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Abstract: Accurate quantification of uncertainty in solar photovoltaic (PV) generation forecasts is
imperative for the efficient and reliable operation of the power grid. In this paper, a data-driven
non-parametric probabilistic method based on the Naïve Bayes (NB) classification algorithm and
Dempster–Shafer theory (DST) of evidence is proposed for day-ahead probabilistic PV power fore-
casting. This NB-DST method extends traditional deterministic solar PV forecasting methods by
quantifying the uncertainty of their forecasts by estimating the cumulative distribution functions
(CDFs) of their forecast errors and forecast variables. The statistical performance of this method
is compared with the analog ensemble method and the persistence ensemble method under three
different weather conditions using real-world data. The study results reveal that the proposed
NB-DST method coupled with an artificial neural network model outperforms the other methods in
that its estimated CDFs have lower spread, higher reliability, and sharper probabilistic forecasts with
better accuracy.

Keywords: continuous rank probability score; Dempster–Shafer theory; naïve Bayes classification;
probabilistic solar power forecasting; uncertainty quantification

1. Introduction

Solar photovoltaic (PV) generation has been penetrating the power grid at an accelerating
speed over the past decade as the world moves toward a more sustainable energy grid. Inte-
grating a large number of solar PV power plants into the existing conventional grid presents
significant challenges because solar PV generation is not dispatchable and is often treated as a
form of negative load in power grid operations. To efficiently maintain the balance between
generation and load in the power grid, both load and solar PV generation need to be forecasted.
These forecasts enable the proactive scheduling of dispatchable generation resources, allowing
for the management of power ramping and the timely allocation of generation reserves to
address power uncertainty [1,2]. Moreover, solar PV power forecasting plays a significant role
in predicting energy market imbalances and optimizing bid scheduling [3].

To support the bidding strategy and operation of a day-ahead electric power market,
many data-driven forecasting methods have been developed to forecast solar PV generation.
Typically, these day-ahead forecasting methods have forecast horizons between 24 and 48 h,
with a lead time of 24 h. In other words, the first instance of the forecast is 24 h ahead in the
future relative to the current time [4]. Because of the large lead time, all forecasting methods
inherently exhibit some levels of forecast errors that cannot be overlooked. Based on how
they handle the uncertainty associated with the forecast errors, the forecasting methods
can be broadly categorized into deterministic and probabilistic approaches. While deter-
ministic methods provide a single-value forecast without quantifying forecast uncertainty,
probabilistic methods quantify forecast uncertainty by estimating statistical properties of
forecast variables, such as probability distributions and prediction intervals (PIs) [5].
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Many deterministic methods have been developed to accurately forecast solar PV gen-
eration, gaining widespread acceptance in real-world applications [6–10]. Well-recognized
forecasting methods include artificial neural networks (ANN) [11], recurrent neural networks
(RNN) [12], long-short term memory (LSTM) [13], convolutional neural network (CNN) [14],
and support vector regression (SVR) [15,16]. Deterministic forecasting methods excel at estimat-
ing the expected solar PV generation and are valuable for managing power ramping. Yet, they
cannot be directly used to address the uncertainty associated with solar PV generation.

Many probabilistic methods have been developed to quantify the uncertainty inherent
in solar PV forecasts. For instance, the persistence ensemble (PerEn) method assumes that
the forecasted solar PV generation follows a Gaussian distribution [17] and subsequently
estimates its mean and variance. Meanwhile, the ensemble learning method (ELM) [18]
integrates various deterministic forecasting methods, including k-nearest neighbors (kNN),
decision trees, gradient boosting, random forest, lasso, and ridge regression, to estimate
forecast distributions. For deep learning, an improved deep ensemble method, CNN-
BiLSTM, is proposed in [19] for probabilistic wind speed forecasting, where the outputs
of the final CNN-BiLSTM layer are fitted to a Gaussian distribution to estimate the mean
and variance of the wind speed. Quantile regression (QR), on the other hand, estimates
the conditional quantiles of solar irradiance based on numerical weather prediction (NWP)
data [20]. In addition, an analog ensemble (AnEn) method is developed by [21] and com-
pared to QR and PerEn methods. The AnEn method requires a frozen meteorological model
to identify forecast points in the training dataset most similar to the current forecast. Fur-
thermore, Doubleday et al. propose combining several deterministic NWP model outputs
using the Bayesian model averaging (BMA) technique to estimate forecast distributions [22].
In [23], Gaussian process regression (GPR) with specific kernel functions is applied to obtain
prediction intervals of solar power forecast. This method tries to quantify the forecast
uncertainty by fitting the forecast errors to a standard normal distribution. A sparse GPR
method is proposed in [24] for probabilistic wind-gust forecasting by combining NWP
data and on-site measurements. A variant of this method has shown promise for solar
power forecasting of geographically sparse distributed solar plants [25]. The uncertainty
quantified by probabilistic forecasting methods serves as a valuable guide for operators in
booking appropriate generation reserves.

However, these probabilistic forecasting methods have certain limitations and challenges.
For example, the AnEn, ELM, CNN-BiLSTM, and BMA rely on the assumption that a predefined
family of probabilistic distributions can adequately characterize their forecasts. The GPR-based
approaches, however, non-parametrically forecast the solar power generation but fit the forecast
error to a standard normal distribution to quantify the uncertainty. As a result, discrepancies
between actual and assumed distributions may lead to significant errors. In addition, both
the ELM and BMA methods require forecast outputs from several NWP models, which is
time-consuming and may introduce additional uncertainty due to variation across models. As
such, these methods have not gained widespread adoption in practical applications.

