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Abstract: The SARS-CoV-2 global pandemic prompted governments, institutions, and researchers to
investigate its impact, developing strategies based on general indicators to make the most precise
predictions possible. Approaches based on epidemiological models were used but the outcomes
demonstrated forecasting with uncertainty due to insufficient or missing data. Besides the lack of
data, machine-learning models including random forest, support vector regression, LSTM, Auto-
encoders, and traditional time-series models such as Prophet and ARIMA were employed in the
task, achieving remarkable results with limited effectiveness. Some of these methodologies have
precision constraints in dealing with multi-variable inputs, which are important for problems like
pandemics that require short and long-term forecasting. Given the under-supply in this scenario,
we propose a novel approach for time-series prediction based on stacking auto-encoder structures
using three variations of the same model for the training step and weight adjustment to evaluate its
forecasting performance. We conducted comparison experiments with previously published data
on COVID-19 cases, deaths, temperature, humidity, and air quality index (AQI) in São Paulo City,
Brazil. Additionally, we used the percentage of COVID-19 cases from the top ten affected countries
worldwide until May 4th, 2020. The results show 80.7% and 10.3% decrease in RMSE to entire and test
data over the distribution of 50 trial-trained models, respectively, compared to the first experiment
comparison. Also, model type#3 achieved 4th better overall ranking performance, overcoming the
NBEATS, Prophet, and Glounts time-series models in the second experiment comparison. This model
shows promising forecast capacity and versatility across different input dataset lengths, making it a
prominent forecasting model for time-series tasks.

Keywords: auto-encoder; SARS-CoV-2; forecast; time-series

1. Introduction

COVID-19 outbreak was first reported in December 2019 and resulted in significant
losses requiring several non-pharmaceutical interventions [1] to its initial control [2,3].
On 30th January 2020, the World Health Organization (WHO) declared COVID-19 as an
international public health emergency. Following that, some places imposed lockdown
and suspension of all public transportation, flights, and trains. Despite this, the number
of confirmed cases increased rapidly, and a large number of deaths were reported [2,4].
In order to help the disease control, many researchers around the world have proposed
a variety of estimation techniques to predict such numbers or even a modeling on how
the viruses spread out [5–7]. However, a global pandemic problem may be exacerbated by
several factors that are not immediately apparent, such as climatic conditions and social and
also political factors [8]. As a real-world problem, several factors can directly or indirectly
affect the behaviors of the pandemic. Actually, studies are still trying to find the factors that
really influence the spread of the virus SARS-Cov-2. Air quality, social distancing, and the
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use of specific equipment, among others, are known to be some of the factors that can have
an impact. Researchers are not yet confident which of these factors influence to a greater
degree, but there is already some good guidance as to which ones can stimulate the spread
of the virus [9–13].

At the early stages of the pandemic outbreak, models such as SIR [5,14,15], SEIR [16,17],
SEIRD [18] and ARIMA [19] were firstly used aiming at overall understanding its behavior.
These methods are based on statistical and or mathematical models and they use epidemio-
logical parameters, which are very helpful in understanding the pandemic dynamics in the
short term. However, determining the long-term dynamics is a more challenging task that
these models type sometimes falls short of. In this context of developing methodologies
that aim to understand the consequences, behavior, and more accurate performance on
long-term (or short-term too) prediction data of the COVID-19 pandemic, other studies
started developing methods based on Artificial Intelligence for the prediction task. Ma-
chine learning techniques and data driven models [20] were mostly applied to predict the
number of infected and deaths, besides the virus spread rate. Data-driven approaches
can use artificial intelligence techniques to operate on data in order to better understand
it, generating functional tools for a given action and making future estimates from time
series data. Time series is how pandemic data global spreads are understood once there are
temporal dependencies in its values [21]. Finally, these models might be able to assimilate
complex information, which can be helpful for possible decision-making. Among the
most common AI techniques used in data-driven models are artificial neural networks
(ANN) [22–25]. These networks prove to be strong allies to data as sources of information,
due to the ability of these networks to approximate complex functions, which usually
model problems considered to be real-world [26].

Among the data-driven neural network-based models, [21] initially proposed a stacked
auto-encoder architecture to univariate COVID-19 daily cases peak in some Brazilian states
during the early pandemic outbreak. The results show a significant ability to predict the
proposed data, but the study does not propose or implement any multivariable approach.
Furthermore, due to the limited data available at that time, the authors do not evaluate
the model when there is a significantly larger amount of reliable data. To evaluate the
first proposed model [21] in a more complex and real-world scenario, as well as to fill a
lecture gap of multiple objective models, we propose here an extend-based model for multi-
variable COVID-19-related time-series. This proposed model relies on three modifications
concerning the original and three other variants at the training step. As well, the new model
demonstrates capability for time series forecasting. In practice, the approach provides
an accurate and input-flexible forecasting model. This is a benefit in scenarios where
government authorities can take the edge of precise predictions and take countermeasures
to mitigate potential pandemic spread.

