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Abstract: Nowadays, the explosion of knowledge in the field of epigenetics has revealed new path-
ways toward the treatment of multifactorial diseases, rendering the key players of the epigenetic
machinery the focus of today’s pharmaceutical landscape. Among epigenetic enzymes, DNA methyl-
transferases (DNMTs) are first studied as inhibition targets for cancer treatment. The increasing
clinical interest in DNMTs has led to advanced experimental and computational strategies in the
search for novel DNMT inhibitors. Considering the importance of epigenetic targets as a novel
and promising pharmaceutical trend, the present study attempted to discover novel inhibitors of
natural origin against DNMTs using a combination of structure and ligand-based computational
approaches. Particularly, a pharmacophore-based virtual screening was performed, followed by
molecular docking and molecular dynamics simulations in order to establish an accurate and ro-
bust selection methodology. Our screening protocol prioritized five natural-derived compounds,
derivatives of coumarins, flavones, chalcones, benzoic acids, and phenazine, bearing completely
diverse chemical scaffolds from FDA-approved “Epi-drugs”. Their total DNMT inhibitory activity
was evaluated, revealing promising results for the derived hits with an inhibitory activity ranging
within 30–45% at 100 µM of the tested compounds.

Keywords: epigenetics; DNA methyltransferases; DNMT inhibitors; natural-derived chemo-libraries;
virtual screening; pharmacophore modeling

1. Introduction

Nowadays, epigenetics is one of the most promising and expanding fields in the
pharmaceutical landscape. The term epigenetics is defined as the heritable, reversible
modulation of gene expression that occurs without changes in the underlying DNA se-
quence [1]. The dynamic regulation of epigenetic modifications causes different functional
outcomes that play a crucial role in biological procedures [2]. Epigenetic dysfunction is
tightly connected with the pathogenesis and progression of a plethora of diseases, involving
multifactorial diseases. Specifically, cancers, chronic diseases, neurodegenerative disorders,
and diabetes highlight the crucial role of these covalent modifications [3–5].

Very few epigenetic targets have been examined so far in different stages of the drug
discovery process. Only seven epigenetic drugs have been approved by FDA, targeting
DNMT, HDAC, or EZH2 epigenetic enzymes, all being drugs for malignancies. The
application of epigenetic drugs for the treatment of other multifactorial diseases remains
unexplored [6].

Epigenetic re-programming through suitable small molecules could alter a plethora
of cellular pathways, allowing, for instance, the manipulation of pathways previously
thought to be undruggable [7,8]. It is therefore apparent that small molecule inhibitors
of the key epigenetic enzymes (epigenetic targets) will not only provide highly useful
chemical tools to further characterize these vitally important mechanisms but also provide
chemical starting points for the development of novel epigenetic therapeutic approaches [9].
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Consequently, the discovery of small molecule inhibitors against these epigenetic targets
has become the focus of today’s research.

The epigenetic target inhibitors were discovered mainly through high-throughput
screening, random screening, and biophysical screening approaches. However, these wet
experimental methods usually suffer from a high cost and a comparatively low hit rate [10].
Computational techniques and methodologies as a rapid and economic strategy have been
widely used in the medicinal chemistry area for hit/lead discovery [11]. Several newly
emerging in silico approaches could be utilized to identify epigenetic target inhibitors more
efficiently [12].

DNA methyltransferases are among the first studied enzymes as inhibition targets for
cancer treatment. Over the past few years, more therapeutic opportunities related to the
modulation of DNMT activity have been emerging [13], rendering them extremely promis-
ing targets. The increasing clinical interest in DNMTs has led to advanced experimental
and computational strategies in the search for novel DNMT inhibitors [14].

Virtual screening has emerged as a substantial research tool in drug discovery and is
defined as a set of computational methods that analyze large databases of compounds to
identify potential hit candidates [15]. A remarkable number of pharmaceutical companies
and academia utilize these methods, worldwide, highlighting their contribution to the drug
design process [16].

In the field of the discovery of epigenetic target inhibitors, in silico methods are
utilized as an indispensable tool and constitute the current research hotspot [17]. The
crystal structures of human DNMT enzymes have created new perspectives to build up
potent in silico screening approaches to reveal novel specific epigenetic inhibitors [18].