To overcome the above-mentioned limitations inherent in existing probabilistic fore-
casting methods and leverage the widespread acceptance of deterministic forecasting
methods, this paper proposes a data-driven non-parametric statistical method for day-
ahead probabilistic forecasting of PV power [26]. First, the method estimates the probability
of the forecast error falling into a certain interval using the Naïve Bayes (NB) classification
technique. Then, the estimated evidence is combined using a suitable statistical inference
technique. Bayesian inference is a well-known method for combining independent evidence
and has been utilized for many probabilistic forecasting applications, such as wind-gust
speed forecasting [27]. However, it requires prior probabilities. To address this limitation,
a frequentist approach known as the Dempster–Shafer theory (DST) is utilized in this
paper to combine probabilities from various independent sources, specifically from NB’s
outputs. Hence, the proposed method is named the NB-DST method. As a non-parametric
approach, the proposed NB-DST method provides the flexibility needed for real-world
applications. Distinguishing itself from other probabilistic methods such as BMA and ELM,
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the proposed NB-DST method only requires a single deterministic model output. A similar
method is utilized for probabilistic wind-power forecasting, which uses sparse Bayesian
classification networks that require proper initialization of hyperparameters and a large
training dataset [28]. In comparison, the NB classifiers used in this paper are easier to train
with a small training dataset and outperform other methods like logistic regression [29].

The proposed NB-DST method is a novel approach in the landscape of probabilistic
solar PV power forecasting. Unlike traditional methods that rely on predefined probabilistic
distributions or extensive model ensembles, the NB-DST method uniquely combines NB
classification with DST to offer a non-parametric scalable solution for quantifying fore-
cast uncertainty. This method not only addresses the limitations of existing probabilistic
approaches by eliminating the need for prior probability distributions but also enhances
adaptability to real-world forecasting scenarios. The purpose of this research is to demon-
strate the efficacy and practicality of the NB-DST method in improving the accuracy and
reliability of day-ahead solar power forecasts, thereby supporting more informed decision
making in grid management and energy market operations.

The structure of the rest of this paper is as follows: Section 2 outlines the proposed NB-
DST method. The performance evaluation metrics are introduced in Section 3. In Section 4,
the performance of the proposed method is compared with other methods utilizing real-
world data from a rooftop solar PV plant. Finally, conclusions are drawn and future work
is discussed in Section 5.

2. NB-DST Method for Day-Ahead Solar PV Forecasting

This section introduces the proposed NB-DST method to estimate the cumulative
distribution function (CDF) of day-ahead solar PV forecasts. The application of the pro-
posed NB-DST method consists of the following four steps: (1) collect historical solar PV
generation and related weather data; (2) apply a deterministic forecasting method such as
SVR and ANN to forecast solar PV generation and determine the forecast errors; (3) utilize
the NB method to determine the probability of the forecast errors falling into probability
intervals; and (4) employ the DST method to determine the CDF of forecast errors. The
procedure of applying the NB-DST method to quantify the day-ahead solar PV forecast
errors is detailed as follows.

2.1. Data Collection

To perform day-ahead solar PV forecasting, day-ahead weather forecast, and solar
power generation data are collected. For a particular geographic location, historical weather
forecast data (wd

h) and historical solar power generation data (sd
h) for the targeted hour

(h) and day (d) are collected. After identifying and removing bad data [30], the dataset is
divided into three subsets (see Figure 1): (1) training dataset for building deterministic fore-
casting models (about 75%), i.e., Tr1 =

{
wd

h, sd
h

∣∣∣ d ∈ D1

}
, (2) training dataset for building

the NB models (about 15%), i.e., Tr2 =
{

wd
h, sd

h

∣∣∣ d ∈ D2

}
, and (3) testing dataset for evalu-

ating the performance of the NB-DST method (about 10%), i.e., TS =
{

wd
h, sd

h

∣∣∣ d ∈ D3

}
.
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2.2. Deterministic Forecasting Methods and Forecast Errors

Using the training dataset Tr1 as the input, deterministic forecasting methods aim to
build models for forecasting solar PV generation 24 h in advance: ŝd

h = f wc
h

(
wd

h, sd−1
h

)
.

Here, the output of the deterministic forecasting methods is a forecasting model, denoted
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as f wc
h (·), which may include models used by SVR, ANN, and persistence methods. To

catch hourly variations, separate models are trained for each hour (h) of the day, using
historical data for the corresponding hour.

Furthermore, three distinct forecasting models are trained to accommodate different
weather conditions (wc): clear, overcast, and partially cloudy. These trained forecasting
models generate hourly day-ahead deterministic forecasts (ŝd

h) using dataset Tr2. Then,
forecast errors (εh) can be calculated using (1) as the difference between the observations
(sd

h) and forecasts.
εd

h = sd
h − ŝd

h (1)

To apply the NB method, εd
h is cast into equally divided intervals. First, the lower and

upper limits of historical forecast errors are determined as ξmin
h = min

d∈D2
εd

h and ξmax
h = max

d∈D2
εd

h, re-

spectively. Then, the historical error range
[
ξmin

h , ξmax
h
]

is divided into L intervals of equal width.