2. Related Works on COVID-19 Pandemic

Due to the demand for knowledge on the pandemic behaviors of the world popula-
tion, data-driven models, more specifically statistical and machine learning techniques,
were initially proposed and used to understand the series provided by COVID-19. In this
direction, short-term forecasting has been provided, for example, using methods derived
from smoothing model families [27]. In this case, non-seasonal multiplicative error and a
multiplicative exponential trend are used in a work that aims to predict global confirmed
cases and deaths related to the coronavirus over four months with a ten days step in an
iterative process. The authors have compared six machine learning approaches, named
Cubist Regression (CUBIST), Random Forest (RF), Ridge Regression (RIDGE), Support
Vector Regression (SVR), Stacking-Ensemble learning (SEL), and ARIMA. Experiments
forecast one, three, and six days ahead of COVID-19 cumulative confirmed cases in ten
Brazilian states, showing SVR and SEL were the overall best models. The Eigen-Values
Decomposition Hankel Matrix is applied to decompose the non-stationary data series,
which results in subsequent, monocomponent subseries. Also, the unit-root tests are used
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to check the decomposition stationarity, assisting the ARIMA method in forecasting daily
new cases for India, the USA, and Brazil. Another work in this direction uses the ARIMA
model and the Prophet time-series forecasting to predict the COVID-19 spread for cu-
mulative cases on the world total cases and on the ten most affected countries, showing
the more effectiveness of the ARIMA model [28]. From the above works, we can notice
that the ARIMA model is frequently used to forecast time series due to its simplicity
and composition, which was originally created to deal with this kind of problem. In a
relative direction, more recently, some methodologies propose a forecast by analogy based
on previously observed behavior peaks and declines of pandemic cases in Italy [29].
The authors looked up two winter periods of 2022/2023 and 2023/2024 from COVID-19
infection. They extracted values of the weekly deaths and then computed the percent-
age of the change for each consecutive pair of values of the growth/decline rates of the
series, comparing the most recent value in the series with the previous one. In conclu-
sion, the authors claim the proposal is adequate and innovative, having a low percentage
range of error.

Regarding another category based on machine learning models, we can find works
that use artificial neural networks to solve the time series forecasting related to the COVID-
19 pandemic. Ref. [30] proposes an LSTM model to bi-weekly predicting the number of
confirmed cases in Canada and Italy until March 2020, also comparing the growth rate.
[31] also uses an LSTM to predict the number of confirmed and recovered cases 30 days
ahead of an Indian dataset. As well, [8] use a Stacked LSTM as the network architecture
for both the multivariate and univariate model. Ref. [23] use deep LSTM, Stacked LSTM,
Bi-Directional LSTM, and Convolutional (CNN) LSTM to 30 days forecasting, predicting,
and comparing the confirmed and deaths cases of COVID-19 in India and the USA, and the
authors suggested a better performance of the ConvLSTM. Ref. [32] propose an RNN to
predict 30 and 40 days to daily Brazilian confirmed cases, suggesting preventive measures
according to the predicted values. Ref. [33] use a Multi-Layer Perceptron (MLP) to predict
the spread of pandemic world-wild to 30 days ahead, achieving a high R2 score to the
confirmed cases.

Regarding the direct application to COVID-19 using Auto-Encoders, we can also find
some works related to solving the time series pandemic forecasting problem. Ref. [34]
provide a comparative study with five different models of neural networks, including
the RNN, LSTM, Bi-LSTM, GRU, and the Variational Auto-encoder. According to the
authors, the last one achieved better results than the other models for predicting the
number of new COVID-19 cases and of recovered cases. They propose to mix a Variational
Auto-Encoder with LSTM networks, dividing the model into two branches. The first is
a Self-Attention Auto-encoder LSTM, which receives data by daily and country virus
propagation, government policies adopted, and urban characteristics. They also divide
this first component into a self-attention LSTM Sequence Encoder and an LSTM Sequence
Decoder. According to the authors, the self-attention mechanism makes the LSTM capable
of understanding the representation of its inputs relating to the positioning of each sequence.
The second branch of the model is a Variational Auto-Encoder (VAE) working in parallel
with the self-attention LSTM mechanism. The VAE receives as data a dimensional, spatial
matrix that has been repeated throughout the training duration with timestamps referring
to the date and time. The outputs of the two model branches are concatenated in the feature
dimension and sent to the LSTM sequence decoder, which returns the prediction values.
This study attempts to predict the spread (accumulated number of cases) of COVID-19
worldwide and for each country separately. They trained two models, where the first
forecasts three-time samples and the second predicts ten. The data used for training the
models were collected from several world datasets and also for each country separately.
Some countries tested were the USA, Italy, and Spain, among others. The RMSE and MSLE
are used as evaluation metrics.

An integration between a deep convolutional network and an LSTM is proposed
by [35]. This study uses images from the Lung Ultrasound Database (LUDB) as input,
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trying for a classification of these images to predict the risk of severe symptoms of COVID
in the patient. Initially, CNN weights pass through to an Auto-Encoder for noise removal
and feature extraction, another commonly used case for Auto-Encoders. A point to be
mentioned is that the authors applied the feature extraction on the weights resulting from
the CNN block. These values are presented to the LSTM network for the image classification
into four patient condition scores. The model has been tested with data from the Italian
COVID-19 LUDB and compared with another model named DenseNet-201. They extracted
four classification metrics to evaluate the model: accuracy, sensitivity, specificity, and
F1 score.