Natural compounds are widely known for their pharmaceutical properties and they
have been presumed to be safer compared to synthetic. They possess enormous struc-
tural and chemical diversity and continue to inspire novel discoveries in pharmaceutical
chemistry [19]. They can also regulate gene expression via epigenetic mechanisms and
have gained considerable importance owing to their demonstrated ability to suppress
cancers [20]. According to the literature, several polyphenolic compounds are proven to
possess epigenetic inhibition activity, including resveratrol, curcumin, and epigallocatechin
gallate [21–23]. Although the biodiversity of natural compounds has been poorly explored,
research suggests that they can offer unlimited expectations in the field of epigenetic drug
design [24].

Towards this direction, the present study aimed at the discovery of novel inhibitors of
natural origin against DNMT isoforms using a combined methodology, including structure-
and ligand-based computational approaches. For the present scope, a series of commer-
cially available natural compounds chemo-libraries were virtually screened against our
generated pharmacophore hypotheses and the retrieved compounds were further sub-
jected to molecular modeling studies into the catalytic binding site of DNMT1. A series of
natural compounds that differentiate from “Epi-drugs” were prioritized for supply and
further evaluation for their DNMT inhibitory activity. The results clearly indicated that all
examined compounds exhibit DNMT inhibitory activity and could serve as new starting
scaffolds for further hit-to-lead optimization.

2. Materials and Methods
2.1. Pharmacophore Model Generation and Validation

For the generation and validation of the ligand-based pharmacophore model, Ligand-
Scout 4.0 Advanced software was used (InteLigand, GmbH, Vienna, Austria) [25].

The creation of the pharmacophore model was based on the chemical scaffolds of FDA
DNMT-approved drugs and inhibitors in clinical studies. For this scope, the Human Epigenetic
Drug Database (HEDD) [26] (http://hedds.org/, accessed on 16 December 2021) and the
Human Epigenetic Enzyme and Modulator Database (HEMD) [27] (https://mdl.shsmu.
edu.cn/HEMD/, accessed on 16 December 2021) were utilized as a pool of compounds.
Particularly, the training set contained seven commercially available epigenetic inhibitors

http://hedds.org/
https://mdl.shsmu.edu.cn/HEMD/
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(Procainamide, Bobcat339, CM272, SGI-1027, Thioguanine, RG108, and Decitabine), while the
test set included six known epigenetic inhibitors with low uM DNMT inhibitory activity. The
chemical structures and epigenetic activity of training and test set compounds are presented
in Tables S1 and S2 (Supplementary Materials), respectively.

In continuation, all compounds were sketched and were minimized in the MAESTRO
interface [28]. Then, they were prepared at pH 7.0 ± 0.5 using the LigPrep module [29] of
the MAESTRO interface [28].

The ligand set conformers were generated using OMEGA [30] and the maximum
number of conformations per ligand was set as equal to 50. The conformers were clustered
according to the pharmacophore alignment score leading to the creation of 10 pharma-
cophore hypotheses, ranked according to the Pharmacophore-Fit score. The applied scoring
function was the “Pharmacophore Alignment Score” and the selected pharmacophore type
was the “merged” pharmacophore features.

For the pharmacophore model validation, three compound libraries were constructed.
The first library included ninety-one active compounds with inhibitory activity against
the DNMT (DNMT1 and DNMT3A) family of enzymes (10 nM < IC50 < 500 µM), and the
second fourteen inactive compounds (IC50 > 1 mM); due to the small number of inactive
compounds available in the literature, a decoy library was also created, consisting of
4849 compounds structurally similar to the active ones, but experimentally not tested for
biological activity. For the generation of the decoy’s library, DUD-E [31] (https://dude.
docking.org/generate, accessed on 26 January 2022), a freely available tool, was used.

The pharmacophore model assessment was conducted using classic descriptors, such
as Sensitivity (Se), Specificity (Sp), Enrichment Factor (EF), and the Receiver Operating
Characteristic (ROC) curve.

