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Abstract: In this paper, we present a laser triangulation sensor to measure the distance between the
sensor and an object without contact using a diffraction slit rather than a traditional lens. We show
that by replacing the lens with a slit, we can exploit the resulting diffraction pattern to have finer
and yet simpler image analysis, yielding better estimation of the distance to the object. To test our
hypothesis, we build a precision position table and a laser triangulation sensor, generate large data
sets to test different estimation algorithms on various materials, and compare data acquisition using
a traditional lens versus using a slit. We show that position estimation when using a slit is both more
precise and more accurate than comparable methods using a lens.

Keywords: laser; laser triangulation sensor; diffraction pattern; optical aberrations; image sensor;
range sensing; image analysis

1. Introduction

In many different applications, we are interested in measuring the distance between
an object and a sensor without direct physical contact. When great distances are involved,
the preferred approach is to use time-of-flight methods, in which a laser pulse is emitted
and the time taken for the reflection to come back to the sensor is measured [1–4]. These
time-of-flight sensors were pioneered in satellites [5] and are now often used for airborne
exploration of regions covered in dense vegetation or that are otherwise inaccessible (for
examples, see [6]). The accuracy of time-of-flight sensors is typically on the order of a few
centimeters [7]. Acquiring distances with centimeter precision from time-of-flight sensors
requires timing accuracies well under nanoseconds, as light travels 29.9792458 cm in one
nanosecond. However, when time-of-flight is aided by other techniques, such as phase shift
detection, accuracies on the order of 25 µm can be achieved ([1], Table 5), but this requires
even more sophisticated, and therefore presumably even more expensive, hardware.

Laser triangulation sensors are commonly used when the distances considered
between the sensor and the objects of interest are on the order of a few tens of
centimeters or up to a few meters. Many of these sensors have accuracies on the order
of micrometers [8–14]. Laser triangulation sensors are easier and less expensive to build
than time-of-flight sensors, but they rely on image analysis algorithms to achieve precision
rather than precision timing hardware.

In a laser triangulation sensor, a laser beam and the optical axis of a photosensitive
sensor are placed at an angle, as schematized in Figure 1. In many applications, it is
desirable to have the laser beam perpendicular to the sensor’s casing, which leaves the
optical assembly to be placed with a certain angle, which is chosen so that the optical axis
(or, loosely, the center of the field of view) corresponds to the center of the useful range of
the sensor. As the laser beam reaches the object, it is reflected, and its reflection is projected
against the photosensitive sensor through a lens or some other optical assembly. Here, we
make the simplifying assumption that the laser beam and the optical axis lie in the same
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plane, and that this plane corresponds to one of the photosensitive sensor’s axes, which
will ensure that the reflected laser spot is seen as moving only along that axis—horizontally,
in our case—across the sensor. We can then estimate the angle of projection α using the
focal length f of the lens (or its equivalent) and the center of the projection x; the problem
is, therefore, to obtain an accurate estimation of x, which is the center of the projection.
Knowing the angle α, the distance b between the laser source and the center of the optical
assembly, and the angle u of the assembly relative to the casing, we can determine the angle
u − α and, therefore, the distance d of the target relative to the sensor.

Figure 1. Laser range finding using triangulation.

The angle α of the projection in the optical assembly is given by

α = tan−1
(

x
f

)
,

and the distance d is found to be

d = d0 + b tan(u − α)

= d0 + b tan
(

u − tan−1
(

x
f

))
,

(1)

where d0 is an additional offset that takes into account the sensor casing thickness and other
assembly variations. A first calibration procedure would be performed at the moment of
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assembly, and subsequent calibrations would likely by performed periodically over the
sensor’s lifetime in order to compensate for any mechanical changes due to temperature,
vibrations, or other mishaps—none of which were tested for this proof-of-concept.

The preferred embodiment for the optical sensor in a laser triangulation system
consists of a lens that focuses the image of the reflected laser onto a light-sensitive sensor:
typically a CMOS or CCD image sensor [15–17].

