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Abstract: In recent years, further evidence has emerged regarding the involvement of extracellular
vesicles in various human physiopathological conditions such as Alzheimer’s disease, Parkinson’s
disease, irritable bowel syndrome, and mental disorders. The biogenesis and cargo of such vesicles
may reveal their impact on human health nd disease and set the underpinnings for the development
of novel chemical compounds and pharmaceuticals. In this review, we examine the link between
bacteria-derived exosomes in the gastrointestinal tract and mental disorders, such as depression and
anxiety disorders. Crucially, we focus on whether changes in the gut environment affect the human
mental state or the other way around. Furthermore, the possibility of handling bacteria-derived
exosomes as vectors of chemicals to treat such conditions is examined.
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1. Introduction

Extracellular vesicles (EVs) are membrane nanoscale vesicles naturally secreted by cells
into the extracellular space. They play an important role in intercellular communication
in numerous physiological and pathological processes. EVs can be classified based on
their cellular origin, biogenesis, and/or biological function [1]. Based on their biogenesis,
the three major classes of EVs are exosomes, microvesicles, and apoptotic bodies [2,3].
Exosomes, also referred to as intraluminal vesicles (ILVs), are a subtype of EV of endocytic
origin, typically 30–150 nm in diameter, enclosed by a single outer membrane, and secreted
by all eukaryotic cell types; they have been found in plasma, serum, saliva, urine, semen,
bronchial fluid, cerebrospinal fluid (CSF), breast milk, amniotic fluid, synovial fluid, tears,
lymph, bile, and gastric acid [4]. Since the EV field has grown, different types of vesicles
have been described; a recent study suggests a more specialized classification, adding
autophagic EVs, stressed EVs, exomeres, non-vesicular particles, and matrix vesicles to the
existing ones [5]. Notably, existing technologies cannot distinguish the subtypes well, and
no clear consensus has been reached on the specific markers of the subtypes of EVs [6]. EVs
are referred to by various names depending on the organism from which they originate,
including OMVs (outer membrane vesicles) in Gram-negative bacteria and EVs or MVs
(extracellular vesicles or membrane vesicles) in Gram-positive bacteria [7]. To ensure
clarity and precision in scientific communication, we quote the International Society for
Extracellular Vesicles’ use of “extracellular vesicle” (EV) as the universal term for particles
naturally discharged from cells, enclosed by a lipid bilayer, and lacking the ability to
replicate, meaning they lack a functional nucleus [2].

EVs contain proteins, lipids, nucleic acids (including DNA, mRNA, and non-coding
RNA), and small metabolites [8]. Through this cargo, EVs can mediate cell communication,
modulating downstream signaling pathways in recipient cells [9]. Due to their diverse array
of bioactive proteins, adhesion molecules, and membrane-anchored receptors, EVs are well
suited for tailored communication with their surroundings. Through fusion with target cells,
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EVs can convey their original cytosolic contents and relocate both membrane-attached and
membrane-spanning proteins [10]. EVs are involved in interactions between pathogenic
microorganisms and their animal or plant hosts [11]. Exosomes in eukaryotic cells are
enriched with small RNAs and play a role in many physiological processes [1]. Due to the
impressive ability of EVs to package and maintain the molecular characteristics of their
originating cells, they have become promising resources for uncovering biomarkers [12].

Bacteria (pathogenic and non-pathogenic species) release EVs, which range in size
from 10 to 300 nm and contain outer membrane proteins, periplasmic proteins, lipopro-
teins, phospholipids, and lipopolysaccharides (LPS), as well as cytoplasmic proteins and
DNA [13]. The role of prokaryotic EVs lies in pathogenicity, intercellular communication
(quorum sensing), and the transfer of genetic material and proteins to other bacteria. In
addition, they have the ability to stimulate the host’s immune response, providing a tool
for vaccine development [14]. Furthermore, bacterial EVs (BEVs) play critical roles in both
inter-bacteria and bacteria–host interactions and are involved in bacterial survival, biofilm
formation, horizontal gene transfer, stress response, nutrient acquisition, toxin delivery,
and antibiotic resistance [15].

One of the main challenges in studying EVs is a lack of methods to quantify EVs
that are sensitive enough to differentiate EVs from similarly sized lipoproteins and pro-
tein aggregates [16]. Ultracentrifugation is the gold standard method for EV isolation,
including differential ultracentrifugation, density gradient centrifugation, and rate-zonal
centrifugation techniques [17]. Lately, the emergence of microfluidic chips, nanolithogra-
phy, electro-deposition, and other technologies has promoted innovation and combinations
of isolation methods [18]. Bacterial EVs in human body fluids have been less thoroughly in-
vestigated, likely due to the methodological challenges in separating BEVs from their matrix
and host-derived eukaryotic EVs. A method combining ultrafiltration, size-exclusion chro-
matography, and density gradient centrifugation ensured the integrity of the isolated BEVs
and eliminated the need for labeling, facilitating their subsequent characterization [19].