2.2. Virtual Screening
2.2.1. Pharmacophore-Based Virtual Screening

Pharmacophore-based virtual screening was implemented in a series of commercially
available natural compounds libraries (Ambinter—http://www.ambinter.com/, Specs—https:
//www.specs.net/, Indofine—https://indofinechemical.com/, InterBioScreen—https:www.
ibscreen.com/, Selleckchem—https://www.selleckchem.com/, Analyticon Discovery—https:
//ac-discovery.com/, PhyProof—https://www.phytolab.com/en/our-services/reference-
substances-phyproof/, MolPort—https://www.molport.com/, Enamine—https://enamine.
net/, Nubbe—https://nubbe.iq.unesp.br/portal/nubbe-search.html — accessed on 5 Febru-
ary 2022), containing more than 250,000 natural compounds. The retrieved pool of compounds
was converted to an appropriate database using the idbgen tool of LigandScout [32]. The
database generation was performed using OMEGA [30] fast settings and 25 conformers per
compound were calculated.

The hits were filtered based on the higher pharmacophore-fit score values (Pharma-
cophore Fit Score ranged from 42 to 46). The derived hits were further filtered via Knime, an
open-source platform (https://www.knime.com/knime-analytics-platform—accessed on
10 April 2022) according to the physicochemical properties of the FDA-approved epigenetic
drugs, estimated by Qikprop [33] and Canvas [34] modules of MAESTRO [28]. Specifically,
the filtering criteria were the following: lipophilicity (AlogP) value, molecular weight (MW),
number of hydrogen bond acceptors (HBA), number of hydrogen donors (HBD), number of
rotatable bonds (RB), and polar surface area (PSA) value for the FDA-approved epigenetic
drugs (Table S3, Supplementary Materials) and the modified drug-likeness values were set
as follows: −2 ≤ AlogP ≤ 5, 150 ≤ MW ≤ 650, 1 ≤ HBA ≤ 12, 2 ≤ HBD ≤ 10, 1 ≤ RB ≤ 20
and 50 ≤ PSA ≤ 250 Å2. All compounds were studied under physiological conditions.

2.2.2. Molecular Docking Studies

The compounds that passed the pharmacophore and physicochemical filtering were
subjected to further processing through molecular docking studies into the Sinefungin
binding site of human DNMT1 (PDB: 3SWR, 2.49 Å) isoform. The selection of 3SWR crystal
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structure was based on the fact that the hDNMT1 enzyme is co-crystallized with Sinefungin,
which is reported as a potent DNMT inhibitor [35] and it could be of interest as a model for
inhibitory interactions [18,36]. The retrieved crystal structure was prepared by the Protein
Preparation Wizard [37]. In particular, all missing residues and hydrogen atoms were
added and bond orders were assigned and then minimized using the OPLS3 force field.

All hits derived from our screening pipeline were prepared at pH = 7.0 ± 0.5 by
applying LigPrep [29] while the original state was also included and was docked against
the hDNMT1 catalytic site by implementing the Glide module [38] in standard precision
(SP) and in extra precision (XP) mode as well as the Induced-Fit protocol [39] through the
Maestro interface [28]. The grid box was created based on the centroid of the workspace
ligand (Sinefungin) with Site advanced settings to keep the ligand diameter midpoint box
within dimensions 10 × 10 × 10 Å3, and the maximum number of poses was set as equal to
10. All generated poses were visually inspected and analyzed. Also, for validation reasons,
the Pose Viewer and Pose Filter tools of the Schrodinger interface were applied. The total
energy of the hDNMT1-compounds complexes and the contributions to the total energy
are reported using prime MM-GBSA.

2.2.3. Molecular Dynamics Simulations

All Molecular Dynamics (MD) simulations of the prioritized hits against the hDNMT1
were performed using Desmond software (https://www.schrodinger.com/platform/products/
maestro/) [40]. The bound complexes were inserted in an orthorhombic box containing
~35,000 water molecules, the TIP4P was used as a solvent model, the box size calculation
method was buffer, and the buffer distances were all set to 10. A OPLS3 force field was
applied and the systems were neutralized by adding 15 Na+ and Cl−1 ions. Modeled sys-
tems were relaxed (relaxation time = 10 ns) and subsequently were subjected to 50 ns MD
simulations. A time step of 2 fs was used for the integration of equations of motion. The
ensemble class was NPT, maintaining the temperature and the pressure equal to 300 K and
1.013 bar, respectively. The thermostat method was Nose–Hoover chain and the barostat
method was Martyna–Tobias–Klein. Also, the relaxation time was defined as equal to 1.0 ps
and 2.0 ps, respectively.