However, as shown in Figure 1, the optical axis intersects the laser at an angle, which
means that the focal plane of the lens, which is perpendicular to the optical axis, only
provides a narrow region where the reflection of the laser is in good focus, as the lens
usually has a limited depth of field. To mitigate this problem, it has been proposed to
use so-called tilt-shift lenses to rotate the image plane in order to have the laser line lying
entirely in the focal plane according to the Scheimpflug principle [11,18]. Traditional SLR
and other fixed-sensor cameras require specialty tilt-shift lenses, but in a laser triangulation
sensor, we are free to change the angle of the image sensor within the device, independent
of the optical axis.

Even if we suppose that we are able to use a tilt-shift lens or change the angle of the
sensor to have the desired image plane, we are still bound to the limitation of the lenses.
Indeed, lenses are subject to a number of optical aberrations. If the lens is spherical, it will
show what is called spherical aberration wherein different regions of the lens will have
different focal points, resulting in a “soft” or diffuse focus. If the lenses have different
horizontal and/or vertical curvatures, they will suffer from astigmatism, resulting in
images that are clearer in one direction than the other. A lens may exhibit coma aberration,
wherein parallel rays entering the lens at an angle have different focal points, resulting
in a comet-like projection of points—thus, the name. The lens can also show a number of
other geometric distortions such as pincushion, barrel, or a combination of both, termed
“mustache”, as shown in Figure 2, which warp the projected image and therefore introduce
imprecision. Additionally, all lenses are subject to chromatic aberration, wherein rays of
different wavelengths are refracted at different angles, resulting in images with a rainbow
effect radial to the center of projection, typically with red fringes towards the edge of the
image and blue fringes towards the center. However, chromatic aberration can be safely
ignored since we will use a monochromatic light source: a laser.

(a) (b) (c)

Figure 2. Typical optical distortions. (a) Pincushion. (b) Barrel. (c) Mustache.

Although not technically an aberration, lens flare, mostly internal reflection wherein
light bounces around off the sensor and other optical elements, will typically produce one
or several localized rings or circles of light in the image and, if sufficiently intense, can even
cause diffuse internal illumination, known as glare, that will “wash out” the whole image.
This problem can be limited, but not completely eliminated, by using special anti-reflective
coatings on the lens elements. Lens flare proves problematic in lens-based system, as we
show later.

Lastly, we have speckle “noise” when the laser is reflected from a rough (even
microscopically) surface and interferes with itself, as it will cause the light paths to the
sensors to vary in length. Speckle noise results in a granular aspect of the image. While most
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of the other optical aberrations can be corrected or mitigated, speckle noise is unavoidable
with monochromatic light [19–21].

The aberrations listed above combine to complicate the analysis of the image and
introduce imprecision in the estimation of the true position of the laser in the image. But
mitigating these effects requires greater efforts in lens manufacturing, better and more
expensive glass recipes [22], apochromatic lens assemblies if one considers using more than
one color [23], etc., all of which are inapplicable for inexpensive yet precise range sensors.

If lenses are subject to so many ailments, why not dispense with them? For example,
Young [24–26], drawing on the works of many other such as Mach [27], shows that if
speckle is still present (as it depends mostly on the surface from which the laser is reflected),
a pinhole camera eliminates spherical, coma, and other defocusing aberrations, and that it
does not introduce field curvature or other distortions in the image. He also shows that
pinhole cameras have a theoretically infinite depth of field or, at least in practice, one that
is much greater than that of a lens. They can also offer a much wider field of view, in
principle up to 180◦—it is, however, limited by the thickness of the plate and the diameter
of the hole (For plate thickness t and hole diameter d, the field of view is 2 tan−1(d/t),
which is 180◦ only as t → 0 or d → ∞ and with an infinite plane for the sensor, which is
clearly an infeasible solution. However, pinholes and slits are often beveled on the interior
side (■◤◥■) to widen the view angle). A pinhole camera is susceptible to chromatic
aberration, but in our case, we can safely ignore this problem, as monochromatic light will
be used. The pinhole camera is also susceptible to astigmatism if the pinhole is not perfectly
circular (or, if the object is at an angle relative to the optical axis, the aperture will appear as
an ellipse), but if mild astigmatism is undesirable, we will show that extreme astigmatism
can be favorably exploited.

