equation assigns the behavior of the component P to the constant A,

providing a means to encapsulate specific system characteristics within constants.
The cooperation combinator ��

L
represents an interaction between two components.

The interaction is determined by the set of action types L, referred to as the cooperation set.
Activities with action types in this set, known as shared activities, require synchronization
between the components. It is assumed that components independently proceed with
activities whose types do not belong to the cooperation set L. Crucially, the duration of a
shared activity is influenced by the rate of the slower participant. If an activity within a
component has an unknown rate denoted as ⊤, the rate of the shared activity will align
with that of the other component.

4.2. Selfish Mining in Public Blockchains

The problem of selfish mining in public blockchains (see, e.g., [44–48]) arises when a
minority mining pool adopts a strategic approach to maximize its rewards at the expense
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of other miners. This attack strategy involves the mining pool keeping its successfully
mined blocks private, creating a fork in the blockchain. Meanwhile, honest miners continue
to mine on the public chain, unaware of the pool’s private branch. As the selfish miners
discover more blocks, they strengthen their lead on the public chain and continue to keep
their blocks secret. When the public branch approaches the pool’s private branch in length,
the selfish miners reveal blocks from their private chain to the public one, causing the
public chain to become the shorter branch and their private chain to become the longer one.
This results in a waste of resources for honest miners and can lead to a higher number of
forks in the blockchain, impacting its performance and security. The selfish mining attack is
a significant concern in blockchain systems and requires careful analysis and consideration
to develop more robust and efficient solutions.

In the rest of this paragraph, we introduce a PEPA model tailored for the analysis of the
selfish mining attack. The model we are about to delineate represents a generalization of the
one outlined in [26]. In contrast to the assumptions made in [26], where all miners possess
identical computational capabilities for both mining and verification phases, we extend
our model to accommodate variations in miners’ computational powers. Consequently,
the rates at which miners mine or verify blocks may differ. This adjustment mirrors a
more realistic configuration of the blockchain state, enabling us to delve into real-world
scenarios with greater precision and relevance. It is important to note that the case study
presented in this paper is different from the one discussed in [26]. Our focus encompasses
an examination of how the verification time influences the effectiveness of the selfish
mining strategy. This consideration becomes particularly significant in the context of the
evolving landscape of blockchain technology, notably with the advent of smart contracts.
As outlined in seminal work [45], the impact of verification time on selfish mining strategies
may not be negligible, rendering our model applicable to a broader spectrum of scenarios.

Our investigation specifically centers on the relationship between verification times
and the advantages gained by selfish miners. To elaborate further, we present a PEPA model
designed for a blockchain network utilizing a Proof-of-Work (PoW) consensus mechanism.
This model accounts for a coalition of fair miners alongside a single selfish miner. Each
miner, denoted as Mi, operates with an individual computational power represented by γi
and verifies blocks with a time frame following an exponentially distributed pattern, with
a mean duration of β−1

i .
In Table 1, we report the specification of a network composed of K ≥ 3 fair miners.

Table 1. PEPA model of a network with K fair miners.

Mi
def
= (mi, γi).Mi + ∑

j ̸=i
(mj,⊤).Vi

Vi
def
= ∑

j ̸=i
(vj, βi).Mi + ∑

j ̸=i
(mj,⊤).Vi

Network def
= (..((M1 ��L∪L12

M2)��L∪L3
)��

L∪L4
. . . ) ��

L∪LK
MK

where i, j ∈ {1, . . . , K} and L = {m1, . . . , mK}, L12 = {v3, . . . , vK},
Lj = {v1, . . . , vK} \ {vj} for j ≥ 3

Let us inspect the behavior of a single fair (verifying) miner, say M1.
Miner M1 initiates block mining with action type m1 at a rate of γ1, subsequently

returning to its initial state to commence mining another block. Upon receiving a block from
the network via an activity (mj,⊤) where j ∈ {2, . . . , K}, M1 enters the verification process,
moving to state V1. Notice that, when M1 announces a block, according to the operational
semantics of PEPA, m1 is received by all miners except M1. Thus, all miners moves to state
V1, while M1 is still mining. Now, according to the synchronization operation, all miners
in V1 synchronize on {v1}, and the block is verified at a rate of δ1 = min(β2, β3, . . . , βK).
Once the verification is completed, all the verifying miners simultaneously move to the
mining phase. Importantly, M1 remains capable of receiving new blocks from the network
during the verification phase through activities (mj,⊤), where j ∈ {2, . . . , K}.
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The derivation graph of the model is depicted in Figure 5, where δ1 = min(β2, β3, . . . , βK),
δ2 = min(β1, β3, . . . , βK), . . . , δK = min(β1, β2, . . . , βK−1).