The human gastrointestinal (GI) tract is composed of multiple different organs and can
be divided into the upper and lower GI tract. The upper GI tract refers to the mouth, esoph-
agus, stomach duodenum, jejunum, and ileum, while the colon, rectum, and anus make up
the lower GI tract. The overall function of the GI tract is to digest ingested nutrients through
digestive enzyme secretion and nutrient absorption [20]. The GI tract is colonized by a
diverse microbial community—bacteria, fungi, archaea, and viruses—termed the gut micro-
biota [21], which is essential to intestinal homeostasis and human health. The flora includes
large populations of Lactobacillus, Streptococcus, Staphylococcus, Enterobacteriaceae (stomach
and duodenum), Bifidobacterium, Bacteroides, Lactobacillus, Streptococcus, Enterobacteriaceae
(jejunum, and ileum), Bacteroides, Eubacterium, Clostridium, Peptostreptococcus, Streptococcus,
Bifidobacterium, Fusobacterium, Lactobacillus, and Enterobacteriaceae (colon) [22].

The gastrointestinal microbiota play pivotal roles in neurodevelopmental processes
and brain functions through the microbiota–gut–brain axis. The dysregulation of this axis
by endogenous and exogenous factors, such as aging and stress, accelerates the occurrence
of psychiatric disorders [23]. EVs have several advantages over conventional synthetic
drug carriers, opening new possibilities for modern drug delivery [24] and alternative
approaches for the treatment of psychiatric disorders.

2. The Gut–Brain Axis

The microbiota–gut–brain axis refers to wide-ranging interactions between the gut
microbiota and the central nervous system (CNS), which involve endocrine, immune,
and neural signaling pathways [25]. The gut microbiome, in addition to its contribution
to food digestion and nutrient metabolism, plays a fundamental role in host immune
system development and modulation of the gut barrier and immune responses [26]. The
primary avenues of bidirectional communication include the immune system, the vagus
nerve system, the neuroendocrine system, the circulatory system, and the enteric nervous
system [27].
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A growing number of studies address the contribution of the microbiota–gut–brain axis
to neurodevelopment and mental health (Table 1). For example, plasma adrenocorticotropic
hormone (ACTH) and corticosterone elevation in response to restraint stress (a method
used to induce physiological responses in an animal by restricting its free movement)
was substantially higher in germ-free (GF) mice than in specific-pathogen-free (SPF) mice;
GF mice also exhibited reduced expression of brain-derived neurotrophic factor (BDNF)
in the cortex and hippocampus relative to SPF mice [28]. Many studies indicate that
microbiota- and host-derived miRNAs regulate each other: gut bacteria have a great
impact on host cell miRNA expression, and host miRNAs shape and regulate the gut
microbiota [29–32]. Dalmasso et al. compared miRNA expression in GF mice and those
colonized with microbiota, finding specific miRNAs upregulated in the mucosal tissues of
the ileum and colon, while others were downregulated in the colon upon colonization [33].
Moreover, oral administration of miR-30d, also present in EVs, from the feces of multiple
sclerosis (MS) patients suppressed MS-like symptoms in mice by expanding Akkermansia
muciniphila populations [34]. Chronic stress significantly alters the intestinal microbiota
composition, primarily depleting Lactobacilli, while ROS produced by Lactobacilli can
inhibit kynurenine metabolism, a pathway that can negatively impact the brain when
dysregulated [35].

Table 1. Neurologic effects of the gut microbiome. Selected details of the methods are shown for
comparison.

Source Bacteria Method Neurologic Effect Ref.

Haemophilus influenzae
In vivo

EVs/LPSs
Rat model

Induction of blood–brain barrier permeability
during experimental meningitis. [36]

Helicobacter pylori
In vivo/in vitro
EVs/microglia
Mouse model

Induction of neuroinflammation in the CNS,
higher prevalence of AD in HP-infected people. [37]

Lactobacillus plantarum
In vivo/in vitro

L-EVs/HT22 cells
Mouse model

BDNF increase
Antidepressant effects in stress-induced

depression
[38]

Lactobacillus plantarum In vivo/in vitro
L-EVs/neurons Protection against ischemic brain injury [39]

Lactobacillus reuteri
In vivo

Neurons
Rat model

Enhancement of excitability of colonic AH
neurons [40]

Lactobacillus rhamnosus
In vivo/in vitro/ex vivo

EVs/dendritic cells
Mouse model

Alteration of nerve-dependent colon migrating
motor complexes (MMCs), enteric nerve

function, and behavior
[41]