These intervals are defined as Il
h = interval

(
Lowl

h, Upl
h

)
, where Lowl

h = ξmin
h + (l − 1)∆h

and Upl
h = ξmin

h + l∆h for l = 1, 2, . . ., L and ∆h =
ξmax

h −ξmin
h

L .
Finally, an NB binary classifier model is trained for each error interval at hour h. This

approach is chosen because the results of each NB model will serve as evidence for the
DST. Training a single multi-class NB classifier would result in only one mass function,
where estimated probabilities for each class sum to ‘1’ and individual class probabilities
do not form meaningful evidence for the DST. To train the NB classifier for hour h, the
day-ahead weather forecast data (wd

h) and solar power forecast data (ŝd
h) are used as

predictors (xd
h =

[
wd

h, ŝd
h

]T
). The target is represented as a binary class label, {0, 1}, where

‘0’ represents the event that the forecast error falls outside the corresponding interval
and ‘1’ represents the event that the forecast error falls inside the corresponding interval.
Mathematically, the labeling can be written as follows:

yl
h =
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 (29) 
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𝑗
 is 
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𝑗

= 𝕝(𝑠ℎ ≥ �̂�ℎ
𝑗
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ℎ,𝜏=

𝛼
2

, �̂�
ℎ,𝜏=1−

𝛼
2

) (30) 
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PICP(𝛼) =  
1

𝑁ℎ
∑ 𝕝(�̂�ℎ ∈ 𝑃�̂�ℎ,(1−𝛼)×100%)

𝑁ℎ

ℎ=1

 (31) 
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(
εd

h ∈ Il
h

)
=

{
1 i f εd

h ∈ Il
h

0 otherwise
(2)

where yl
h is the class label of a training sample of the lth NB classifier of hour h and
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an indicator function.

NB classifiers are trained using dataset Tr2 and validated through the k-fold cross-
validation technique [31]. For the lth interval at hour h, the NB classifier provides two
probabilities: one for the forecast falling into the interval (pl

h) and another for it falling out
of the interval (1 − pl

h), where l ∈ {1, 2, . . . , L}. This procedure is illustrated in Figure 2.
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Figure 2. NB classifiers and corresponding probability outputs for forecast intervals at hour, h.
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2.3. Probability Estimation with the NB Method

The NB method, a straightforward probabilistic classification algorithm based on
Bayes’ theorem of probabilistic inference [32], serves as a crucial tool in this study. Bayes’
theorem connects the conditional and marginal probabilities of two random variables and
is often used to calculate posterior probabilities based on given data. In this study, the NB
method is used to estimate P(εd

h ∈ Il
h | xd

h), i.e., the probability of forecast errors εd
h falling

into interval Il
h given the predictor feature vector xd

h.
To be concise, the following study will be focused on interval l at hour h of day d,

so that the superscripts l and h can be dropped. Assume that the training data
{

xd, yd
}

are given for d = 1, 2, . . . , N2. Here, N2 is the total number of days in Tr2. Symbol

xd =
[

xd
1 , xd

2 , · · · , xd
v, · · · , xd

V

]T
is a V-dimensional feature vector, which consists of day-

ahead weather forecast wd and solar power forecast ŝd. Symbol yd is the corresponding
class label defined in (2). An NB classifier computes the probabilities that an unclassified
sample belongs to certain class label(s) conditioned on the feature values using Bayes’
theorem, as depicted in (3).

P(Y = C|X = x) =
fX|Y=C(x)·P(Y = C)

fX|Y=0(x)·P(Y = 0) + fX|Y=1(x)·P(Y = 1)
(3)

Here, C ϵ {0, 1} is the class label, fX|Y=C(x) is the probability density function (PDF) of
feature vector x given that Y attains class label C, and P(Y = C) is the prior probability of
class C. It is assumed that the prior probability follows a Bernoulli distribution.

The NB classifier assumes conditional independence of the features, meaning that the
value of a particular feature is considered independent of other features for a given class,
as expressed in (4).

fX|Y=C(x) =
V

∏
v=1

fXv |Y=C(xv) (4)

Although this assumption may not always hold in some practical applications, NB
classifiers, when coupled with kernel density estimation (KDE), can still achieve accurate
estimations in such cases [32]. KDE is a non-parametric estimation technique for estimating
PDF, which can be described by (5).

f̂X(x) =
1

N2λ

N2

∑
d=1

K

(
x − xd

λ

)
(5)

Here, f̂X(x) represents the KDE of the PDF of a random variable X given N2 realizations
of x,

[
x1, x2, . . . , xN2

]
∼ fX(x). The smoothing parameter λ is also known as bandwidth.

Additionally, K(·) denotes the kernel function. A commonly used choice for this function
is the Gaussian kernel, which is defined in (6).

K

(
x − xd

λ

)
=

1√
2π

e−
1
2

x−xd
λ

2

(6)

The KDE of the conditional PDF of the feature vector X given Y = C can be obtained
through (7). Here, NC is the number of training samples belonging to class C and λC

v is
the bandwidth for the vth feature for class C and selected to optimize the Gaussian kernel
in (6).

f̂X|Y=C(x) =
V

∏
v=1

{
1

NCλC
v

NC

∑
nC=1

K
(

xnc
v − xnc

v

λC
v

)}
(7)

An NB classifier for a specific error interval is trained by simultaneously simulating (3)
and (7) for each training sample of the corresponding interval of a particular hour in dataset
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Tr2. The output probabilities of an NB classifier for the lth interval of hour h can be written
as (8) and (9).

pl
h = P(Y = 1|X = x) (8)

1 − pl
h = P(Y = 0|X = x) (9)

2.4. Review of the DST

The DST is a mathematical framework employed to combine evidence from multiple
independent sources in the presence of uncertainty [26,33]. The DST operates by collecting
information from individual sources represented by a mass function, also known as (a.k.a.)
the basic probability assignment (BPA). The BPAs are then merged using Dempster’s rule
of combination to determine the degrees of belief in a set of events of interest.

When formulating a problem for DST application, a set of all possible solutions, a.k.a.
the frame of discernment, is considered. It is assumed that the events of interest are subsets
of this frame. Let Ω represent frame of discernment and E represent an event of interest,
where E ⊆ Ω. Then, E ∼= Ω − E represents the events in Ω that are distinct from event E.
The BPA for Ω is a function m : 2Ω → [0, 1] that has the following two properties:

(1) m(ϕ) = 0, where ϕ denotes the empty set
(2) ∑Eϵ2Ω m(E) = 1 where m(E) is the degree of belief assigned to event E.