2.2.4. ADMET Properties

The ADMET properties of the potential inhibitors were predicted by applying AD-
METlab 2.0 (https://admetmesh.scbdd.com/—accessed on 1 March 2024) [41].

2.3. Total DNMT Inhibitory Activity Evaluation
DNMT Inhibition Measurements

DNMT inhibition was evaluated by Abcam DNMT activity assay kit (https://www.
abcam.com/en-gr/products/assay-kits/dnmt-activity-assay-kit-colorimetric-ab113467, last
accessed 30 April 2022) according to manufacturer’s instructions. Briefly, 1 uL of 50 mg/mL
DNMT solution was added in every well. Then, 5 µL of the tested compounds in a final
concentration of 100 µM were incubated in duplicates at 37 ◦C for 90 min. Wells containing
the studied enzyme were used as controls for the baseline DNMT activity in the absence of
an inhibitor. The inhibition of 50 ng DNMT was analyzed by 450 nm ELISA in a TECAN
microplate spectrophotometer. Finally, the DNMT inhibition of each sample was calculated
by the kit manufacturer’s suggested formula. A Tukey t-test was performed to evaluate the
statistical significance of the results.

3. Results

The virtual screening flowchart of the present study is illustrated in Figure 1.

https://www.schrodinger.com/platform/products/maestro/
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Figure 1. Virtual screening protocol workflow.

3.1. Pharmacophore Model
3.1.1. Ligand-Based Pharmacophore Model Generation

A dataset of thirteen chemically diverse epigenetic inhibitors retrieved from the
HEDD [26] (http://hedds.org/, accessed on 16 December 2021) and the HEMD [27]
(https://mdl.shsmu.edu.cn/HEMD/, accessed on 16 December 2021) databases was se-
lected for the generation of the ligand-based pharmacophore model. Specifically, seven
commercially available epigenetic inhibitors, including three nucleoside and four non-
nucleoside analogs, constituted the training set (Table S1, Supplementary Materials), and
six known epigenetic inhibitors with low uM DNMT1 inhibitory activity, bearing a variety
of structural features, composed the test set (Table S2, Supplementary Materials).

Initially, a series of ten pharmacophore hypotheses were produced and their fit to phar-
macophore features was evaluated. The results analysis indicated that for the top-ranking
hypothesis, all the examined compounds consisted of four common pharmacophore fea-
tures. Particularly, the pharmacophore model possessed two hydrogen bond acceptors
(HBA), one hydrogen bond donor (HBD), one aromatic ring (AR), and twenty-nine exclu-
sion volumes. Subsequently, the derived model was optimized by increasing the volume of
HBA and HBD, decreasing the volume of AR, and also by reducing the number of exclusion
volumes to nineteen and modifying their size according to the alignment of the molecules
of the training set. The optimized pharmacophore features and the fit of the CM272 DNMT
inhibitor to the optimum model are presented in Figure 2.

3.1.2. Ligand-Based Pharmacophore Model Validation

Subsequently, the resulting model was subjected to a validation process in order to
assess its ability to select as many biologically active compounds from a structurally diverse
compound database as possible and discard most of the inactive compounds [42]. For the
abovementioned scope, three different sets of compounds were established, a set of actives,
a set of inactives, and a decoy set since the number of inactive compounds available in the
literature was inadequate for the study.

http://hedds.org/
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3.1.2. Ligand-Based Pharmacophore Model Validation 
Subsequently, the resulting model was subjected to a validation process in order to 

assess its ability to select as many biologically active compounds from a structurally di-
verse compound database as possible and discard most of the inactive compounds [42]. 
For the abovementioned scope, three different sets of compounds were established, a set 
of actives, a set of inactives, and a decoy set since the number of inactive compounds 
available in the literature was inadequate for the study. 