Paenalcaligenes hominis
In vivo/in vitro

EVs/bacteria/LPSs
Mouse model

Risk factor for cognitive decline [42]

The main neurological pathway of the gut–brain–axis (GBA) is the vagus nerve [43].
The gut microbiome has the ability to stimulate the vagus nerve, possibly through the
subepithelial region, which could serve as a protected space for interaction between the
nerves of the intestinal tract and the gut microbiota, conveying information from the
digestive system to the nucleus tractus solitarius, which in turn relays this information
to various parts of the central autonomic network via different neuronal routes, resulting
in distinct physiological effects [25,44]. Vagal afferent fibers are polymodal and therefore
respond to mechanical, chemical, or hormonal signals; they can sense gut bacteria and their
metabolites and transfer this information to the CNS [45–47]. The detection of gut bacteria
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and their byproducts is enabled by unique sensory epithelial cells within the gut, which
were initially identified in 2015 and are commonly referred to as “neuropods” [48].

The immune system also serves as a major communication pathway in the microbiota–
gut–brain axis [49]. In a healthy state, the gut employs various defense mechanisms to
maintain balance and prevent pathogen invasion (eubiosis). The mucus layer acts as a bar-
rier, while dendritic cells sample bacteria within the mucosal surface, presenting antigens
to immune cells in the mesenteric lymph node. Here, molecules like IgA and antimicrobial
peptides inhibit pathogen spread, and regulatory T cells are induced, promoting tolerance
to dietary and commensal antigens. In contrast, disruption of the microbiome (dysbiosis)
triggers an innate immune response, with pathogens and toxins (also released by BEVs)
recognized by pattern recognition receptors, leading to inflammation and increased gut per-
meability. These processes can result in the systemic circulation of inflammatory mediators,
impacting the CNS [50].

Gut–brain axis communication involves several neurotransmitters, including sero-
tonin, dopamine, noradrenaline, and gamma-aminobutyric acid (GABA), synthesized not
only in the CNS but also in enteroendocrine cells influenced by intestinal peptides and the
gut microbiota (Table 2). Serotonin, predominantly synthesized by enterochromaffin cells
(ECCs), regulates intestinal reflexes, mediates gut-brain communication, and affects the
immune system [51,52]. Certain gut microbes can directly produce serotonin, influencing
its levels and activity, which in turn impacts gut microbiota composition [53,54]. Similarly,
dopamine and norepinephrine, synthesized by both gut microbes and the CNS, have a
role in gut-brain communication [53]. The gut microbiota can synthesize oxidases that
affect catecholamine metabolism and transport, influencing neurotransmitter availabil-
ity [55]. Additionally, GABA, synthesized by intestinal bacteria such as Bifidobacterium
and Lactobacillus, affects brain function. GABA serves as the primary inhibitory neuro-
transmitter in the CNS and is widely distributed throughout the brain, participating in
approximately 40% of inhibitory synapses in adult vertebrates. Synthesized within the
CNS through the decarboxylation of glutamic acid, GABA exerts its inhibitory actions via
two distinct receptor types: GABAa (ionotropic) and GABAb (metabotropic) [56]. There
is ample evidence indicating the crucial involvement of GABA in controlling stress levels
in the brain, a key factor contributing to vulnerability in mood disorders [57]. Sanacora
et.al. demonstrated a significant (52%) reduction in the occipital cortex GABA levels of
depressed patients compared with healthy subjects [58]. Lactate, a substrate for short-chain
fatty acids (SCFAs) produced by gut microbes, modulates GABA transmission via specific
receptors, GABAb [59], while probiotic administration alters GABAB1b/GABAAα2 [60]
receptor expression, affecting behavior. The concentration of GABA in human plasma has
been thoroughly investigated, especially in studies related to psychiatry. However, the
findings thus far have been inconclusive, likely because of variations in the analytical tech-
niques employed across different studies. According to a study by Song et al., the plasma
GABA levels in healthy subjects were found to be 98.6 ± 33.9 ng/mL [61] (approximately
equal to 0.96 mM). On the contrary, an in-depth screening of human intestinal Bacteroides
showed that most strains tested produced GABA at concentrations ranging from 0.09 to
60.84 mM. Those findings indicate the protective mechanism of GABA against acid stress in
Bacteroides and, altogether, suggest an important contribution of Bacteroides in the regulation
of the GABAergic system in the human gut [62]. These outcomes underscore the complex
interplay between gut microbiota-derived neurotransmitters and host physiology, with
implications for brain health and behavior [50].
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Table 2. Neurotransmitters produced by gut bacteria. Data adapted from [63,64].