The continuous-time Markov chain underlying the system is depicted in Figure 6a,
with states {0, 1, . . . , K} where 0 denotes the state of the network in which all miners are
mining and j ∈ {1, . . . , K} denotes the state in which Mj is mining while all the other min-
ers are verifying. It would be interesting to aggregate fair miners into a fair environment
according to a relation R such that iRj for all i, j ∈ {1, . . . , K}. By applying Theorem 4, one
can easliy find that the maximum proportional lumpability for this system with respect to
R is the one induced by the partition:

S1 = {0}
S2 = {1, . . . , K}

and the function κ such that for each state s ∈ S2, κ(s) = q(s), while for s ∈ S1, κ(s) = 1.
The resulting aggregated CTMC is represented in Figure 6b. As the number of miners in a
blockchain can be significantly high, an aggregated model can prove useful in reducing the
state space and efficiently calculating performance indices of interest.

Figure 5. Derivation graph of the model presented in Table 1.

(a) (b)
Figure 6. (a) Markov chain underlying the model presented in Table 1 and (b) its aggregation
according to proportional lumpability.

Let us now consider a scenario where a network includes a selfish mining pool
exercising control with hash power wγ, utilizing action types mS1 and mS2 for block mining.
The PEPA specification for this network, comprising K honest miners and one selfish miner
(MS representing the mining pool), is detailed in Table 2. The action type mS1 denotes
the first block privately mined by the selfish pool, creating a separate branch, while mS2

represents the second successful block. Upon the production of the second block, two
blocks are revealed from the private branch to the public, prompting the rest of the network
to transition from the shorter public branch to the newly disclosed blocks. This behavior
is reflected in the model, where all network nodes align on the action type vS upon the
announcement of the selfish pool’s second block.
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Note that, for modeling simplicity, the selfish miner discloses two blocks from the
private branch to the public. However, it is important to acknowledge that the model can
be expanded to accommodate a more extended queue of blocks.

Figure 7 represents the derivation graph of the model presented in Table 2, while the
Markov process corresponding to the system with K fair components and one selfish pool
is represented in Figure 8a. Also in this case, if we define a relation R among states such
that iRj for all i, j ∈ 1, . . . , K, this would enable the aggregation of all fair miners into a fair
environment. Indeed, by applying Theorem 4, one can find that the maximum proportional
lumpability contained in R is the one induced by the state partition:

S0 = {0}
SK = {1, . . . , K}
SK+1 = {K + 1}
SK+2 = {K + 2}
SK+3 = {K + 3}

and the function κ such that for each state s ∈ SK, κ(s) = q(s), while for s ∈ S0 ∪
SK+1 ∪ SK+2 ∪ SK+3, κ(s) = 1. Thus, we can analyze the aggregated Markov chain repre-
sented in Figure 8b and, by Theorems 1 and 2, we can compute the exact solution to the
original model.

Table 2. PEPA model of a network with K fair miners and one selfish pool MS.

MFi

def
= (mFi , γi).MFi + ∑

j ̸=i
(mFj ,⊤).Vi + (mS2 ,⊤).ViS

Vi
def
= ∑

j ̸=i
(vj, β j).MFi + ∑

j ̸=i
(mFj ,⊤).Vi

ViS

def
= (vS, β).MFi + (mS2 ,⊤).ViS

MS
def
= (mS1 , wγ).C + ∑

i
(mFi ,⊤).VS

C
def
= (mS2 , wγ).MS + ∑

i
(mFi ,⊤).VS

VS
def
= ∑

i
(vi, β).MS + ∑

j ̸=i
(mFj ,⊤).VS

Network
def
= MS ��L∪V

(..((MF1
��
L∪V12

MF2 )��L∪V3
MF3 ) . . . ) ��

L∪VK
MFK )

where i, j ∈ {1, . . . , K} and L = {mS2 , m1, . . . , mK}, V = {v1, . . . , vK},
V12 = {vS, v3, . . . , vK}, Vj = {vS, v1, . . . , vK} \ {vj} for j ≥ 3

Figure 7. Derivation graph of the model presented in Table 2.
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(a) (b)
Figure 8. (a) Markov chain underlying the model presented in Table 2 and (b) its aggregation
according to proportional lumpability.