The ability of the derived model to correctly classify the list of compounds as actives 
or inactive was examined via Receiver Operating Characteristic (ROC) curve analysis (Fig-
ure 3). Additionally, Area Under Curve (AUC), Sensitivity (Se), Specificity (Sp), and En-
richment Factor (EF), quantitative key parameters [42,43], were exploited to confirm the 
validity of the model (Table 1). Finally, the validation of the model was completed by cal-
culating statistical significance variables (Table 1). 

The evaluation of the ROC curve, as depicted in Figure 3, clearly demonstrates that 
the computed model exhibits a good selection score and is certainly better than random 
selection (AUC = 0.65 > 0.5). Notably, the curve presents a steep slope during the initial 
stages of screening, indicating a high enrichment of actives among the top-ranked hit list 
compounds. This observation is further corroborated by the values of sensitivity (Se = 0.32) 
and false positive rate (1-Sp = 0.02) along with the enrichment factor (EF = 10.7), elucidated 
in Table 1. Additionally, the reliability of the model was evidenced by its ability to suc-
cessfully recover almost 35% of the active compounds while the percentage of retrieved 
inactives and decoys remains significantly lower compared to actives (Table 1). 

In consideration of the abovementioned outcomes, the generated model was re-
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Figure 2. (Left) The features of the optimum pharmacophore model; (right) CM272 DNMT inhibitor
(yellow) fitted on the optimum pharmacophore model. The features are depicted with the following
color coding: hydrogen bond acceptors (HBA) as red spheres, the hydrogen bond donor (HBD) as a
green sphere, the aromatic ring (AR) as a blue ring, and exclusion volumes (Ex. Vol.) as gray spheres.
The distances (Å) between the chemical features are illustrated as black lines. The figure was created
with LigandScout 4.0 Advanced from InteLigand [25].

The ability of the derived model to correctly classify the list of compounds as actives
or inactive was examined via Receiver Operating Characteristic (ROC) curve analysis
(Figure 3). Additionally, Area Under Curve (AUC), Sensitivity (Se), Specificity (Sp), and
Enrichment Factor (EF), quantitative key parameters [42,43], were exploited to confirm
the validity of the model (Table 1). Finally, the validation of the model was completed by
calculating statistical significance variables (Table 1).
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Table 1. ROC curve performance and calculated statistical significance variables values of the created
pharmacophore model.

ROC Curve Performance (100% of the Screening)

Sensitivity (Se) 0.32 Enrichment Factor (EF) 10.7

False Positive Rate (1-Sp) 0.02 Area Under the Curve (AUC) 0.65

Calculated Statistical Significance Variables Values
1T 4954 5HT 148
2A 91 6HA 29
3I 14 7HI 1

4D 4849 8HD 118

The total number of compounds in the database 1(T) and the number of 2(A): actives, 3(I): inactives and 4(D):
decoys in the database. 5(HT), 6(HA), 7(HI), and 8(HD) report the number of hits retrieved, of actives, inactives,
and decoys in the hit list, respectively.

The evaluation of the ROC curve, as depicted in Figure 3, clearly demonstrates that
the computed model exhibits a good selection score and is certainly better than random
selection (AUC = 0.65 > 0.5). Notably, the curve presents a steep slope during the initial
stages of screening, indicating a high enrichment of actives among the top-ranked hit
list compounds. This observation is further corroborated by the values of sensitivity
(Se = 0.32) and false positive rate (1-Sp = 0.02) along with the enrichment factor (EF = 10.7),
elucidated in Table 1. Additionally, the reliability of the model was evidenced by its
ability to successfully recover almost 35% of the active compounds while the percentage of
retrieved inactives and decoys remains significantly lower compared to actives (Table 1).

In consideration of the abovementioned outcomes, the generated model was regarded
as a reliable virtual screening filter.