Indeed, in this paper, we will show that replacing almost all the optical components
with a single slit in a laser triangulation range sensor circumvents most optical aberrations,
nearly eliminates lens flare, and reduces speckle, thus greatly reducing the need for software
correction of aberrations. Furthermore, we will make the case that such a sensor is much
simpler and is less expensive to manufacture than conventional lens-based sensors as well
as being potentially more accurate.

2. Hypotheses

Since a pinhole camera avoids most optical aberrations, offers potentially both a very
wide field of view and an infinite depth of field (or, at least, vastly larger than a conventional
lens), and reduces lens flare and other internal reflections, we suppose it can be used for a
laser triangulation sensor and that we can exploit the diffraction patterns to have better
algorithms and better estimation of the laser spot’s position.

The proposed camera configuration is shown in the simplified diagram of Figure 3.
The triangulation sensor is composed of only four elements. We find an outer casing, shown
as ① in the figure, that holds the band-pass filter ②, the slit mask ③, and the image sensor,
shown with its protective window ④ and package ⑤. The actual setup, which will be
discussed in the next section, that was built from readily available hardware differs very
little in its principles.

The band-pass optical filter blocks all light except for a narrow band of wavelengths
corresponding to the laser used. This allows the sensor to operate using essentially
monochromatic light. For monochromatic light, the light entering the sensor interferes
with itself and creates a specific interference pattern: an Airy diffraction pattern, which is a
disk if the aperture is circular [28] or a central bright band with progressively less intense
side-bands on each side if the aperture is a slit, as shown in Figure 4 ([29] § 8.5). If the
projected laser image takes a pattern of a known or expected form, then we should be able
to exploit this knowledge to obtain a better fit on the image and a better estimate of the
true center of the spot.
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Figure 3. The proposed camera obscura. In (a), the parts labeled. In (b), the diffraction pattern. (a) The
proposed camera obscura. ① Casing. ② Band-pass optical filter. ③ Slit mask. ④ Protective glass. ⑤ Image
sensor. Axis indicates the x direction relative to the schematic. (b) Diffraction pattern created by
incident monochromatic light.

Figure 4. Fraunhofer diffraction (normalized intensity).

As we mentioned earlier, if pinhole cameras are not subject to as many optical
aberrations as lens-based cameras, we still have to worry about speckle noise. Speckle noise
originates on the surface of the object from which the laser is reflected. The object surface
asperities, whether very rough or minute, will give the reflected light different path lengths
to the sensor and therefore different phases, causing it to interfere with itself and give the
image a granulated aspect, as shown in Figure 5a.
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(a) (b)

Figure 5. Projection of the laser spot with a lens in (a), and a slit in (b).

If the general shape of the projected image is known, we can use a better algorithm
than a simple centroid to find its center. The models considered are the simplified Gaussian
function (not to be confused with a Gaussian distribution) and the Fraunhofer diffraction
formula: an approximation of the Airy diffraction pattern. Once a good estimate of the
center of the projected image is obtained, we can translate from the pixel space to the
actual distance. One possible way to do so is to use a geometric model that takes into
account the various parameters of the sensor and translate the projection center x to the
distance d, just as shown in Figure 1. Another way would be to place the sensor on a
high-precision linear displacement table and to acquire a number of laser point reflections
from a target at known positions. These points are to be stored in a look-up table in the
sensor, and a new position x in the pixel space can be searched for in the table and the
distance d interpolated from neighboring known values in the table. This second method
seems suboptimal, but it may be preferable as it takes into account any deviation from the
ideal device due to manufacturing.

To reduce the effect of speckle, we use a vertical slit (relative to the horizontal axis
of the image sensor) rather than a circular aperture. This can be seen as a special case of
astigmatism, where in one direction (along the slit), the focal length is very large, and along
the other (across the slit), the focal length is short. This causes a stretch in the reflected laser
image, as shown in Figure 5b. In this way, speckle noise is spread mostly vertically, allowing
a better horizontal, line-by-line, analysis of the image. We also suppose that the projection
angle (α in Figure 1) is moderate so that the projected image, including the interference
pattern, remains approximately symmetrical [30].