Dopamine [65–67] Noradrenaline [65,66] Serotonin [52,66–69] Gaba [70–74] Histamine [67,68,75]

Escherichia coli Escherichia coli Candida Bifidobacterium adolescentis Citrobacter freuiindii
Hafnia alvei Proteus vulgaris Enterococcus Bifidobacterium angulatum Enterobacter spp.

Klebsiella
pneumoniae Serratia marcescens Escherichia coli Bifidobacterium dentium Hafnia alvei

Morganella morganii Hafnia alvei Bifidobacterium infantis Klebsiella pneumoniae
Proteus vulgaris Klebsiella grimontii Lactobacillus brevis Lactobacillus lactis

Serratia marcescens Klebsiella pneumoniae Lactobacillus paracasei NFRI Lactobacillus plantarum
Lactobacillus lactis
subsp. Cremoris Lactobacillus plantarum Morganella morganii

Lactobacillus plantarum Lactobacillus reuteri Pediococcus parvulus

Morganella morganii Lactobacillus rhamnosus Streptococcus
thermophilus

Streptococcus salivarius

3. EVs and Mental Disorders

According to the World Health Organization, a mental disorder, or a mental health
condition, is characterized by a clinically significant disturbance in an individual’s cogni-
tion, emotional regulation, or behavior. It is usually associated with distress or impairment
in important areas of functioning. The most common types of mental disorders include neu-
rodevelopmental disorders, anxiety disorders, depression, bipolar disorder, post-traumatic
stress disorder, schizophrenia, eating disorders, disruptive behavior, and dissocial disorders.
The broader term “Neurodevelopmental disorders” covers mental disorders, psychosocial
disabilities, and other mental states associated with significant distress, impairment in func-
tioning, or the risk of self-harm. A total of 970 million people around the world were living
with a mental disorder in 2019 (one in every eight people), with anxiety and depressive
disorders being the most common. In 2020, because of the COVID-19 pandemic, cases of
anxiety rose by an estimated 26% and cases of major depressive disorders rose by 28% in
just one year [76].

Intestinal balance relies on intricate and ever-changing relationships among the mi-
crobiota, the epithelium, and the host immune system. Due to the intricate nature of
the intestinal environment, various regulatory mechanisms, such as immune receptors,
signaling pathways, regulatory proteins, and miRNAs, are necessary to maintain harmony
and prevent microbial imbalances, also known as dysbiosis. Intercellular communication
plays a pivotal role in coordinating appropriate responses to uphold intestinal equilib-
rium. Increasing evidence suggests that communication within and between different
kingdoms is facilitated by EVs released by either the gut microbiota or host intestinal
cells [32]. While gut EVs themselves do not have the ability to directly cause or treat
diseases, they can indirectly influence disease by imparting both harmful and beneficial
signals [77]. Dysbiosis within the gut flora has been linked to various systemic conditions,
including functional bowel disorders [78], inflammatory diseases [79], atherosclerosis [80],
metabolic disorders [81], and neuropsychiatric conditions [82].

In humans, Alzheimer’s disease [83], Parkinson’s disease [84], autism [85], irritable
bowel syndrome [86], depression, and anxiety [87] all involve alterations of the micro-
biome, but a direct causal role for the altered microbial composition observed in these
diseases has yet to be confirmed. Despite conflicting results, a growing body of research
on schizophrenia, major depressive disorder (MDD), bipolar disorder, substance abuse,
and post-traumatic stress disorder has provided initial indications of dysregulation in
EV-derived miRNAs identified in serum or plasma samples [88]. When GF rodents re-
ceived fecal microbiota transplants from MDD patients, they exhibited symptoms resem-
bling depression, whereas transplants from healthy individuals did not induce similar
behavior [89,90]. However, the relationship between MDD and dysregulation of the gut
microbiota is complex and not fully understood; it is challenging to determine a defini-
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tive sequence of events because the relationship likely involves bidirectional influences.
EVs from both the host and intestinal microorganisms collectively influence the function
of the intestinal mucosal barrier and play a crucial role in bacterial–host communica-
tion [91,92]. Dysfunction in the gut–brain axis is a hallmark of MDD, potentially leading to
underlying inflammation, imbalance in the hypothalamic–pituitary axis, and alterations in
neural, metabolic, and endocrine pathways. Studies in mice have shown that EVs derived
from Lactobacillus can modulate the expression of BDNF in the hippocampus, producing
antidepressant-like effects in stress-induced depression model mice. Additionally, EVs
from the intestinal flora of mice can impact the expression of inflammatory markers and
regulate serotonin signaling and metabolism via the GBA [6]. Depression and anxiety may
be associated with persistent neuroinflammation. Neuroinflammation can be triggered by
alterations in the microbiome, heightened intestinal permeability, and/or elevated serum
levels of LPS; thus, disruptions in the gut microbiota due to external stresses can lead to
inflammation in the gastrointestinal tract, which in turn may lead to memory deficits [93].
BEVs with LPS cargo have been detected in the plasma of patients with intestinal barrier
dysfunction, capable of triggering immune activation, and are associated with compro-
mised barrier function in individuals diagnosed with inflammatory bowel disease, HIV,
and intestinal mucositis induced by cancer therapy [19]. Intestinal bacteria produce EVs
containing antigens that can activate Toll-like receptors (TLRs) on epithelial cells or immune
cells [94]. TLR4 is specifically stimulated by LPS and has garnered significant attention in
depression research [95,96]. Moreover, EVs from both bacteria and host cells have been
demonstrated to augment blood–brain barrier (BBB) permeability, facilitating the entry of
bacterial products into the brain and contributing to neuroinflammation in Parkinson’s
disease and meningitis [36,97].