Let m1, m2, . . . , mz represent the BPAs for independent evidence F1, F2, . . . , Fz in
support of event E from Ω. Dempster’s rule of combination can be exploited to construct a
new mass function for combined evidence in support of E using (10).

m(E) = (m1 ⊕ m2 ⊕ . . . ⊕ mz)(E) =
1
U ∑

F1∩F2∩ ... ∩Fz=E
m1(F1)·m2(F2)· · · · ·mz(Fz) (10)

Here, ⊕ denotes the operator for Dempster’s rule of combination, which performs or-
thogonal sum of mass functions supporting event E. And U is a normalization constant
representing the degree of conflict between individual BPAs, as described by (11).

U = ∑
F1∩F2∩ ... ∩Fz ̸=ϕ

m1(F1)·m2(F2)· · · · ·mz(Fz) (11)

2.5. Incorporating Evidence from NB Classifiers Using the DST

The NB classifiers provide individual probabilities indicating the likelihood of forecast
errors falling within a specific interval. To accurately determine the final probability of an
error falling into a specified interval, DST is used to combine the evidence that the error falls
into that interval with the evidence that error does not fall into any other intervals. Because
there are L possible intervals for the error at hour h, there are L possible events, which are
denoted as Eh

1 , Eh
2 , . . . , Eh

l , . . . , Eh
L. Here, Eh

l represents the event that the error falls into
interval Il

h, where {l ∈ Z+ : 1 ≤ l ≤ L}. The frame of discernment at hour h, denoted by
Ωh, can be written as (12).

Ωh = Eh
1 ∪ Eh

2 ∪ . . . ∪ Eh
l ∪ . . . ∪ Eh

L (12)

The mass functions of these individual events, also known as BPAs, are obtained from
the NB classifiers. The mass function ml(Eh

l ) of the event Eh
l is defined in (13)–(14) for all

values of l. Here, Eh
l denotes the event that the error does not fall into the lth interval.

ml

(
Eh

l

)
= pl

h (13)

ml

(
Eh

l

)
= 1 − pl

h (14)
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Because solar generation is inherently non-negative and cannot exceed the generation
capacity of the solar power plant, the constraint described by (15) is imposed on solar
power generation. Here, scap represents the maximum generation capacity of the solar
power plant.

0 ≤ sh ≤ scap (15)

The range of the forecast error is then established using (16) and (17). The bounds
on the index of error interval are set through (18)–(19). Here, ⌈·⌉ represents the ceiling
operation and llower and lupper are the indices of the lowermost and uppermost error
intervals such that 1 ≤ llower < . . . < lupper ≤ L.

0 ≤ ŝh + εh ≤ scap (16)

−ŝh ≤ εh ≤ scap − ŝh (17)

llower =

⌈
−ŝh − ξmin

h
∆h

⌉
(18)

lupper = L −
⌈

ξmax
h −

(
scap − ŝh

)
∆h

⌉
(19)

The frame of discernment is updated according to the lowermost and uppermost error
intervals, as shown in (20).

Ωh = Eh
llower

∪ . . . ∪ Eh
lupper

(20)

Here, instead of combining the evidence from the whole set of error intervals, the frame of
discernment is shrunk to a subset of M intervals, where M = lupper − llower + 1 and M ≤ L.
Next, integrate these pieces of evidence using (10) and (11) to determine the probabilities
of the forecast errors that fall into each of these M intervals, which constitute the mass
function m

(
Eh

i

)
∀i : llower ≤ i ≤ lupper, as illustrated in (21).

m
(

Eh
i

)
= (mllower

⊕ mllower+1 ⊕ . . . ⊕ mlupper )
(

Eh
i

)
(21)

The CDF of the forecast error is derived by accumulating the probabilities. The set of er-
ror values

{
ε1

h, ε2
h, . . . , εk

h, . . . , εM
h

}
and their corresponding probabilities { p̂1

h, p̂2
h, . . . , p̂k

h,

. . . , p̂M
h } for the CDF is calculated using the interval bounds and the width, as outlined in

(22)–(25).
ε1

h = ξmin
h + (llower − 1) ∆h (22)

εk
h = ε1

h + (k − 1)∆h for k = 2, 3, · · · , M (23)

p̂1
h = m

(
Eh

llower

)
(24)

p̂k
h = p̂k−1

h + m
(

Eh
llower+k−1

)
for k = 2, 3, · · · , M (25)

Finally, the CDF of the solar generation at hour h is calculated by adding the day-ahead
deterministic forecast to the error values for hour h, as shown in (26). Here, Ŝk

h represents
the NB-DST forecast whose CDF value is p̂k

h.

Ŝk
h = εk

h + ŝh for 1 ≤ k ≤ M (26)

The framework of the NB-DST method is summarized in Figure 3. In this study, the
NB-DST method is coupled with three deterministic forecasting methods: SVR, ANN, and
QR (median only), resulting in SVR-NB-DST, QR-NB-DST, and ANN-NB-DST models,
respectively. To mitigate the risk of overfitting the NB-DST models to the training data,
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a separate dataset, TS, is reserved for generating performance metrics to evaluate the
models’ effectiveness.
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3. Performance Metrics for Evaluating Probabilistic Forecasts

Assessing probabilistic forecasts is more challenging than deterministic ones because
probabilistic forecasts have various statistical properties. As can be found in the literature,
many state-of-the-art probabilistic forecasting methods are only assessed using certain
sets of evaluation metrics. But the evaluation process needs to balance several critical
aspects, such as forecast accuracy, reliability, sharpness, and uncertainty. This paper aims
at addressing this challenge by evaluating the probabilistic forecasting methods using a
handful of metrics that assess distinct aspects of the forecasts, providing the forecasters with
a framework for critical evaluation. In this section, these evaluation metrics are defined to
evaluate the performance of the probabilistic forecasts.