Finally, using images to make predictions and classifications, [36] applied Convolu-
tional Auto-Encoders to detect anomalies in chest radiographs of healthy patients. The
authors noted abnormal features on the X-ray of patients infected with the COVID-19
virus. Thus, they formulated a problem with only one classification class, characterizing an
anomaly detection situation. This Convolutional model relies on two types of images as
inputs. The inputs are only images of healthy adults and healthy adults with pneumonia
other than COVID-19. By doing so, a case of detection of COVID-19 is an anomaly. The
authors used other machine learning techniques joint with Convolutional Auto-Encoders,
such as batch-normalization and upsampling layers. The dataset used for the experiments
is the COVIDx, composed of 8851 healthy X-ray images, 6052 other pneumonia types than
COVID-19, and 498 samples of COVID-19 infected people. Finally, the area under the curve
calculation (AUC) ROC is used to evaluate the model and the proposed methodology.

As seen in these examples, there are several works in the literature focused on the
problem of the COVID-19 pandemic. These works vary from applications that use methods
dedicated to dealing with time series, and more general as artificial neural networks.
Furthermore, the auto-encoder networks are not only used for time series prediction but
also for detecting possible cases.

3. Auto-Regressive Multi-Variable Modified Auto-Encoder

We propose a multivariate input data-driven model to predict h samples applied for
time-series forecasting tasks such as COVID-19 deaths. The proposed model in this work is
a stacked auto-encoder that enhances the baseline model initially presented by [21]. Thus,
to a better understanding of our model, some background theory in this topic will be
presented in the next subsections.

3.1. Auto-Encoders

The concept of auto-encoder was first proposed by Yann LeCun in his doctoral the-
sis [37]. An auto-encoder is a specific artificial neural network trained to be able to copy its
input into its output [38]. This structure is basically composed of two parts: the encoder
and the decoder. These, in turn, can be seen as two functions Z = h(X) and X̂ = g(Z).
The first one is responsible for mapping the input data x to the latent space (or feature
space). While the second produces the data reconstruction, mapping Z from the latent
space back to the input data space x [38,39]. Figure 1 shows a high-level representation of
an Auto-Encoder.

Nowadays, auto-encoders have generalized the idea of encoder and decoder in ad-
dition to the deterministic functions shown above, for mapping into stochastic functions
pencoder(Z | X) and pdecoder(X̂ | Z), where X̂ is the reconstruction of the input signal X.
Given real applications, it is not entirely an interest that the auto-encoder learns just how
to copy the input X. Then, restrictions are made so that auto-encoders learn to copy the
inputs roughly [39]. Furthermore, these structures are widely used for input dimensionality
reduction and features extraction [38].
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h(X)
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g(Z)
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Figure 1. High -level representation of an auto-encoder.

In the application of an auto-encoder on a given training set Ts = {Xi|Xi ∈ Rd}, where
1 < i < n and Xi is the i-th feature, this can be modeled as:

AE =

{
Z = h(we, be; X)

X̂ = g(wd, bd; Z)
(1)

Having the Equation (1), h(·) is the encoder and g(·) is the decoder, which are usually
artificial neural networks. Terms we and be are the encoder parameters and wd and bd are
the decoder parameters. In the case of neural networks, these parameters are the weights
and biases of the network’s encoder and decoder, respectively. Training an auto-encoder is
done by solving an optimization problem, in this case, to minimize the loss function given
by Equation (2):

J(θ) =
1
N

n

∑
i=1
∥Xi − X̂i∥2

2 (2)

where θ = (we, be; wd, bd). In other words, the loss function J returns an error between the
input feature Xi and the output of the network X̂i, and another algorithm uses this error to
adjust the weights and bias values. For the optimization solution present in Equation (2),
the Gradient Descending or Stochastic Descending algorithm is normally used.

Throughout time, several types of auto-encoders have been proposed by different
researchers. The Sparse Auto-encoder (SAE) is derived from the original auto-encoder,
applying sparse regularization in the latent space. The Denoising Auto-encoder (DAE)
is an auto-encoder that removes the noise from the input data. The Convolutional Auto-
Encoder (CAE) extends from the conventional auto-encoder by instantiating the encoder
and decoder function with convolutional neural networks [38]. The Contractive Auto-
encoder, Variational Auto-Encoder, and Modified Auto-Encoder [21] are other types of
auto-encoders that are present in the literature.

3.2. Modified Auto-Encoder

Due to the short data size during the early COVID-19 outbreak, the authors proposed
an Auto-encoder based model for uni-variable forecasting daily cases, in their baseline
approach [21]. The model has one single input layer followed by three encoder layers that
receive the same input data, where each encoder generates its own latent space. The three
encoder latent spaces are concatenated before they are shown to the prediction layer. At
the same time, each decoder generates its decoder output. The three decoded outputs have
their average calculated to dimension match the input to error calculation. Finally, the
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prediction layer output has its values approximated to the desired value. Figure 2 shows a
layer schematic representation of the originally proposed modified auto-encoder.

Figure 2. Original Modified Auto-encoder model. The image has author’s authorization to use [21].

In this work, we propose three modifications and extended variations for the above
Modified Auto-Encoder model, which was originally presented by [21]. We base these
three model types on three structural changes through which the model perceives the
inputs, on the manner it manages the latent space, and on the approach to adjusting the
model weights.

3.3. Baseline Structural Changes

The changes in the adopted model of the Modified Auto-Encoder and the results of
this work are based on three basic conditions. The first in how the model observes the
inputs. The second is how the model deals with the latent space. And the third is how to fit
the model in the training steps. The first proposed change is to add a new Auto-Encoder
for each input feature. Figure 3 shows the model flow overview and how our proposed
base model deals with N time-series features as input.