Research into the potential role of gut bacteria in crossing the BBB and causing neu-
roinflammation is still an area of active investigation. While there is evidence to suggest
that gut bacteria can influence brain function through various pathways [98], the specific
mechanisms by which gut bacteria might directly cross the BBB and induce neuroinflam-
mation remain less clear. Furthermore, various circulating EV miRNAs, known to predict
behavioral changes induced by chronic social defeat stress, have been found to regulate
the production of pro-inflammatory cytokines like IL-1β, TNF-α, and IL-6 in mouse mod-
els [99]. Bacterial EVs have been observed to possess the ability to penetrate the BBB, yet
the precise mechanisms facilitating this crossing are not well understood. Moreover, there
is a notable scarcity of data regarding EVs released by the human gut microbiota in this
specific context [100]. Tumor necrosis factor α (TNF-α) serves as an essential mediator in
the stress response of mice, with it being crucial for stress-induced synaptic potentiation in
the ventral hippocampus and for the elevation of anxiety-like behavior [101]. Thus, using
TNF-α as a potential novel therapeutic target and utilizing EVs as vectors may represent
a promising novel therapeutic strategy for stress-related disorders. However, there are
unresolved questions in this area that require additional research and exploration.

The complex communication between the gut microbiota and the brain plays a cru-
cial role in the development of neurodegenerative disorders such as Alzheimer’s disease
(AD). Changes in the GBA can profoundly impact disease progression through various
mechanisms, including heightened permeability of the gastrointestinal barrier and ex-
cessive immune activation, which triggers systemic inflammation. This inflammation
can compromise the integrity of the BBB, facilitating neural damage, neuroinflammation,
and, ultimately, neurodegeneration [98,102]. Parkinson’s disease (PD) is a predominant
movement disorder and ranks as the second most prevalent neurodegenerative condition
following AD. The disease’s pathology is believed to initiate in the enteric nervous system
before progressing to the brain through the vagus nerve [84]. The bacteria found in the gut
microbiome along with their byproducts, including LPS, have been suggested as potential
contributors to both PD and AD, with the activation of microglia playing a crucial role
in the disease’s progression. Bacteria inhabiting the gut microbiota can secrete LPS and
amyloids. These compounds have the potential to activate microglia in the brain, leading
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to the release of proinflammatory cytokines, which are implicated in the development of
AD [103,104]. Escherichia coli, Salmonella enterica, Salmonella typhimurium, Bacillus subtilis,
Mycobacterium tuberculosis, and Staphylococcus aureus are some of the many bacterial species
that produce functional extracellular amyloid fibers [105]. Curli amyloid and its homologs,
derived from enteric biofilms, have been connected to neurodegeneration and autoimmu-
nity; nevertheless, the specific conditions under which bacterial amyloids impact these
diseases need further examination [106].

Anxiety and depression frequently manifest as symptoms in patients with PD and are
recognized as risk factors for the development of dementia and AD [107,108]. The poten-
tial biological pathways connecting depression to dementia encompass vascular disease,
changes in glucocorticoid steroids and hippocampal atrophy, heightened accumulation of
β-amyloid plaques, inflammatory processes, and deficiencies in nerve growth factors [109].
The precise mechanisms underlying the connections between anxiety disorders and de-
mentia remain unclear, but they may involve various pathways, such as changes in the
hypothalamic–pituitary–adrenal (HPA) axis, as well as lifestyle and psychosocial factors
like diet, social support, and exercise. Additionally, the mechanisms might vary depending
on the specific type of anxiety disorder [110].

Hence, the correlation between anxiety, depression, and dementia could potentially be
elucidated through a shared mechanism wherein harmful EVs released by gut microbiome
bacteria traverse the brain, precipitating a range of neurological disorders. The manifesta-
tion of these disorders may vary depending on the specific profile of EVs and/or individual
genetic and environmental influences [111].