3.1. Continuous Rank Probability Score

The continuous rank probability score (CRPS) is an evaluation metric widely used in
various forecasting domains, such as weather, solar and wind power, and load forecast-
ing [5,34,35]. It effectively measures forecast accuracy, reliability, and sharpness. CRPS is
defined in (27).

CRPS =
1
N

N

∑
k=1

∫ +∞

−∞

[
p̂k

f cst(x)− ok
sh
(x)
]2

dx (27)

Here, p̂k
f cst(x) represents the CDF of the forecast at instant k. Symbol ok

sh
(x) denotes the

CDF of the observation at instance k, which is defined as ok
sh
(x) =
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𝑗
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𝑀
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Here, �̂�ℎ
𝑗
 represents the forecasted probability of event 𝑗 happening at hour h. Term 𝑦ℎ

𝑗
 is 

defined as 𝑦ℎ
𝑗

= 𝕝(𝑠ℎ ≥ �̂�ℎ
𝑗
). 𝑀 denotes the total number of events considered in the prob-

ability forecast at hour ℎ. To compute the BS for an entire day’s forecast, one can average 
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𝑃�̂�ℎ,(1−𝛼)×100% = 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (�̂�
ℎ,𝜏=

𝛼
2

, �̂�
ℎ,𝜏=1−

𝛼
2

) (30) 

The prediction interval coverage probability (PICP) is a measure of the reliability of a 

probabilistic forecasting method. PICP can be calculated from the (1 − 𝛼) × 100% PI as 

outlined in (31) [38].  

PICP(𝛼) =  
1

𝑁ℎ
∑ 𝕝(�̂�ℎ ∈ 𝑃�̂�ℎ,(1−𝛼)×100%)

𝑁ℎ

ℎ=1

 (31) 
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After the CDF of the forecast is obtained from a probabilistic forecasting method, a 

prediction interval (PI) of the forecast can be calculated. For a confidence level of 
(1 − 𝛼) × 100%, the PI is determined using (30). Here, �̂�ℎ,𝜏 represents the 𝜏𝑡ℎ quantile of 

the forecasted CDF, meaning 𝑃(𝑆ℎ ≤ �̂�ℎ,𝜏) = 𝜏.  

𝑃�̂�ℎ,(1−𝛼)×100% = 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (�̂�
ℎ,𝜏=

𝛼
2

, �̂�
ℎ,𝜏=1−

𝛼
2

) (30) 

The prediction interval coverage probability (PICP) is a measure of the reliability of a 

probabilistic forecasting method. PICP can be calculated from the (1 − 𝛼) × 100% PI as 

outlined in (31) [38].  

PICP(𝛼) =  
1

𝑁ℎ
∑ 𝕝(�̂�ℎ ∈ 𝑃�̂�ℎ,(1−𝛼)×100%)

𝑁ℎ

ℎ=1

 (31) 

Here, �̂�ℎ denotes the forecast at hour ℎ, 𝑁ℎ denotes the total number of forecasting hours 

in a day, and 𝕝(∙)  is an indicator function. A forecasting method is considered more 

(·) is
an indicator function and sh denotes the observed value of solar generation. N stands for
the total number of forecast instances in dataset TS.

A lower CRPS value is desirable as it indicates that the estimated CDF has a lower
spread around the observation. It is evident from (27) that the CRPS penalizes any dis-
crepancies between the forecasted CDF and the actual observations. Moreover, for a
deterministic forecast, the CRPS transforms into the mean absolute error (MAE). This
property makes the CRPS a preferred metric for comparing probabilistic and deterministic
forecasts. CRPS can be further decomposed into three components as outlined in (28) [36].
The methods for calculating CRPS, along with its components—REL, UNC, and RES—are
detailed in [36] and used in this paper.

CRPS = Reliability (REL) + Uncertainty(UNC)− Resolution(RES) (28)
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3.2. Brier Score

The Brier score (BS) is a scoring function widely used to measure the accuracy of
probabilistic forecasts [37]. The BS for a probabilistic forecast at hour h is defined in (29).

BSh =
1
M

M

∑
j=1

[
p̂j

h − yj
h

]2
(29)

Here, p̂j
h represents the forecasted probability of event j happening at hour h. Term yj

h

is defined as yj
h =
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in a day, and 𝕝(∙)  is an indicator function. A forecasting method is considered more 

(
sh ≥ Ŝj

h

)
. M denotes the total number of events considered in the

probability forecast at hour h. To compute the BS for an entire day’s forecast, one can
average BSh across all hours, from h = 1 to Nh, where Nh represents the total number of
hours of the day.

3.3. Prediction Interval Coverage Probability

After the CDF of the forecast is obtained from a probabilistic forecasting method,
a prediction interval (PI) of the forecast can be calculated. For a confidence level of
(1 − α)× 100%, the PI is determined using (30). Here, Ŝh,τ represents the τth quantile of
the forecasted CDF, meaning P(Sh ≤ Ŝh,τ) = τ.

P̂Ih,(1−α)×100% = Interval
(

Ŝh,τ= α
2
, Ŝh,τ=1− α

2

)
(30)

The prediction interval coverage probability (PICP) is a measure of the reliability of
a probabilistic forecasting method. PICP can be calculated from the (1 − α)× 100% PI as
outlined in (31) [38].

PICP(α) =
1

Nh

Nh

∑
h=1
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ŝh ∈ P̂Ih,(1−α)×100%

)
(31)

Here, ŝh denotes the forecast at hour h, Nh denotes the total number of forecasting hours in
a day, and
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(·) is an indicator function. A forecasting method is considered more reliable if
its PICP(α) is closer to the nominal coverage for the confidence intervals of the same size.