...

ENCODER 1

ENCODER 2

ENCODER N

...

DECODER 1

DECODER 2

DECODER N

LS1

COVID-19
DEATHS

PREDICTOR

AEERROR

PDERROR fERROR+
AUTOENCODERS
AND PREDICTOR

WEIGHTS 
ADJUSTMENT

I
N
P
U
T
S

Σ

LS2

LSN

RC1

RC2

RCN

eERROR

eERROR

eERROR

LS1 || LS2 || ... || LSN

Figure 3. Multi-variable Modified Auto-encoder model flow overview.

A new auto-encoder network is created for each series (feature), thus the whole
structure has the same number of encoded series. Following the original modified auto-
encoder architecture, increasing the input features of the model would require at least
three auto-encoders for each input series, which can lead to a large model. To mitigate this
potential problem and keep the network simple. We use only one auto-encoder per input
feature and more neurons at the hidden layer, thus, denominating it as growth layer. Like
the three auto-encoder latent spaces from the first proposed network, this aims to amplify
the network information extraction. Figure 4 shows a representation of this new proposed
auto-encoder architecture.
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Figure 4. The encoded values are concatenated, forming a single latent space.

From Figure 4 we can see that the architecture of each auto-encoder can vary. But,
there must always be a layer of greater or equal size between the input and the last encoder
layer, equals to the decoder architecture. A way to represent the architecture of this auto-
encoder is [IN, G, LS] to the encoder and [LS, G, OT] to the decoder. IN is the input size,
G is the growth layer size, and LS is the latent space size. The OT is the output layer
size, which always has the same size as IN. We also change from the LSTM network
to MLP fully connected layers. From this point, it is possible to understand the second
proposed modification. As in the original proposal, all of those encoded values are unified
(concatenated) into a single latent-space series. The difference is that we concatenate latent
spaces from different series of inputs instead of the same one.

From Figure 3, we can observe that the latent space has a reduced representation of
each input time series, which are called LS1, LS2, . . . , LSN. This final concatenated latent
space undergoes one more linear transformation (prediction layer) to return the forecasting
values. The training step has a fundamental importance to understanding on how the
model works. As explained in Section 3.1, the model tries to minimize the error between the
predicted value and the expected one. In our model, this occurs when each auto-encoder
tries to recreate the input of the series (RC1, RC2, . . . , RCN and for the prediction error. We
summed the auto-encoder’s recreation errors into a single error named aeerror. The first
equality in Equations (3) shows how aeerror is calculated with terms e1, e2, . . . , en being the
reconstruction errors of each auto-encoder in the model. We named the loss function Loss,
so the prediction error pderror is the result of this function from the forecasted value and the
expected value. The set of Equation (3) show how these errors and the model final terror
are acquired.

aeerror =
n

∑
i=1

ei

pderror = L( f orecasted | expected)

ferror = aeerror + pderror

(3)

The set of Equation (3) implements our third change. These are the proposed funda-
mental changes compared to the original architecture of the model on the COVID-19-related
time series prediction problem. Having the above major changes been implemented, we
now introduce other three minor modifications, which are done at the training steps and
weights adjustment. This lead us to a three proposed models variations, that aim to evaluate
the whole model’s flexibility and, as expected, to improve prediction accuracy.

3.4. Model Type#1

The model titled as Type#1 is the one explained in Section 3.3 without any modification.
This model type calculates all errors and adjusts the weights to reduce the accumulated auto-
encoder and predictor errors at a glance. For each step in training, the auto-encoders have
errors in recreating their feature input. Also, the predictor layer has an error concerning the
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target prediction values. The sum of the recreation auto-encoder and the predictor errors
generates the total model error. The backpropagation algorithm receives these errors and
calculates the fitted weights. These steps are described in Algorithm 1.

Algorithm 1: Train loop for model Type#1

Require: Windowing dataset Di of size N, where i = {1, 2, . . . , N}.
forall epoch do

forall batch do
decoded, pred← M(input)
aeerror ← loss_ f unction(decoded, input)
pderror ← loss_ f unction(pred, target)
terror ← (aeerror+pderror)
zero_gradient_optimizer()
backward_step()
optimizer_weghts_step()

end
end

3.5. Model Type#2

The model Type#2 is the one explained in Section 3.3, but we previously fit all the
auto-encoders, and then the predictor is trained after this. For each input time-series feature,
we have the auto-encoder reconstruction error singly. We freeze the decoder component
weights and fine-tune the encoder component weights and the predictor error at a glance.
Algorithm 2 describes the training step for this auto-encoder type.

Algorithm 2: Train loop for model Type#2

Require: Windowing dataset Di of size N, where i = {1, 2, . . . , N}.
forall feature do

forall epoch do
forall batch do

decoded← M(input)
aeerror ← loss_ f unction(decoded, input)
zero_gradient_optimizer()
backward_step()
optimizer_weghts_step()

end
end

end
f reeze_decoders_weights()← True
forall epoch do

forall batch do
pred← M(input)
pderror ← loss_ f unction(pred, target)
zero_gradient_optimizer()
backward_step()
optimizer_weghts_step()

end
end
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From Algorithm 2, we can notice that the encoder component is not based in the loss
error on the predictor train, but with their weights not freezing, the backward gradient
function also calculates it and fine-adjusts it.