4. EVs and Antidepressant Treatment

There is increasing evidence indicating that the EVs produced by commensal bacteria
play a crucial role in communication between the microbiome, the gut, and the brain. EVs
possess the advantage of better access to the bloodstream than entire microbes, enabling
them to travel to the CNS. Consequently, EVs aid in delivering concentrated signaling
molecules and fragile cargo, like RNA, which would be vulnerable if transported from the
gut to the brain without protection [112]. Within the CNS, the blood–brain barrier impedes
the desired therapeutic outcomes because of challenges in effectively targeting, controlling
release timing, and attaining adequate therapeutic levels in the brain. Consequently, the
majority of potentially beneficial diagnostic and therapeutic substances cannot access the
brain when administered systemically.

EVs are emerging as a promising tool for therapeutic delivery owing to their favorable
intrinsic features of biocompatibility, stability, stealth capacity, ability to overcome natural
barriers, and inherent homing capability [113]. The lipid membranes of EVs and BEVs
shield cargo from the immune system of the host, while surface ligands on the membrane
enable precise targeting of specific cell types over long distances [114]. Sorting cargo to EVs
is likely a controlled procedure, not occurring randomly, and EVs serve critical functions in
facilitating cell-to-cell communication. Encapsulation within EVs offers shielding against
both the enzymatic and non-enzymatic degradation of cargo, while also enabling cellular
uptake through endocytosis [115]. A beneficial role of intestinal epithelial cell-derived
EVs was observed when they activated neuron growth via their sRNA cargo. Intestinal
cells treated with carnosine, contained abundantly in chicken breast meat, significantly
induced neurite growth [116]. One significant benefit of compartmentalized BEV-mediated
cargo transportation is the prevention of signal molecule dilution during extended jour-
neys. This facilitates the effective delivery of the molecule to target cells, ensuring that
concentrations surpass the threshold required to trigger desired effects. Additionally, EVs
released by the microbiome possess the ability to enter the bloodstream, traverse the BBB,
and contribute to hallmark pathological effects observed in neurological disorders, such as
Alzheimer’s disease, including tau phosphorylation, neuroinflammation, and cognitive
impairments [111]. EVs, particularly those containing specific circular RNAs or microRNAs
(miRNAs), hold promise as potential therapeutic agents for depression and other CNS
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diseases. Targeting EVs carrying circDYM (circular RNA DYM) to the brain has been
shown to reduce depression-like behavior induced by chronic unpredictable stress. These
EVs inhibit microglial activation, maintain BBB integrity, reduce peripheral immune cell
infiltration, and alleviate astrocyte dysfunction. Additionally, EVs derived from natural
killer cells have demonstrated the ability to pass through the BBB, target astrocytes, and
reduce depressive behavior when containing specific miRNAs such as miR-207 [117,118].

EVs from Lactobacillus rhamnosus JB-1 have the ability to stimulate primary afferent
vagal neurons in the intestines and alleviate behaviors resembling anxiety and depression in
mice, increasing specific GABA receptor levels, crucial for mood and anxiety disorders [60].
BEVs from L. rhamnosus JB-1 have potent immunoregulatory effects as they replicate the
ability of whole bacteria to decrease the amplitude of nerve-dependent colon migrating
motor complexes [41]. These effects occur rapidly and only when BEVs are placed on the
intestinal epithelium, not on neurons directly [111]. Furthermore, CD4 + CD25+ regulatory
T cells have been shown to mediate at least some of the anxiolytic- and antidepressant-
like effects of the psychoactive bacteria L. rhamnosus JB-1 [119]. Notably, SCFAs such
as acetate, propionate, and butyrate, are believed to play a crucial role in the effects of
the gut microbiota on the host. SCFAs are produced in the gut through the bacterial
fermentation of dietary fiber, and emerging evidence suggests that SCFAs influence human
psychobiology through various pathways including endocrine, neural, and immune. Data
have illustrated that SCFAs act as mediators in microbiota–gut–brain interactions and
impact the acute stress response, eating behavior, and nutritional status in malnourished
patients with anorexia nervosa [120]. Additionally, they have a pivotal function in cognitive
function and pathology in AD and PD. SCFAs impact the microglia transcriptome, and
immune cell recruitment possibly promotes glutamate–glutamine shuttle to potentially
resist oxidative damage in neurons at the cellular level. The findings imply that specialized
diets (supplemented with high acetate and butyrate) releasing high amounts of SCFAs
may have a neuroprotective effect [77,121]. Gut bacteria possess neurotransmitters that
can affect brain function and behavior, and they have the ability to encapsulate and release
these molecules within EVs, allowing for their protection and efficient transport throughout
the body at heightened concentrations. Changes in neurotransmitter levels have been
linked to various neurological disorders (such as proposed deficits in serotonin and GABA
in major depression [122], and reduced dopamine production in PD [123]). However, the
potential impact of neurotransmitter-carrying bacterial EVs on these conditions remains
unexplored.