Therefore, our main hypothesis is that replacing a lens with a slit improves the
accuracy of a laser triangulation sensor. The use of a slit circumvents most of the optical
aberrations found in lenses, reduces the influence of speckle noise, and aids image analysis
by creating (mostly) symmetrical diffraction patterns. Symmetrical diffraction patterns
could be amenable to simpler or less computationally expensive image analysis algorithms.
As a side effect, we surmise that using a slit will significantly reduce the mechanical
complexity and cost of manufacturing laser triangulation sensors as well as potentially
making them more robust and easier to adjust and calibrate.

3. Methods

To create a useful data set, we built a precision position table to move with accuracy a
target on which to reflect the laser and to support instruments such as the table’s controller,
the laser source, and the camera. The table is fully automated under the control of a standard
PC and over a serial/USB cable.

The precision positioning table is shown in Figure 6. It is controlled by a WantMotor
32BYGHm809 (Jiangsu Wantai Motor Co., Ltd., Changzhou, China) precision step motor
capable of 6400 steps by revolution (shown as ① in the figure), a worm gear ②, and a
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carriage ③ on which we can place different materials. The useful range of the table is
150 cm, starting at the limit switch, shown as ④. Since during acquisition the carriage was
only moved in one direction (away from the camera), there was no kickback, as the worm
gear only pushed against the carriage. The displacement error after 60,000 steps was well
under 1 mm, which gives us displacements of 25 µm ± 0.017 µm per acquisition.

1
2

34

6

5

Figure 6. A simple high-precision position table. Useful range: 150 cm. ① Step motor, ② worm gear,
③ target carriage, and ④ limit switch. On a metal plate (dashed): ⑤ laser, ⑥ camera with lens or slit.

The laser is a Class IIIa 650 nm 5 mW 5 V TTL red laser diode, and it is placed over
the step motor and in the same orientation as the worm gear; the laser is in the figure.

The camera used, shown as ⑥ in the figure, is a C-Mount Sentech STC-
MBS231U3V USB3 camera. The camera has a resolution of 1920 × 1200 pixels over
a 7.04 mm × 11.3 mm CMOS full-shutter image sensor. The camera uses a Sony IMX249
monochrome image sensor, which produces a gray-tone image and therefore avoids any ar-
tifacts that would result from a Bayer color filter sensor. The maximum frame rate for the
camera at full resolution is 41.6 fps, but the camera was used in snapshot rather than in
movie mode. The camera was placed 30 cm away from the laser and angled so that its opti-
cal axis crossed the worm gear.

For the images themselves, we produced for each material two sets of images: one
using a lens and another using a slit. For image acquisition with a lens, a Computar
50 mm fixed focal length, f /1.8, C-mount lens was used, with the iris set at f /12 to have
image illumination comparable to that of the slit. For the images acquired with a slit, we
used a 25.4 mm-diameter slit disk compatible with the C mount 50 mm tube and with a
200 µm × 3 mm slit-centered slit.

The materials used for the tests were chosen to be representative of textures likely
encountered in primary- or secondary-sector processes or manufacturing. The materials
chosen were brushed metal; unevenly rusted metal; light-colored, planed but unvarnished
wood; standard white printer paper; black and reflective PVC (black electrical tape); and
microfiber fabric.

The acquisition strategy was straightforward. For each configuration, we started the
carriage at the beginning of the useful range of the sensor: that is, when the laser spot
happened to be fully captured. This corresponded to 60 cm away from the carriage when it
was pushed against the limit switch (④ in Figure 6). The slit field of view is naturally wider
than that of the lens, but both begin at 60 cm from the limit switch. We then proceeded to
acquire five independent 1920 × 600 images (with the region of interest centered vertically
in the 1920 × 1200 complete image); then we moved the carriage forward—to the right
relative to Figure 6—by 25 µm. The process was repeated until it reached the end of the
sensor’s range, (where the spot stops being visible), 102 cm away from the limit switch,
which amounts to 16,800 × 5 captures. This process was done for each pair of material and
lens or slit combination.
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In addition to lens, slit, and other aberrations, the image sensor itself is noisy. For a
CMOS image sensor, there are two type of noise. The first one is thermal noise that makes
each pixel value change randomly. It is usually supposed to be small and independently
and identically normally distributed. The second type of noise is the black threshold, where
pixels report values much higher than zero despite not being exposed. We consider this
black threshold as a shared systematic bias: while individual pixels might be “hotter” than
others, we suppose they all have the same bias.