3.4. Prediction Interval Normalized Average Width

The prediction interval normalized average width (PINAW) is a metric for measuring
the sharpness of a probabilistic forecast method [38]. Mathematically, PINAW is defined
in (32), where sh denotes the observed solar generation at hour h on the forecast day. In
this formula, the numerator computes the average width of the (1 − α)× 100% PI of the
probabilistic forecast, while the denominator computes the average hourly solar power
generation. A lower PINAW value is desirable, as it indicates a shaper forecast.

PINAW(α) =

1
Nh

∑Nh
h=1

(
Ŝh,τ=1− α

2
− Ŝh,τ= α

2

)
1

Nh
∑Nh

h=1 sh
(32)

3.5. Coverage Width Criterion

The coverage width criterion (CWC) is defined in (33) [39] and can effectively address
the limitations of both the PICP and PINAW. While PICP values closer to the nominal
coverage indicate a more reliable forecast, they do not assess the sharpness of the forecast.
Conversely, a lower PINAW signifies a sharper forecast but does not measure its reliability.
The CWC integrates both PICP and PINAW, providing a comprehensive metric to evaluate
the reliability and sharpness of a forecast simultaneously.
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CWC =

{
β·PINAW f or PICP ≥ PINC

(κ + β · PINAW) ·
(

1 + exp
(
−η · PICP−PINC

100

))
f or PICP < PINC

(33)

Here, PINC represents the prediction interval nominal coverage. Symbols κ, β, and η

represent hyperparameters, which are chosen as suggested in [39]. A lower CWC value is
desirable, as it indicates that a probabilistic forecasting method is more reliable and sharper.

4. Case Study

In this section, day-ahead probabilistic forecasting of solar PV generation is performed
using the proposed NB-DST method. In addition to the SVR-NB-DST, QR-NB-DST, and
ANN-NB-DST methods, the study also implements the AnEn and PerEn methods [21] as
benchmarks. Although there are many probabilistic methods in the literature, they have
not been widely adopted in practice. For example, the PerEn method is still preferred for
benchmarking within both industry settings and research environments, such as those
conducted by the US Department of Energy [40]. The effectiveness of these methods
is evaluated and compared using the performance metrics outlined in Section 3 using
real-world data.

4.1. Data Collection and Selection

The solar generation data used in this study are collected from a 450-kW solar PV
plant located on the rooftop of the Target® store in Vestal, NY, USA (latitude 42◦05′37.0′′

N, longitude 76◦00′06.0′′ W). This plant was established in 2016 with support from the
New York State Energy Research and Development Authority (NYSERDA). Hourly solar
generation data of this plant between 2016 and 2022 are downloaded from NYSERDA’s
website [41].

Additionally, this study incorporates various weather variables that significantly
influence solar irradiance [42]. Historical weather data for the study site from 2016 to
2021, along with historical forecast data for 2022, are collected on an hourly basis from the
website of Visual Crossing weather data service [43]. The weather variables available in this
dataset are listed in Table 1. To select the predictor variables for the forecasting algorithms,
the correlation between solar generation and each numerical weather variable is measured
using Pearson’s correlation coefficient (PCC) [44]. After pre-processing and removing
outliers from the data, the PCC for each numerical weather predictor variable with solar
generation data is calculated. The results are presented in Figure 4. It is observed that
temperature and visibility have a strong positive correlation with solar power generation,
while relative humidity and cloud cover have a strong negative correlation. The correlations
of other predictor variables are weak, as shown in Figure 4, and thus, these variables are
excluded from the model. Solar generation data from the previous day’s corresponding
hours are also included in the model to account for the auto-correlation of the solar power
generation data.

The datasets used in this study are divided as follows: the data from 2016 to 2019 are
designated as the Tr1 dataset, while data recorded from 2020 to 2021 are used as the Tr2
dataset. The data recorded in 2022 are used as the TS dataset. Because weather conditions
are complex and have varying impacts on solar PV generation, separate forecasting models
are built and evaluated under different cloud patterns. Accordingly, the datasets are further
divided into three categories on a daily basis according to the weather conditions using
the approach described in [45]: “clear”, “overcast”, and “partially cloudy”. The daily solar
generation profile on a clear day typically exhibits a smooth bell curve, with the power
generation peaking near the generation capacity during noon. On overcast days, the total
daily solar generation is significantly lower. On partially cloudy days, the hourly solar
generation shows considerable fluctuation, characterized by multiple peaks and troughs
throughout the day.
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Table 1. Weather variables for the study site are available from the Visual Crossing weather data
service (2016–2022).

Weather Variable Description Unit

Temperature Actual temperature ◦C
Dew point Dew point ◦C
Wind chill Wind chill factor ◦C
Heat index Heat index ◦C
Feels like Combination of temperature, wind chill, and heat index ◦C
Humidity Relative humidity %

Precipitation Amount of liquid equivalent precipitation mm
Snow depth Average amount of snow on the ground cm
Wind speed Wind speed at 10 m above ground kmph

Wind direction Direction of wind in reference to the north direction degrees
Pressure Sea level pressure mbars

Cloud cover Amount of sky covered with cloud %
Visibility Distance visible in daylight km

Conditions Weather condition reported by the weather station none
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Subsequently, the forecasting models are first trained using Tr1 and Tr2 datasets for
each hour of the day under these distinct weather conditions. Then, the forecasting models
are evaluated using the performance metrics computed through the TS dataset. Note
that out of 365 days in the TS dataset, there are 124 days classified as “clear”, 129 days
classified as “overcast”, and 112 days classified as “partially cloudy”. The effectiveness of
the forecasting models is evaluated using a 5-fold cross-validation approach.