Probiotics have been shown to be effective against infectious diseases in clinical trials,
with either intestinal or extraintestinal health benefits. Even though probiotic effects are
strain specific, some “widespread effects” include pathogen inhibition, the enhancement
of barrier integrity, and the regulation of immune responses. The mechanisms involved
in the health benefits of probiotics are not completely understood, but these effects can
be mediated, at least in part, by probiotic-derived EVs [124]. Increasingly, research is
focussing on searching for alternatives to probiotics, such as postbiotics, a mixture of
metabolic products or non-viable fragments of probiotics that have a beneficial effect on
the functioning of the human body [125]. For example, EVs from the probiotic Lactobacillus
plantarum (L-EVs) can change the expression of neurotrophic factors in the hippocampus
and afford antidepressant-like effects in mice with stress-induced depression [38]. These
data indicate that the antidepressant-like effects of L-EVs are comparable to those of
imipramine [38], a typical tricyclic antidepressant. Regrettably, the existing therapeutics
presently accessible fall short; their inefficacy, adverse effects, and associated risks leave
patients with few treatment alternatives [126]. Given the minimum 30% rate of treatment-
resistant depression [127], among different countries, discovering novel treatment pathways
for patients with depression is more than crucial.

The observed positive impact of both intestinal epithelial cell-derived EVs and microbiome-
derived EVs on promoting neuron growth through their small RNA cargo underscores the
importance of dietary interventions, particularly focusing on incorporating components
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like carnosine. Thus, emphasizing dietary considerations could be crucial in the treatment
and management of neurological conditions.

The administration of Bacteroides fragilis, a Gram-negative anaerobe that colonizes the
GI tract of mammals, significantly reduced the development of intestinal inflammation and
damage in experimental models of colitis in mice [128]. EVs derived from Escherichia coli
Nissle 1917 were able to mediate the anti-inflammatory and barrier protective effects in a
dextran sulfate sodium-induced colitis mouse model [91]. According to the inflammatory
theory of depression, it is suggested that inflammation in the body plays a role in the
development of depression [129,130]. It would be of great scientific interest to examine the
therapeutic potential of targeting the immune system, utilizing engineered EVs, to treat
depression.

Drug-loaded exosomes have been used in PD treatment (Table 3). Blood exosomes
were loaded with dopamine and successfully delivered dopamine to the brain as the brain
distribution of dopamine increased >15-fold. Exosomes carrying dopamine exhibited
superior therapeutic effectiveness in a mouse model of PD and demonstrated reduced
systemic toxicity, compared to freely administered dopamine via intravenous delivery [131].
Accordingly, EVs containing curcumin protected mice from LPS-induced septic shock, indi-
cating that EVs can enhance the stability, solubility, and bioavailability of curcumin when
used as carriers [77]. Another study demonstrated that daily intranasal administration of
curcumin-loaded EVs reduced the severity of experimental autoimmune encephalomyelitis,
potentially by promoting apoptosis in microglial cells [132].

Table 3. Drugs loaded onto extracellular vesicles.

EV Source Chemical Therapeutic Goal Ref.

Endothelial cells–mimetic
nanovesicles Dapagliflozin Angiogenesis in diabetic

wound healing [133]

RAW264.7 cells Linezolid Antibiotic against
Staphylococcus aureus [134]

Pancreatic cancer cells (PCCs),
pancreatic stellate cells (PSCs),

and macrophages (MØs)
Doxorubicin Anti-cancer therapy [135]

Hybrid vector of
macrophage-derived

microvesicles together with iron
oxide nanoparticles

Doxorubicin,
tissue-plasminogen activator (t-PA),

disulfonated tetraphenyl chlorin-TPCS2a,
and

5,10,15,20-tetra(m-hydroxyphenyl)
chlorin-mTHPC)

Anti-cancer therapy [136]

Klebsiella pneumoniae Doxorubicin Anti-cancer therapy [137]

Human umbilical vascular
endothelial cells (HUVEC)

5,10,15,20-tetra(m-hydroxyphenyl) chlorin-m
THPC) Anti-cancer therapy [138]

Glioblastoma cells and
pancreatic cancer cells (PANC-1) Paclitaxel Anti-cancer therapy [139,140]

Breast cancer cell- and colorectal
cancer cell-derived exosomes Aspirin Anti-cancer therapy [141]

HFL-1 (human fetal lung
fibroblasts) Erastin Anti-cancer therapy [142]

M2 macrophage-derived
exosomes (M2 Exo)

Hexyl 5-aminolevulinate hydrochloride
(HAL) Atherosclerosis treatment [143]

Allogeneic bone marrow
mesenchymal stem cell exosomes

(BMSCExo)
Temozolomide Glioblastoma therapy [144]
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Table 3. Cont.