This bias should therefore be removed before proceeding to further image analysis
to find the center of the reflected laser spot. The black threshold, t, can be estimated once
at calibration, or it can be estimated for each image. To estimate the black threshold for
an image, we average all pixels of the image except for the region containing the reflected
laser spot. The reflected laser spot position is first estimated coarsely using the centroid, or
the center of mass of the image. That is, for a n × m pixel image, the centroid is given by

c =

n

∑
i=1

m

∑
j=1

yi,j(i, j)

n

∑
i=1

m

∑
j=1

yi,j

, (2)

where yi,j is the intensity of the pixel at coordinates (i, j) and is understood to be a two-
dimensional vector. The centroid is then used as the center of a 320 × 600 pixel exclusion
region for the lens and a 128 × 600 pixel exclusion region for the slit.

Once t is estimated, we correct the pixel values to compensate for the black threshold
without renormalization: that is,

y′i,j = max(0, yi,j − t) .

We are now ready to find the center of the reflected laser spot. We have two distinct
cases to consider: one where the spot is projected by a lens and is approximately circular, as
shown in Figure 5a, and another where the spot is projected through the slit, as shown in
Figure 5b.

Ross describes some typical ways to find the center of the reflected laser spot projected
by a lens [31]. We chose a simplified Gaussian function:

Amax e−∥r∥2
, (3)

where Amax is the maximum amplitude at the center, and r is a linear transformation
applied to the coordinates of the image plane:

r =
[

σxx σxy
σyx σyy

]−1[x − µx
y − µy

]
. (4)

The amplitude Amax; the covariances σxx, σxy, σyx, σyy; and the means µx and µy are
estimated using least mean squares regression. The values of µx and µy give us the center
of the reflected laser spot.

For the images captured using the slit, we proceed via a line-by-line analysis by fitting
a one-dimensional Gaussian function:

Amax e−(s(x−x0))
2
. (5)

where x0 is the center, s contains the wavenumber and other scalings, and Amax is the
maximum amplitude. This approximation is quite reasonable, as shown in Figure 7. The
side lobes in the Fraunhofer diffraction formula, Equation (6), vanish rapidly, and the
Gaussian function, Equation (3) (or Equation (5)), very closely matches the central peak.
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Figure 7. Fraunhofer diffraction (blue) approximated as a Gaussian (dashed red).

We see from Figure 7 that a simplified Gaussian is a good approximation of the actual
Fraunhofer diffraction formula given by

F(x) = Amax sinc2(s(x − x0)). (6)

The Fraunhofer formula, however, should be much closer to the actual projection being
observed and, once fitted, is potentially a much better estimate of the actual center of the
reflected laser spot, but using the simplified Gaussian of Equation (5) is less computationally
intensive for the sensor’s onboard processor.

The final slit center is estimated as the average of all line-by-line centers, which are
either estimated by the simplified Gaussian or by the Fraunhofer diffraction formula. These
averages yield good estimates of the horizontal position of the reflected laser spot. Indeed,
for the images captured using the slit, the projections only move horizontally as the laser
and the optical axis are in a same plane parallel to the x-direction of the image sensor.

Once x is estimated by either the centroid, the simplified 2D Gaussian for images
captured with a lens, or by the line-by-line average using simplified Gaussian or
Fraunhofer’s formula for images captured with the slit, we use Equation (1) to estimate
the distance to the sensor. However, Equation (1) contains a number of parameters that
must be found. For example, to use Equation (1) using a slit and Fraunhofer’s formula,
we use all the images from a data set captured using a slit and estimate all the xs using
Fraunhofer’s formula; we then use these xs and their corresponding known positions
to fit the parameters of Equation (1) using a modified least mean squares approach [32].
The errors reported in Section 4 are the differences between the positions predicted from
Equation (1) and the known positions.

4. Results

In this section, we will present the results from the experimental setup described in
the previous section. We will show that the positions estimated by the fit of the simplified
Gaussian function on the reflected laser spot projected by a lens are not as precise as the
positions estimated by both the fit of the simplified Gaussian function and by the fit of the
Fraunhofer diffraction formula over the reflected laser spot captured using a slit.