3.6. Model Type#3

The model named as Type#3 is the one explained in Section 3.3. However, in the
same way as it occurs in the Type#2, we fit all auto-encoders previously and then the
predictor is trained after this. For each input time-series feature, we have the auto-encoder
reconstruction error singly. We freeze the decoder component weights, and for this type,
we also freeze the encoder component weights. Algorithm 3 shows the training steps for
this type.

From Algorithm 3, we can notice that the auto-encoders components have their
weights freezing, so the backward gradient function calculates only the predictor’s new
weights and adjusts them.

These three variations intend to discover whether training and weight adjustments
of the predictor network separately from the auto-encoders can improve or worsen the
network’s performance, as it will be shown in the experiments, next. By evaluating this
point and having this information, it is possible to make the auto-encoders independent,
training them in isolation to serve only as “boxes” that, when receiving input from a series
in which they have already perceived their nuances and variations (in this case has been
trained), they are able to generate a latent space that has a good representation of the
input. At this point, the adjustment step split is relevant to understanding how much the
predictor’s error can influence the weight adjustments and consequently influences the
model when coding the inputs.

Algorithm 3: Train loop for model Type#3

Require: Windowing dataset Di of size N, where i = {1, 2, . . . , N}.
forall feature do

forall epoch do
forall batch do

decoded← M(input)
aeerror ← loss_ f unction(decoded, input)
zero_gradient_optimizer()
backward_step()
optimizer_weghts_step()

end
end

end
f reeze_encoders_weights()← True
f reeze_decoders_weights()← True
forall epoch do

forall batch do
pred← M(input)
pderror ← loss_ f unction(pred, target)
zero_gradient_optimizer()
backward_step()
optimizer_weghts_step()

end
end
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4. Experiments

To evaluate the proposed model in the time series forecasting task for COVID-19-
related data, we promote a comparison of the three proposed model types with the ap-
proaches proposed in two previous works. First, [8] has proposed a Long Short Term
Memory (LSTM) model to forecast the number of COVID-19 deaths for the São Paulo state,
in Brazil. To evaluate the model, the authors used a multi-variable dataset from 27 March
2020, to 3 June, 2021. The dataset was composed of two directly related time series of the
pandemic and three indirect (or possible) related time series. The two directly related time
series were the number of COVID-19 cases and deaths, and the indirect series was the
temperature, humidity, and the air quality index (AQI). The AQI is the max value of some
measured pollutants in the air. The authors trained 50 trails from their model architecture
with four different configurations of input series. From those trials, they extracted a statis-
tical distribution concerning the model Root Mean Square Error (RMSE) from the entire
and test forecasting datasets. To read more about this study, please refer to the original
author’s article [8], including the implementation and dataset, which are accessed on github
(https://github.com/Natalnet/ncovid-air-paper (accessed on 21 November 2023)). The
comparison with this work aims to position our work in the literature concerning models
with a statistical training evaluation through multi-variable input features, directly and
indirectly, related to the COVID-19 pandemic. Due to a fair comparison, we used the same
dataset and values for window moving average, window input size, and other parameters
described in Table 1.

Table 1. Input features and some hyperparameters for Comparison 1.

Configuration Input Features Trails Epochs Train/Test

1 Deaths. 50 150 90%/10%
2 Deaths, AQI. 50 150 90%/10%
3 Deaths, AQI, Temperature, Humidity. 50 150 90%/10%
4 Deaths, Cases, AQI, Temperature, Humidity. 50 150 90%/10%

The moving average used to enter a temporal correlation and decrease noise on the
inputs was 14 samples (biweekly). We also used a window of seven series samples for
each input with an overlap of six (6) series samples from each other. Thus, the difference
between each input was only the current time sample. We use the same auto-encoder
architecture {7, 28, 7}, as the explanation in Section 3.3 (mirror to the decoder), for all three
proposed model types. We use a learning rate of 0.001 for all optimizers in all trails, the
RMSE as the loss function, the Rectifier Unit (ReLU) as the activation function between the
neurons layers, and a batch size of 16 inputs before weights adjustment. We do not use any
dropout or data normalization layer on our model trails.

As a second work to compare, [40] proposes to evaluate six time-series models for
the COVID-19 forecast task. The authors compared the TBAT, ARIMA, HWAAS, NBEATS,
Prophet, and Gluonts models. Also, they applied the Friedman statistical test to rank the
models. This work performed the models over the ten more affected countries world-
wide at the study point, the United States, Spain, Italy, the United Kingdom, France,
Germany, Russia, Turkey, Brazil, and Iran. All datasets to train and forecast were com-
posed of the percentage of active COVID-19 cases concerning the total population from
the pandemic start to 4 May 2020. To see more details about these models implementa-
tion( https://github.com/ML-Upatras/COVID-19-A-comparison-of-time-series-methods-
foractive-cases-forecasting (accessed on 26 November 2023)) and dataset formulation, refer
to the original work [40]. We could not find any specific explanation from the authors about
the architecture or hyperparameter variance of the models to attain the results performance.
So, we have done a grid search in our models, changing only the seed generator to the
layer’s weights values, from 1 to 100, with a step of 2 values (1, 3, 5, . . . 99) over 4000 epochs
each. We use the same auto-encoder architecture {7, 28, 7} to three proposed model types as