3.2. Virtual Screening (VS) Results
3.2.1. Pharmacophore-Based Virtual Screening

The in-site generated database of ~250,000 natural compounds, derived from a se-
ries of different chemo-libraries, was screened according to the obtained pharmacophore
model features. The screening results revealed that in total 60,000 natural compounds
were fitted to the generated pharmacophore model features. Subsequently, the hits with
the top-ranked pharmacophore fit score (Pharmacophore-Fit score range from 44 to 46)
were subjected to further filtering based on modified drug-likeness values of the FDA-
approved epigenetic drugs (Table S3, Supplementary Materials), resulting in a selection of
10,000 natural compounds.

3.2.2. Molecular Docking

In a further step, molecular docking studies were performed on compounds that
passed the filtering criteria and possessed the highest fit to the pharmacophore model
features. Especially, the selected compounds were docked at the Sinefungin binding
site of the hDNMT1 (PDB: 3SWR) isoform. In an effort to reinforce the accuracy of the
results, a consensus docking protocol was applied, including three different algorithms
(Glide SP, Glide-XP, IFD), to predict the binding modes of the examined compounds. The
prioritization of the final compounds was mainly based on three criteria: (a) the calculated
binding affinity, reflected as docking score, in comparison to the crystal complex ligand,
(b) the retention of crucial interactions participating in the Sinefungin binding into the
hDNMT1 catalytic site, and (c) the interaction pattern similarity across the three different
docking protocols (Table S4, Supplementary Materials).
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Taking into consideration the aforementioned criteria, five compounds, bearing com-
pletely different chemical scaffolds, were picked and explored further (Figure 4). Represen-
tative compounds’ docked poses are depicted in Figure 5. Considering compounds 1 and
5, their ionized forms present on physiological pH retain the same binding mode as the
protonated ones keeping the majority of the crucial interactions (Table S4, Supplementary
Materials). The ADMET properties of the five most promising compounds were predicted
and illustrated in Table S5 (Supplementary Materials). Also, the binding energy and in-
dividual energy terms of hDNMT1-selected compound complexes were calculated and
presented in Table S6 (Supplementary Materials).
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3.2.3. Molecular Dynamics Simulations

In an effort to further evaluate the stability of the interactions developed from the
selected compounds into the hDNMT1 catalytic site, each molecule was subjected to un-
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constrained molecular dynamics simulations (t = 50 ns). The conformational stability of
the hDNMT1-selected compound complexes was evaluated using the root mean square
deviation (RMSD) values of potential ligand and enzyme Ca atoms during the entire run
(Figure S1, Supplementary Materials). Ligand root mean square fluctuation (RMSF) values
were also calculated in order to explore further ligand’s conformational flexibility at the
atomic level (Figure S2, Supplementary Materials). From RMSD values, it was observed
that the enzyme Ca atoms in the complexes with compounds 1, 2, 3, and 4 converged below
2.0 Å after 10 ns, indicating that the MD trajectories achieved equilibrium [44]. The protein
backbone RMSD fluctuation was more prominent in the case of the hDNMT1-compound 5
predicted complex succeeding though to converge (<2.0 Å) after 27 ns. Moreover, RMSD
values of compounds 1, 3, and 4, remained below 2.0 Å after 10 ns showing stable lig-
and poses until the end of the MD run. Within the same time frame, higher mobility
within the catalytic site was observed for compound 2, which also underwent a jump after
30 ns, indicating the conformational flexibility of the glycosidic moiety of the molecule
as also evidenced by the RMSF values of the sugar atoms. Compound 5 displayed also a
higher mobility within the active site of hDNMT1 indicative of its alkyl chain’s increased
conformational flexibility as also evidenced by the corresponding RMSF plot.

The MD simulation results are depicted in Figure 6, revealing that all compounds are
well accommodated in the hDNMT1 catalytic site preserving most of the critical interactions
within the time course. For comparison, the MD simulation results for Sinefungin bound at
the hDNMT1 catalytic site are also presented in Figure 6.

In the case of compound 1, upon examination of the results in the catalytic center of the
hDNMT1 isoform, direct hydrogen bonds at high percentages were formed with the critical
amino acids Phe1145 (99%), Asn1578 (96%) and Val1580 (93%). Also, a water-mediated
hydrogen bond is developed with the crucial amino acid Glu1168 (55%). Additionally, the
binding is stabilized through the creation of direct and water-mediated hydrogen bonds
with the amino acids Ser1146 (75%), Gly1150 (~70%), Pro1225 (~40%), Cys1226 (55%), and
Gln1575 (~35%) (Figure 6).