First, let us discuss the translation from an estimation of the center x to the distance d,
as given by Equation (1). If d0, u, b, and f are known with high certainty, the translation is
done quite easily. If they are not known, or are not has been retained. known with great
precision, we can use the data and fit Equation (1) on the data to find the parameters d̂0, û,
b̂, and f̂ that best fit the observations. This allows us to assess the quality of the estimates
on the positions of the reflected laser spot, whether through a lens or a slit.
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Let us now present the results obtained from a sensor using a lens. First, we examine its
behavior and properties. In Figure 8a, we observe the cropped reflected laser spot through
a lens. We see that it is diffuse, despite being in focus, and that it exhibit conspicuous, but
as remarked earlier, unavoidable, speckle noise. We also see that the spot is not perfectly
circular but is elongated. This is the effect of the laser beam not being perfectly circular
when interacting with the target material: in this particular example, white printer paper.
In Figure 8b, we see the best-fit Gaussian obtained from the raw data. From these fit
parameters, we obtain the estimation of the center of the spot, shown in Figure 8c as a
green cross.

(a) (b) (c)

Figure 8. Analysis of a laser spot through a lens. (a) Image cropped around detected reflected laser
spot. (b) Reflected laser spot modeled as a Gaussian. (c) Reflected laser spot with center superimposed.

In Figure 9a, we see the errors in mm between the estimated positions using a
lens and the true position. The position of the reflected laser spot is estimated for each
measurement. It is then translated into the actual distance using Equation (1), with its
parameters estimated on the whole data set. We see that the predicted distances are precise
but not very accurate. At both the far left and far right, the readings are thrown off by
optical aberrations. The variation near the center is caused by lens flares, which are more
visible as the laser spot approaches the center of the image.

The process is quite similar when using a slit. In Figure 10a, we see the cropped
image of the isolated reflected laser spot. For each line, a Gaussian is fitted, as is shown
in Figure 11, and the center is estimated for that line. We see all the line-by-line centers
found in Figure 10b. These centers are averaged to obtain the final estimate of x, which is
the horizontal position of the spot as projected through the slit. The process is similar (but
not shown in the figures) for the fit using Fraunhofer’s diffraction formula.

Figure 12a shows the result of the estimation of the different parameters of Equation (1)
fitted on all the centers found using all the centers estimated using the slit for the white
printer paper data set. Figure 12a shows that the curve does not go through every point—as
it could not, since Equation (1) is rather constrained—but that, on average, the errors are
very small. Figure 12b shows the discrepancy between known positions (obtained during
the target displacement by the precision position table) and the prediction from Equation (1)
with its parameters estimated from the computed centers. Lastly, Figure 9b shows that the
slit is more accurate and more precise than the lens. It shows that the sensor using a slit is
not affected by flares and so, on average, is closer to the real value than the sensor using
the lens.

Table 1 compares the maximum error (MAX) and the mean average error (MAE) for
the lens, the slit with a Gaussian fit, and the slit using Fraunhofer’s diffraction formula
for the chosen materials. In all cases, the slit methods are better than the lens method,
and sometimes significantly so. This also corroborates our interpretation that using a slit
leads to results that are both more precise and more accurate than when using a lens.
This interpretation of the results is also confirmed by the violin plots of Figure 13. Violin
plots are an extension of plots wherein probability densities are superposed to quartiles.
From Figure 13, it is apparent that the distributions of errors from the slit (in tan ■ for the
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Gaussian function and in rose ■ the Fraunhofer diffraction formula) are all more compact
than the distributions of errors from the lens (in slate ■). We also remark that the error
distributions from the lens are multi-modal, while this effect is much less present with
the slit methods, as the optical aberrations, being almost eliminated, do not perturb the
estimation as much.
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Figure 9. Error in center estimations from both methods. The material measured in this figure is the
brushed metal. (a) Error in center estimation from using a lens. (b) Error in center estimation from
using a slit.

(a) (b) (c)

Figure 10. Reflected laser spot through a slit. (a) Image cropped around detected reflected laser spot.
(b) Reflected laser spot with centers, line-by-line. (c) Reflected laser spot with center superimposed.
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Figure 11. Gaussian fitted to a single-line observation.
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Figure 12. Geometric model, fit, and positions. (a) Geometric model fitted on slit data. Dots are
estimated centers from image analysis, and the straight line is Equation (1) fitted to the data.
(b) Known positions vs. fitted geometric model. The dots are known (discrete) positions, and the line
is the prediction from the geometric model.