https://github.com/Natalnet/ncovid-air-paper
https://github.com/ML-Upatras/COVID-19-A-comparison-of-time-series-methods-foractive-cases-forecasting
https://github.com/ML-Upatras/COVID-19-A-comparison-of-time-series-methods-foractive-cases-forecasting
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in the past comparison experiment. The learning rate was also 0.001 for all optimizers, the
RMSE as the loss function, the Rectifier Unit (ReLU) as the activation function between the
neurons layers, and one-third of the training dataset as batch size. Due to the low absolute
values of COVID-19 indicators percentage, we multiplied the dataset by 100 before the train-
ing. This maneuver facilitated the proposed model to recognize the variance of the values.
After, we divided it by 100 to conserve the scale and extract the metric. We also split the
dataset into 75% to train and 25% to test to have the same length as the comparison experi-
ment, using a window of seven series samples for each input with an overlap of six (6) series
samples from each other. Comparing the proposed model to this work aims to position our
work in the literature concerning traditional time series models. Also, evaluated our model
for another pandemic indicator prediction that is not directly a collected data time-series,
such as deaths and cases. We selected the model with the seed generator resulted in the
lowest final prediction RMSE. Table 2 shows the seed with the lowest prediction RMSE for
each country.

Table 2. Seed generator to the layer’s weights values to each country and proposed model type.

Country Type#1 Type#2 Type#3

US 25 25 17
Spain 57 7 29
Italy 19 29 35
UK 3 3 17

France 31 17 1
Germany 5 53 21

Russia 49 3 55
Turkey 27 25 9
Brazil 49 3 51
Iran 13 25 25

Thus, the overall main goal of the comparing experiments is to evaluate our proposed
model among different use cases, quantify its flexibility, range of applications, and if it can
reach state-of-the-art COVID-19-related time-series forecasting.

5. Results

All implementations of the experiments presented above were executed in Python,
using the machine learning framework Pytorch [41]. We also used other frameworks and
libraries such as Numpy [42], Pandas [43], and Scikit-Learn [44]. In this Section, we present
the results of these experiments that we performed for comparing our implementation to
the other works.

5.1. Comparison with Stacked LSTM Uni and Multivariate

In the first work for comparison [8], the value showed and measured in the experi-
ments to evaluate the model was the median of the RMSE metric over the distribution. The
authors extracted the forecast RMSE from the entire model and the test datasets. Tables 3
and 4 show the comparison of the three proposed model types to the referenced work, for
entire and test datasets respectively.

Table 3. RMSE median values from the comparison and proposed models for the entire dataset.

Configuration Type#1 Type#2 Type#3 LSTM

1 10.55 (79.2%) 10.64 (79.0%) 4.79 (90.5%) 50.83
2 10.39 (72.9%) 10.50 (72.6%) 6.23 (83.7%) 38.34
3 11.22 (57.0%) 11.01 (57.8%) 6.41 (75.4%) 26.10
4 12.46 (71.9%) 11.18 (74.8%) 8.54 (80.7%) 44.47

The lowest RMSE values acquired among the proposed model types are in bold. Between parentheses, we show
the percentage improvement of the RMSE metric concerning the LSTM comparison model.
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Table 4. RMSE median values from the comparison and proposed models for the test dataset.

Configuration Type#1 Type#2 Type#3 LSTM

1 13.80 (−38.4%) 14.58 (−46.2%) 5.74 (42.4%) 9.97
2 13.41 (−10.7%) 14.05 (−16.0%) 8.13 (32.8%) 12.11
3 15.64 (−26.1%) 15.73 (−26.8%) 8.80 (29.0%) 12.40
4 15.59 (−5.90%) 15.39 (−4.50%) 13.20 (10.3%) 14.72

The lowest RMSE values acquired among the proposed model types are in bold. Between parentheses, we show
the percentage improvement of the RMSE metric concerning the LSTM comparison model. The negative value
means no improvement, where the model obtained a worse result.

Table 3 shows the results given by the three model types for the entire dataset. From
these values, it can be noticed that our three proposed models attain better performance
than the comparison model. In the first configuration, our model was more accurate at
79% for Type#1 and Type#2 and almost 91% for Type#3. These results were the most
improved for median distribution values in the entire dataset. Concerning the lowest value
obtained by the comparison model, to Configuration 3, our model Type#3 achieved a 75.4%
improvement rate. Table 4 shows the results acquired by the three model types for the test
dataset. The models of Type#1 and Type#2 did not achieve better results in any distribution
trial. Although, the model Type#3 attained a 42.4% improvement to the best value of the
comparison model for Configuration 1. These results lead to a reasonable accuracy for
forecasting data from a set of information (Table 3). Furthermore, the proposed model
Type#1 and Type#2 could not improve the performance in the test dataset, where only
Type#3 achieved the lowest metric values concerning the comparison with LSTM (previous
work). From these values, we notice that the proposed model Type#3 can better generalize
than the other model types. Figure 5 shows the visual forecasting for the best-fitted model
for each configuration.
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Figure 5. Cont.
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Figure 5. On the vertical axes of the images is the count of new daily deaths caused by COVID-19
(noncumulative). On the horizontal axes are the dates of the occurrences. The model inputs are
windows of size 7 without sample overlap between them. A seven-day prediction was also made,
as in the original comparison article. The blue and orange lines are the original and forecasted data,
respectively. The green span area is referent to the samples in the data test set. (a) Visual forecasting
plot from the best-fitted model to the test distribution for Configuration 1 (D). This forecasting was
resulted by the model Type#3 trained with the seed value of 81. (b) Visual forecasting plot from the
best-fitted model to the test distribution for Configuration 2 (D + A). This forecasting was resulted by
the model Type#3 trained with the seed value of 89.; (c) Visual forecasting plot from the best-fitted
model to the test distribution for Configuration 3 (D + A + T + H). This forecasting was resulted by
the model Type#3 trained with the seed value of 99. (d) Visual forecasting plot from the best-fitted
model to the test distribution for Configuration 4 (D + C + A + T + H). This forecasting was resulted
by the model Type#3 trained with the seed value of 97.