The symbolic expression of the steady-state probabilities of the Markov chain underly-
ing the lumped network depicted in Figure 8b are:

π(S0) =
β2(Γ + wγ) + βwγ(2Γ + γ))

G
, π(Sk) =

β2Γ(Γ + 2wγ) + βΓwγ(2Γ + 3γ))

G

π(SK+1) =
wγβ(β + 2wγ)

G
, π(SK+2) =

wγ2(β + wγ)

G
, π(SK+3) =

wγ3

G
,

where Γ = γ1 + . . . , γK, while G is the normalizing constant

G = β2Γ(1 + Γ) + 2β(1 + Γ)(β + Γ)wγ + β(4 + 3Γ)wγ2 + 2wγ3 .

By applying Theorem 1, we derive the steady-state probability of the original system;
in particular, referring to Figure 8, we obtain:

π(0) = π(S0) = , π(K + 1) = π(SK+1) , π(K + 2) = π(SK+1) , π(K + 3) = π(SK+3)

π(i) =
β ∏K

j=1,j ̸=i δjγi(βΓ + 2(β + Γ)wγ + 3wγ2)

G
.

5. Conclusions

In this study, we have delved into the concept of proportional lumpability and have
introduced three distinct characterizations of this novel notion. These characterizations
have laid the groundwork for the development of an efficient algorithm designed to
automatically check the property of proportional lumpability for, even complex, CTMCs.

The first characterization, as outlined in [21], provides a streamlined method for
verifying whether a given relation aligns with proportional lumpability. Building upon
this, a second characterization presented in [25] enables the creation of an algorithm for
computing proportional lumpability by iteratively refining an initial relation. In this paper.
we introduced a novel characterization that significantly enhances computational efficiency,
leading to the development of an algorithm for proportional lumpability with a time
complexity of O(|S|2 log |S|).
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To demonstrate the efficacy of proportional lumpability, we conducted an extensive
case study akin to the approach outlined in [26]. Specifically, we expanded upon the
findings in [26] by analyzing a strongly lumpable model meticulously designed to probe
selfish mining behaviors within the context of a public blockchain. The model examined in
this paper represents an extended, more general version of the one presented in [26], tailored
to capture a more realistic depiction of the blockchain state under investigation. Unlike
the assumptions in [26], where all miners are assumed to possess identical computational
capabilities for both mining and verification phases, our extended model acknowledges
variations in miners’ computational powers. This adjustment offers a more authentic
portrayal of the blockchain state, enabling a deeper exploration of real-world scenarios
with enhanced accuracy and relevance.

It is crucial to emphasize that the case study presented in this paper diverges from the
one discussed in [26]. Our primary focus revolves around investigating how verification
time influences the efficacy of the selfish mining strategy. This examination assumes
particular importance in the context of the dynamic landscape of blockchain technology,
especially with the emergence of smart contracts. As highlighted in seminal work such
as [45], the impact of verification time on selfish mining strategies cannot be underestimated,
thereby rendering our model applicable to a wider array of scenarios.

Our objective is to offer valuable insights into the concept of proportional lumpability
and highlight the broader applications of partition refinement techniques.

As part of our future research endeavors, we aim to explore the possibility of further
relaxing the definition of proportional lumpability by introducing approximated semantics,
aligning with the spirit of the proposed approaches, e.g., in [49–53]. This future direction
aims to enhance the flexibility and applicability of proportional lumpability in various
modeling scenarios.

Furthermore, we aim to delve into the concept of component substitution as outlined
in [54], specifically for approximating solutions of stochastic models expressed within the
framework of Performance Evaluation Process Algebra (PEPA). This approach is introduced
to tackle the computational complexity inherent in analyzing PEPA models. The proposed
method involves substituting certain components within the models to simplify the analysis
process, potentially leading to more efficient and scalable solutions. This methodology
hinges upon the notion of behavioral independence [55] to delineate specific restricted classes
of models. Essentially, this property affirms that the actions of a specific group of compo-
nents within a model are unaffected by the actions of other components. This characteristic
serves as a valuable means of discerning independent and semi-independent behaviors.
The authors suggest substituting a component in a model with a simplified version of
itself. This streamlined component maintains the same interactions as the original but
usually has fewer states. As a result, the ensuing model generates a significantly smaller
Continuous-Time Markov Chain (CTMC), simplifying the solution process. However,
determining the transition rates within the simplified component is often challenging.
Therefore, an iterative approach, in the spirit of the one proposed in [56], is employed to
converge between two or more reduced models. As a future work, we plan to investigate a
variant of component substitution grounded in the concept of proportional lumpability.
This endeavor will enable us to leverage the findings presented in this paper to efficiently
compute an exact solution for the model under consideration. This strategy is in line with
the overarching goal of improving the practical usability of PEPA models within real-world
systems, thus aiding in the optimization of performance evaluation procedures in computer
and digital systems.
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