4.2. Performance Evaluation under “Clear” Weather Conditions

This subsection focuses on assessing the probabilistic forecasting methods during
“clear” weather conditions. The performance metrics for the 124 “clear” days in the TS
dataset are calculated for all the methods and summarized in Table 2. It can be observed
from Table 2 that the three NB-DST methods outperform the AnEn and PerEn methods in
terms of the CRPS. Also, the BS values for the NB-DST methods are considerably lower
than those for the other methods, which indicates NB-DST’s higher accuracy. These three
NB-DST methods show satisfactory reliability and coverage with resolution metrics notably
surpassing those of the AnEn and PerEn methods. Also, a slightly lower value of the
PINAW for the ANN-NB-DST gives it an advantage over the other two NB-DST methods.
While the PICP values for the three NB-DST methods are comparable to those for the AnEn
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and PerEn methods, the NB-DST methods, particularly ANN-NB-DST, exhibit superior
overall performance as indicated by their lower CWC values.

Table 2. Performance metrics of all the forecasting methods evaluated over the 124 “Clear” days.

Method CRPS (%)
CRPS Decomposition

BS (%) PICP (%) PINAW CWC
REL RES UNC

PerEn 11.14 1.20 48.38 58.32 6.87 91.62 19.87 119.32
AnEn 15.38 1.51 44.45 58.32 7.44 84.71 14.67 88.12

QR-NB-DST 7.86 1.58 52.04 58.32 5.73 87.18 9.33 56.08
SVR-NB-DST 7.97 1.41 51.76 58.32 5.41 86.35 9.81 58.96

ANN-NB-DST 6.28 1.38 53.42 58.32 4.62 88.42 7.25 43.60

To further illustrate the performance, Figure 5 shows the estimated 95% PIs from
all the forecasting methods for a particular “clear” day (19 May 2022). The 95% PIs are
obtained using (22) by setting α = 0.05. It can be observed that the 95% PIs of the three
NB-DST methods are narrower than those of the two benchmark methods. Figure 6a shows
the CDF estimate for PV power at 10:00 AM on this “clear” day (19 May 2022). It can be
observed that the CDFs estimated using the ANN-NB-DST and the QR-NB-DST methods
exhibit the lowest deviation from the actual observation CDF. Although the CDF estimated
by the SVR-NB-DST method shows a deviation slightly higher than other NB-DST methods,
it still performs commendably when compared to the benchmark methods.
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Figure 5. The 95% PIs obtained from all the probabilistic solar forecasting methods on a particular
“clear” day (19 May 2022), with regard to (a) SVR-NB-DST, (b) ANN-NB-DST, (c) QR-NB-DST,
(d) AnEn, and (e) PerEn. The red dotted lines denote the actual hourly observations of solar power
and the shaded areas denote the 95% PIs of the forecasted solar generation obtained from the
corresponding methods.
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Figure 6. Estimated CDFs of the PV power using all the probabilistic forecasting methods at 10:00 AM
on (a) a “clear” day (19 May 2022), (b) an “overcast” day (18 December 2022), and (c) a “partially
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4.3. Performance Evaluation under “Overcast” Weather Conditions

In this subsection, the performance metrics are calculated over the 129 “overcast”
days in the TS dataset for all the probabilistic forecasting methods and are summarized
in Table 3. Among these methods, the ANN-NB-DST stands out by achieving the lowest
CRPS. It also exhibits superior reliability and resolution, as indicated by its REL and RES
values, compared to the other methods. Notably, the resolution of all the NB-DST methods
is superior to the two benchmark methods as their PINAW values are much lower. While
the PICP values for the NB-DST methods are further from the ideal 95% nominal coverage
than the benchmark methods, their lower CWC values reflect better overall performance
considering both forecast reliability and sharpness. Additionally, the lower BS values of
the NB-DST methods suggest that the NB-DST methods are more accurate than the other
methods. Among the three NB-DST methods, the ANN-NB-DST method exhibits the most
impressive performance.

Table 3. Performance metrics of all the forecasting methods evaluated over the 129 “Overcast” days.

Method CRPS (%)
CRPS Decomposition

BS (%) PICP (%) PINAW CWC
REL RES UNC

PerEn 5.89 0.51 7.33 12.71 4.73 91.68 1316.20 7897.3
AnEn 6.21 0.54 7.04 12.71 5.61 89.54 1353.90 8123.5

QR-NB-DST 5.74 0.48 7.45 12.71 3.68 86.61 632.80 3796.9
SVR-NB-DST 6.78 0.39 6.32 12.71 3.87 85.47 670.94 4025.7

ANN-NB-DST 5.37 0.41 7.75 12.71 3.13 88.25 581.42 3488.6

To further illustrate the performance, Figure 7 shows the 95% PIs obtained from the
forecasting methods on a particular “overcast” day (28 December 2022). It can be observed
that the 95% PIs for the AnEn and PerEn methods are notably broader than those for the
NB-DST methods. Additionally, the SVR-NB-DST method meets the targeted coverage rate
of 95% PIs, whereas the coverage rates of the ANN-NB-DST and QR-NB-DST methods are
lower than the targeted 95%. This variation highlights the challenges of forecasting under
overcast conditions. The estimated CDFs of the hourly solar generation estimated by the
forecasting methods at 10:00 AM on this “overcast” day (28 December 2022) are illustrated
in Figure 6b. It can be observed from Figure 6b that the CDFs estimated by the NB-DST
methods align more closely to the actual observation CDF than those estimated by the two
benchmark methods.
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4.4. Performance Evaluation under “Partially Cloudy” Weather Conditions

In this subsection, the performance metrics are calculated over the 112 “partially
cloudy” days in the TS dataset for all the probabilistic forecasting methods and are sum-
marized in Table 4. It can be observed that the ANN-NB-DST method achieves the lowest
CRPS value, which indicates the best overall performance. Additionally, the reliability
and resolution of the ANN-NB-DST method are also superior to those of other NB-DST
and benchmark methods, as indicated by its lower value of REL and higher value of RES.
Moreover, the lower PINAW values of the NB-DST methods suggest that they have better
resolution than the AnEn and the PerEn methods. While the PICP values for the NB-DST
methods are not as good as those for the benchmark methods, the CWC values, which
consider both PICP and PINAW, suggest a better overall performance for the NB-DST
methods. Notably, the ANN-NB-DST method stands out with the lowest BS, indicating the
highest accuracy among the five methods.