EV Source Chemical Therapeutic Goal Ref.

HEI-OC1 cells
Dexamethasone, aspirin, arachidonic,

eicosapentaenoic, docosahexaenoic, linoleic
acids, lipoxin A4, and resolvin D1

Hearing loss treatment [145,146]

Stem cells Curcumin Regenerative cell therapy [147]

E. coli Melanin Cancer monitoring [148]

E. coli and S. aureus Vancomycin and rifampicin Bacteremia treatment [149]

Salmonella typhimurium Tegafur Cancer immunotherapy [150]

Enterococcus faecalis Capacitabine Anti-cancer therapy [151]

Pseudomonas
aeruginosa Gentamicin Cepacia syndrome treatment [152]

Acinetobacter baumannii Levofloxacin Intestinal bacterial infection
treatment [153]

E. coli Paclitaxel Anti-cancer therapy [154]

Emerging evidence indicates the potential of EVs and their contents as biomark-
ers for monitoring the response to antidepressant treatment in individuals with MDD.
Those findings include significant changes in EVs and their contents, before and after
antidepressant treatment in patients with MDD, including mitochondrial-related proteins,
BDNF/pro-BDNF levels, and certain miRNAs. Specifically, mitochondrial-related protein
abnormalities in brain-derived EVs tend to normalize following antidepressant treatment.
BDNF levels in patients’ plasma EVs are reduced before treatment but show no significant
difference compared to controls after treatment; the anticipated levels of BDNF before and
after treatment were not detected, possibly due to undetermined EV sources and peripheral
mechanisms. Specific miRNAs, including miR-21-5p, miR-30d-5p, and miR-486-5p, were
found to change significantly during antidepressant treatment and were associated with
treatment response, as indicated by stepwise regression analysis. Overall, these findings
suggest that EVs and their contents may serve as potential biomarkers for monitoring
antidepressant treatment response in MDD patients [155,156].

There are still numerous challenges to address before EV-based therapeutics can be
applied clinically. These include issues like specificity, stability, biodistribution, storage,
large-scale production, and the thorough examination of EV composition [157]. Considering
the compatibility between the cells of origin and the target cells is of great importance
when designing exosome-based therapies [158]. As an illustrative example, using S. aureus
vesicles for targeted antibiotic delivery offers a tailored and efficient approach to combatting
S. aureus infections, by leveraging specificity between the source and target and enhanced
internalization, thereby enhancing the therapeutic effectiveness of the treatment [149].

5. Conclusions

The potential of extracellular vesicles as an alternative way to treat diseases is promis-
ing, but it is important to recognize that this field is still in its early stages of development.
EVs offer several advantages as drug delivery vehicles, including their natural ability
to transport various biomolecules, their potential for targeted delivery to specific cells
or tissues, and their ability to minimize adverse effects. However, there are still many
challenges that need to be overcome before EV-based therapeutics can be widely adopted
in clinical settings. These challenges include issues related to specificity, stability, scalability,
and safety. Additionally, there is a need for further research to better understand the mech-
anisms of EV action, optimize EV isolation and characterization techniques, and evaluate
the long-term safety and efficacy of EV-based therapies. Overall, while EVs hold promise
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as a novel approach to treating diseases, more research and development are needed to
fully realize their potential and address current limitations.
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Łoniewski, I.; Marlicz, W. Gut Biofactory—Neurocompetent Metabolites within the Gastrointestinal Tract. A Scoping Review.
Nutrients 2020, 12, 3369. [CrossRef] [PubMed]

64. Strandwitz, P. Neurotransmitter Modulation by the Gut Microbiota. Brain Res. 2018, 1693, 128–133. [CrossRef] [PubMed]
65. Tsavkelova, E.A.; Botvinko, I.V.; Kudrin, V.S.; Oleskin, A.V. Detection of Neurotransmitter Amines in Microorganisms with the

Use of High-Performance Liquid Chromatography. Dokl. Biochem. Proc. Acad. Sci. USSR Biochem. Sect. 2000, 372, 115–117.
66. Shishov, V.A.; Kirovskaia, T.A.; Kudrin, V.S.; Oleskin, A.V. Amine neuromediators, their precursors, and oxidation products in the

culture of Escherichia coli K-12. Prikl. Biokhim. Mikrobiol. 2009, 45, 550–554. [CrossRef] [PubMed]
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