From Figure 5, it is possible to see the daily forecast for the whole dataset. Remarks
in the colored area are the samples that compose the test dataset. The first configuration
presents the prediction more visually closer than the others. The Configurations 2 and 3
have a noise increase, but still with a reliable visual approximation. The last configuration
shows the worst visual approximation, mainly at the curve peak and test part, where the
predictions were less than the desired values.

In this experiment, the major difficulty was the time taken to train all 50 model trails of
each type, for all configurations. Despite that, the reliability and dataset length contribute
to the required few epochs to fit the models, contributing to not increasing, even more, the
time taken.

5.2. Comparison with TBAT, ARIMA, HWAAS, NBEATS, Prophet, and Gluonts Models

In the second work for comparison [40], the values chosen to evaluate the models
were the RMSE in a seven days window, from 28 April to 4 May. Table 5 shows the seven
days test forecast of the three proposed model types and the referenced work comparison
(TBAT, ARIMA, HWAAS, NBEATS, Prophet, and Gluonts models).
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Table 5. RMSE values from the comparison and proposed models for the seven-day test dataset.

Algorithm US Spain Italy UK France

ARIMA 0.007421 0.080094 0.005628 0.005484 0.060824
Prophet 0.013877 0.065433 0.019217 0.007634 0.044482
HWAAS 0.172957 0.031497 0.006616 0.004366 0.011007
NBEATS 0.036958 0.050492 0.008645 0.037623 0.004220
Gluonts 0.044805 0.108842 0.043551 0.046134 0.010549
TBAT 0.009873 0.029295 0.005810 0.004310 0.007003

Type#1 0.016295 0.010258 0.008700 0.099830 0.056099
Type#2 0.016295 0.008289 0.007309 0.154313 0.075555
Type#3 0.035227 0.032317 0.015512 0.043483 0.046800

Algorithm Germany Russia Turkey Brazil Iran

ARIMA 0.006431 0.001536 0.004442 0.004194 0.002628
Prophet 0.037139 0.014681 0.044595 0.009279 0.016281
HWAAS 0.004586 0.002295 0.000887 0.005717 0.001046
NBEATS 0.013192 0.027078 0.018265 0.010870 0.003745
Gluonts 0.057523 0.034479 0.093839 0.002836 0.002277
TBAT 0.003389 0.002193 0.001946 0.005621 0.000425

Type#1 0.002979 0.032710 0.009678 0.008168 0.008500
Type#2 0.003639 0.043008 0.010902 0.012032 0.010388
Type#3 0.008491 0.017300 0.010907 0.001963 0.002387

The lowest values for the RMSE metric concerning the proposed model types and the overall lowest RMSE value
by country are showed in italics and bold, respectively.

Table 5 shows the results acquired by the three proposed model types joined with the
six referenced models. In italics, we have the lowest values for the RMSE metric concerning
the proposed model types. In bold format, we show the overall lowest RMSE value by
country. In Spain, Germany, and Brazil, the proposed model reached the lowest overall
metric value concerning the comparison models. Type#2, Type#1, and Type#3 obtained
those results for Spain, Germany, and Brazil, respectively. From these values, it is possible
to notice that our three proposed models attain better performance than some models and
are worse than others. We conjecture that this may be due to the smaller training data size
that can affect the proposed model’s performance. Table 6 shows the Friedman statistical
ranking recalculation for the comparison models and the proposed.

Table 6. Friedman statistical test ranking (significance level of α = 0.02).

Rank Alghrithm

2.10 TBAT
3.70 ARIMA
3.80 HWAAS
5.20 Type#3
5.25 Type#1
5.80 NBEATS
6.15 Type#2
6.30 Prophet
6.70 Gluonts

Table 6 shows the recalculated rank for comparison and proposed models. It is possible
to see the model Type#3 and Type#1 have better overall Friedman statistical test rank than
the NBEATS, Prophet, and Gluonts models. Model Type#2 was the worst performed among
the proposed models for this experiment, staying better only than the Prophet and Gluonts
models. This rank shows us an overall model classification related to all acquired metrics
in all countries. Those results can lead us to think that our proposed model has affordable
results compared to the well know time series-focused methods.
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In this experiment, the difficulty regards the short dataset length, requiring several
epochs to fit the models. Furthermore, as we did not find any information about the
comparison model hyperparameters, we could not have a north to guide our grid search.
That can cover some aspects which turn the comparison not equitably as we desired. As
a good point, the Friedman statistical test ranking was a functional method to know the
overall position of each model.