Molecular dynamics results of compound 2 in the catalytic site of the hDNMT1 isoform
reveal the formation of direct hydrogen bonds with the critical amino acids Phe1145
(~30%), Asp1190 (~90%), Cys1191 (30%), and Asn1578 (20%), along with a water-mediated
hydrogen bond with the also critical amino acid Glu1168 (~60%). Moreover, the binding
is stabilized through the development of direct hydrogen bonds Ala699 (~50%) and with
Gly1223 (~45%) (Figure 6).

The analysis of the results of compound 3 indicated the formation of interactions
with critical amino acids Phe1145 (~60%), Glu1168 (96%/99% and ~80%), Asp1190 (~60%),
Cys1191 (~45/~75%), and Asn1578 (~60%). Additionally, hydrogen bonds were formed
between the -OH groups of compound 4 and the amino acids Glu698 (~80%), Gly1223
(~70%), and Arg1312 (~35%), further stabilizing the binding (Figure 6).

The critical amino acids Glu1168 (~75%/~95%), Met1169 (~45%), Asp1190 (~65), and
Cys1191 (36% and 65%) interact through the formation of direct hydrogen bonds with the
pharmacophoric moieties of the compound 4. Further stabilization of the binding occurs
through a water-mediated hydrogen bond with the amino acid Glu698 (~75) (Figure 6).

In the case of compound 5, it was revealed that hydrogen bonds are created with
the critical amino acids Glu1168 (~60% and 95%), Asp1190 (~95% and 99%), Cys1191
(40%), Asn1578 (~30%), and Val1580 (~35%). Furthermore, the binding is further strength-
ened through the development of water-mediated hydrogen bonds at particularly high
percentages with Glu698 (~90%) and Glu1266 (~60% and ~80%) (Figure 6).
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Figure 6. 1: 2D ligand interaction diagrams of (A) Sinefungin and the examined compounds in-
dicating the frequency of occurrence of interactions. (B) 1: 2-(3-(3,4-dimethoxyphenyl)-3-(2-((2-
oxo-2H-chromen-7-yl)oxy)acetamido)propanamido)acetic acid, (C) 2: Phlorizin, (D) 3: Orientin,
(E) 4: Bergenin, and (F) 5: 2-[(7,8-dihydroxy-6-undecylphenazin-2-yl)formamido]pentanedioic acid.
Hydrogen bonds and pi-pi interactions are illustrated with pink and green lines, respectively. The
figure was created using Desmond software.

3.2.4. DNMT Inhibition Assay Results

The inhibition of DNA methyltransferase (DNMT) activity was investigated using the
colorimetric assay as described in Section 2.3. in the presence of five different compounds.
Optical Density (OD) was set to 450 nm and the percentage inhibition of DNMT activity
was calculated using the following formula:

Inhibition% =

[
1 − Inhibitor sample OD − Blank OD

No inhibitor sample OD − Blank OD

]
× 100

t-test analysis was performed between no inhibitor (control) and inhibitor-treated
groups (compounds) ODs to assess whether the studied compounds have a significant
effect on DNMT activity. The results are shown in Figure 7.

According to the results, compounds 2, 3, and 4 have shown better inhibition activity,
while only compounds 3 and 5 have presented statistically significant differences compared
with the baseline DNMT activity. It has to be noted however that p-values should be
considered consciously since only two replicates were performed.
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4. Discussion

According to the up-to-date literature, there are almost seventy ongoing DNMT
development projects worldwide, including nucleoside and non-nucleoside DNMT in-
hibitors [13,45]. However, nucleoside analogs exhibit high toxicity, limited selectivity, and
reduced bioavailability. Therefore, the discovery of novel non-nucleoside inhibitors has
gained significant interest in the pharmaceutical landscape [13,46].