To further illustrate the performance, Figure 8 shows the 95% PIs obtained from all
the forecasting methods on a particular “partially cloudy” day (9 July 2022). It can be
observed that the 95% PIs obtained from the benchmark methods are wider than those from
the NB-DST methods. Also, in Figure 8, some measured points fall outside the 95% PIs
obtained from the CDFs estimated by the NB-DST methods. In contrast, such occurrences
are not observed with the AnEn and PerEn methods. The observation highlights a strategic
trade-off made by the NB-DST methods, prioritizing improved resolution over coverage
probability. Figure 6c shows the CDFs estimated by all the methods at 10:00 AM on this
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“partially cloudy” day (9 July 2022). The CDFs estimated by the NB-DST methods show
smaller deviations from the actual observed solar power CDF than those estimated by the
AnEn and PerEn methods.

Table 4. Performance metrics of all the forecasting methods were evaluated over the 112 “partially
cloudy” days.

Method CRPS (%)
CRPS Decomposition

BS (%) PICP (%) PINAW CWC
REL RES UNC

PerEn 9.30 0.55 33.93 42.68 5.24 90.86 27.67 166.12
AnEn 9.98 0.64 33.34 42.68 6.77 86.33 28.60 171.70

QR-NB-DST 8.15 0.65 35.18 42.68 5.72 88.28 16.92 101.62
SVR-NB-DST 8.55 0.78 34.91 42.68 5.28 84.91 17.37 104.32

ANN-NB-DST 6.21 0.49 36.96 42.68 3.94 87.89 13.24 79.54
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and (e) PerEn.

4.5. Overall Comparative Analysis

The results from Tables 2–4 are synthesized to evaluate the overall performance of
the proposed method over the 1-year testing dataset, TS. The findings are presented in
Table 5. Notably, the NB-DST methods outperform the benchmark methods on nearly all
performance metrics except for the PICP. This exception is understandable because the
PI estimates of the PerEn and AnEn methods are considerably wider than those of the
NB-DST methods. Even with the exception, the significantly better PINAW and CWC
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values suggest the overall superiority of the NB-DST methods. According to Table 5, the
ANN-NB-DST emerges as the best-performing method among the NB-DST variants.

Table 5. Performance metrics of all the forecasting methods evaluated over the 1-year testing dataset.

Method CRPS (%)
CRPS Decomposition

BS (%) PICP (%) PINAW CWC
REL RES UNC

PerEn 8.72 0.76 29.44 37.40 5.61 91.41 480.42 2882.61
AnEn 10.48 0.90 27.82 37.40 6.59 86.91 492.26 2953.67

QR-NB-DST 7.20 0.91 31.11 37.40 5.00 87.32 232.01 1392.15
SVR-NB-DST 7.73 0.86 30.53 37.40 4.83 85.60 245.79 1474.82

ANN-NB-DST 5.94 0.76 32.23 37.40 3.88 88.20 212.01 1272.18

Figure 9 further illustrates the percentage improvements in CRPS and CWC of the
ANN-NB-DST method over the PerEn method across all weather conditions. As explained
before, CRPS measures the overall deviation of the estimated CDF from the actual measure-
ments, indicating the forecast accuracy, while CWC measures the reliability and sharpness
of the forecasted CDF. Notably, the ANN-NB-DST method achieves over 33% improvement
in CRPS under clear and partially cloudy weather conditions. This result indicates that
the CDF estimated by the ANN-NB-DST method deviates less from the actual solar power
measurements than the PerEn method. Also, the improvement in CRPS is less pronounced
(<10%) under overcast weather conditions, reflecting the challenges in predictive accuracy
under such weather. Despite this, results from Figure 7 and Table 3 suggest the overall
superiority of the ANN-NB-DST method in accuracy and sharpness with a slight reduction
in reliability. Moreover, the CWC improvement remains consistent (more than 52%) across
all the weather conditions, indicating the higher reliability and better sharpness of the
ANN-NB-DST method than the benchmark method.
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5. Conclusions and Future Work

This paper proposes the NB-DST method, a novel approach for quantifying forecast
errors of a deterministic forecasting method by estimating the CDF using a non-parametric
technique. The NB-DST method has been integrated with deterministic forecasting methods
such as SVR, ANN, and QR to generate probabilistic forecasts under different weather
conditions. Comparisons with established benchmark methods (AnEn and PerEn) using
real-world data reveal that the NB-DST methods consistently outperform the benchmarks in
terms of lower CRPS, BS, and CWC values. Among the tested methods, the ANN-NB-DST
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method emerges as the top performer, consistently producing reliable and high-resolution
CDF estimates across various weather conditions, establishing it as the superior option for
probabilistic photovoltaic (PV) forecasting among the methods evaluated.

Future studies will focus on exploring a wider range of deterministic forecasting
methods in conjunction with the NB-DST method to enhance forecast robustness and
consistency. Additionally, this study considered only a limited number of meteorological
variables due to data availability limitations. Thus, an important direction for future
investigation is to incorporate a more comprehensive set of meteorological variables into
the forecasting models. This expansion will enable a deeper exploration of their impact
on forecasting accuracy and provide more comprehensive insights into the dynamics of
probabilistic PV forecasting.
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