6. Discussion

The experiments and results with the proposed model have proven its importance in
researching time series particularly those scenarios requiring feature scalability. However,
because these are mathematical models, it is important to notice that we are discussing
here an approximation, not providing, thus, an exactly solution to such kind of complex
problems, as it is the case with COVID-19 pandemic. There is a multifaceted issue that
affect a variety of systems such as health, politics, and economics over time. Therefore,
extensive work is required to collect considerable features that can be used as input data
for the proposed model. To accomplish this properly, one must thoroughly interact with
the environment in which the model is to be used, understanding how the training data
were gathered, and, in many circumstances, adding domain expertise when available data
is insufficient.

Beyond typical predictive performance, a model’s criteria must be thoroughly stated
and evaluated with more complex scenarios and may outperform other models. For exam-
ple, in the first comparison, we can see that the proposed model achieved reasonable results
in predicting COVID-19 deaths when given a multi-variable dataset as input. Furthermore,
the distribution metric values obtained show that our model is comparable or even better
than the LSTM model [8]. Our proposed model absorbed temporal information from
data without modifying any specific neurons. Nevertheless, two of the three proposed
model types (Type#1 and Type#2) demonstrated difficulty in generalizing, acquiring worst
performance than the LSTM on the test dataset.

The model’s performance is also threatened by the dimensionality of the latent spaces,
which could be too low. However, the results demonstrated that this does not lead to
information loss, whereas high dimensionality can result in redundancy in loss of general-
ization and imprecise representations with low-quality data reconstruction. The second
work comparison demonstrates the proposed model also outperforms some of the specific
time-series methods developed to handle prediction tasks. In some cases, the proposed
model had an overall better performance, ranking fourth to Type#3, fifth to Type#1, and
seventh to Type#2 among nine models. Nonetheless, the results show that our model does
not perform well when dealing with short forecast data and low (percentage) input value
samples. This leads us to consider and develop model improvements, such as other model
architectures and grid search options, intending to reduce prediction error. On the other
hand, increasing the number of parameters increases the risk of over-fitting, especially if
the training data is limited. Regularization strategies, such as dropouts or L1/L2, may be
necessary to mitigate this kind of issue.

In addition, improving the accuracy in forecasting requires that the assemblage of
noise reduces the model’s ability to generalize. The model consists of two main stages,
during which noises will be aggregated. The first method involves concatenating the latent
spaces to predict COVID-19 deaths. The second phase consists not only of reconstructing
input data but there is also of noise while gathering input feature sequences. As a result,
there exists an increase of error in the second stage, both the built-in establishment of
latent spaces and reconstructing input data. Furthermore, adding neurons to the growth
layer, which is critical to the model, is effective up to a certain point, and here resides
one of the most significant points to better analyze and put effort into. Despite this, the
limited number of presented features forces the model to generalize with the problem’s
underspecification.
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We believe that while the model can capture linear relationships between data, it
struggles to represent complex non-linear relationships, particularly for sets of data with
non-linear patterns.

7. Conclusions

Scenarios such as a world pandemic require the scientific academy to play a critical
role in assisting authorities and rulers in making decisions regarding the virus’s spread.
Studies can be conducted to identify environments that are more prone to contamination,
factors that contribute to an increase in deaths and cases, and prediction methods. These
prediction methods function by observing the behavior of pandemic-related series and
forecasting the increase or decrease of their indicators. In this direction, the current work
proposes a novel multi-feature Auto-Encoder-based methodology for COVID-19 time
series forecasting.

The proposed model comes with three types of variations, which include changes to the
original model architecture, the training step, and the model weight adjustments performed.
To address, verify, and evaluate the proposed model, we conducted comparisons with two
other works, including an LSTM model targeting COVID-19 deaths based on uni-variable
and multi-variable datasets. Also, we compare with other six time-series-based models in
forecasting the percentage of active COVID-19 cases in countries’ populations.

The proposed model shows a substantial capacity for forecasting time-series-related
tasks, positioning the model in the literature among multi-variable neural networks and
time-series traditional models. However, the experiments also show some model limi-
tations, such as observed in model variation Type#3 for short data length availability or
multi-variability.

The findings motivate seeking improvements, such as composing the architecture
of various neural network neuron types and increasing the number of layers in the auto-
encoder. Furthermore, future research should investigate the proposed model’s limitations,
complexity, and scalability. In addition, we intend to implement a model extension that will
allow the model to assimilate new relevant time series without requiring full re-training.
Finally, additional work will be done to promote a test to determine whether the internal
growth of the number of neurons in the middle encoder (and decoder) layer has a positive
or negative impact on model results.
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SARS-CoV Severe Acute Respiratory Syndrome virus
WHO World Health Organization
SIR Susceptible–Infected–Removed Model Model
SEIR Susceptible–Exposed–Infected–Recovered Model
RF Random Forest
RIDGE Ridge Regression
SVR Support Vector Regression
SEL Stacking-Ensemble learning
ARIMA Auto-Regressive-Integrated-Moving-Average
MLP Multi-Layer Perceptron
RNN Recurrent Neural Network
LSTM Long-short Term Memory
Bi-LSTM Bidirectional-Long-short Term Memory
GRU Gated Recurrent Unit
VAE Variation Auto-encoder
RMSE Root Mean Square Error
MSLE Mean Squared Logarithmic Error
CNN Convolutional Neural Network
AUC Area under the Curve
ROC Receiver Operating Characteristic
ANN Artificial Neural Network
DAE Denoising Auto-encoder
CAE Convolutional Auto-encoder
AQI Air Quality Index
ReLU Rectifier Unit
MAE Mean Absolute Error
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