In light of the significance of epigenetic targets at the forefront of the pharmaceutical
landscape, our study aimed to discover novel inhibitors sourced from natural origins that
target DNA methyltransferases (DNMTs). Employing an integrated pipeline of structural
and ligand-based computational approaches, a virtual screening methodology was con-
ducted based on pharmacophore models, coupled with molecular docking and molecular
dynamics simulations to establish a precise and robust selection process. Subsequently, the
top-ranked compounds were procured and subjected to biological evaluation using the
colorimetric DNMT activity assay (ab113467). The observed inhibition of DNA methyltrans-
ferase activity ranged from 30–45% at a concentration of 100 µM for the tested compounds.

Our in silico pipeline prioritized five natural compounds categorized into different
groups, such as coumarins, flavones, chalcones, benzoic acids, and phenazine derivatives.
Compound 1, a coumarin derivative, displayed a satisfactory binding affinity due to the for-
mation of hydrogen bonds and pi-pi interactions with Asn1578 and Phe1145 in the catalytic
site of hDNMT1, such as Sinefungin [36]. The significance of coumarin as a scaffold for
the design of DNMT1 inhibitors is proven by the fact that a series of coumarin derivatives
have been proposed as DNMT1 inhibitors using a systematic computational screening
protocol [47]. Interestingly, the binding free energy (∆Gbind) of hDNMT1-compound 1
complex as calculated by MM-GBSA emerged with the higher value among the derived
hits in line with the displayed moderate inhibitory activity (28.57%). Compounds 2 (phlo-
rizin), 3 (orientin), and 4 (bergenin) presented the highest, and therefore, of greater interest,
inhibition potency values, approximately 40–45%. It has been hypothesized that these
compounds, bearing long scaffolds, occupy the catalytic site and SAM’s cavity [45]. Also,
these compounds display a common interaction pattern that can potentially explain their
similar inhibitory activity (Figures 5 and 6). It is critical to note that flavones, and especially
genistein could inhibit the activity of DNMT1 and DNMT3 isoforms [48], reinforcing the
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validity of our virtual screening results. Moreover, it has to be noted that compounds 3
and 4 displayed the highest conformational stability within the active site of DNMT1 as
revealed by the MD simulation. Lastly, compound 5, a phenazine derivative, despite its
fruitful interaction pattern with crucial amino acids of the hDNMT1 catalytic site [36,49],
possessed moderate inhibitory activity potentially attributed to its higher conformational
mobility within the active site as shown by MD simulations.

5. Conclusions

In conclusion, the current study provides valuable insights into the discovery of novel
hDNMT inhibitors sourced from natural compounds. By employing an integrated compu-
tational and experimental approach, the study identified promising candidates for further
development as potential therapeutics targeting epigenetic dysregulation. The findings
contribute to advancing the field of epigenetics and drug discovery, with implications
for the development of innovative treatments for diseases associated with aberrant DNA
methylation patterns. Particularly, pharmacophore-based virtual screening was employed,
followed by molecular docking and molecular dynamics simulations to establish a precise
and reliable selection strategy. Our screening approach prioritized five naturally occurring
compounds, exhibiting chemically diverse scaffolds compared to FDA-approved “Epi-
drugs”. The total DNMT inhibitory activity evaluation revealed promising results for the
identified hits, with inhibitory activity ranging from 30% to 45% at a concentration of
100 µM for the tested compounds. Since the examined compounds possess completely
different chemical structures from known “Epi-drugs” and these structures are chemically
modifiable, they could serve as starting points for further hit to lead optimization process
with emphasis on the scaffold of compounds 3 and 4.

Supplementary Materials: The following supporting information can be downloaded at https:
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all Ca enzyme atoms (blue) in hDNMT1-Sinefungin complex and for all atoms of Sinefungin (red),
(B) all Ca enzyme atoms (blue) in hDNMT1-Compound 1 complex and for all atoms of Compound
1 (red), (C) all Ca enzyme atoms (blue) in hDNMT1-Compound 2 complex and for all atoms of
Compound 2 (red), (D) all Ca enzyme atoms (blue) in hDNMT1-Compound 2 complex and for all
atoms of Compound 3 (red), (E) all Ca enzyme atoms (blue) in hDNMT1-Compound 4 complex
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Predicted ADMET properties of the most promising compounds, using ADMETlab 2.0 open source
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compounds complexes calculated, using Prime MM-GBSA.
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