Table 1. Compared measurement errors for different materials.

Lens Slit with
Gaussian Fit

Slit with
Fraunhofer Fit

Material MAX MAE MAX MAE MAX MAE
µm µm µm µm µm µm

Brushed Metal 851 182 520 115 527 155

Rusty Metal 860 164 640 158 638 158

Light Wood Plank 651 151 429 72 476 81

Printer Paper 812 144 468 81 437 72

Black Electric Tape 1098 280 735 134 743 134

Microfiber Fabric 677 154 602 118 600 119
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Figure 13. Violin plots of errors for the lens compared to the slit. The x-axis shows the magnitude of
errors (dashed line is zero), and the y-axis is the normalized probability.

5. Discussion

The results seem to indicate that using a slit in a laser triangulation sensor is a
promising avenue. Indeed, Figure 9 shows that a laser triangulation sensor using a slit is
less subject to various optical aberrations: in particular, lens flare. The results also show
that, on average, the sensor using a slit is both more precise and more accurate than the
sensor using a lens.

However, the proposed method is not without flaws. First, it depends on the
wavelength of the laser. In our experiments, we chose a Class IIIa 650 nm red laser both
out of convenience (as it was readily available) and safety (as it is mostly harmless), but a
shorter-wavelength laser could be used. The spread of the diffraction pattern is strongly
linked to the incident wavelength; a shorter wavelength would yield both a more compact
diffraction pattern and finer-grained speckle, which, if fine enough, could be averaged
within pixels by the CMOS sensor itself. Second, we could use a more powerful laser, which
would counteract the relative “darkness” of a camera using a slit aperture. For the tests,
we had the luxury of higher exposure times to gather enough light to form images clear
enough for analysis, but some applications might necessitate a great number of readings
per second and, therefore, very short exposure times. Additionally, if greater distances
are considered, the wavelength and power can be chosen to accommodate the specific
application considered [33]. Thirdly, using simplified functions (such as the simplified
Gaussian or the Fraunhofer diffraction formula) certainly deprives us of the better fit
we might obtain from a formula such as the Fresnel diffraction formula. Indeed, better
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exploiting information in the diffraction pattern could not only give us a better estimation
of the position of the maximum but also give us information about the angle of incidence, as
the diffraction pattern is approximately symmetric only for small angles. Better estimation
algorithms will be the subject of future work. Lastly, precision is affected by the materials
measured. Rough, porous, or irregular specular reflection materials prove difficult to
measure accurately—regardless of the laser spot acquisition method.

The simplified hardware required is also quite interesting. In both systems—lens and
slit—we find a band-pass optical filter that conveniently filters out undesired light sources
and an image sensor—typically CMOS. But a slit, even precision-manufactured, is much
less expensive, and resource-consuming than a lens, especially since “a lens” is rarely just
one piece of glass: it is more often a rather complicated assembly comprising many lenses
that are designed to compensate for all kinds of optical aberrations [34,35]. Furthermore,
as we showed that the reflected laser spots only travels horizontally in the field of view,
we might not need a full sensor, and a line-scan sensor (which, despite the name, typically
includes more than one row of pixels) could suffice. Such an image sensor would also
reduce the cost and size of the laser triangulation sensor.

The image analysis algorithms are also likely to be simpler when we explicitly exploit
the shape of the diffraction pattern. In the case of a full two-dimensional Gaussian, we
either must explicitly and directly estimate the covariance matrix Σ and compute its inverse
(as in Equation (4)) using the usual estimation method, Σ = 1

n (XWXT − nµ⃗µ⃗T), with W
being the weights (pixel intensities), X the column–vector matrix of pixel coordinates, and
µ⃗ the average coordinate—the centroid—or we use some other regression framework: for
example, L-BFGS-B, which was used for our experiments in [36–39]. For a one-dimensional
fit, the estimation of the center and spread is much simpler, and each line could, at least in
principle, be processed in parallel.

We are now confident that the method can be exploited for laser triangulation sensors.

6. Conclusions

The starting hypothesis was that using a slit instead of traditional lenses in a laser
triangulation sensor could improve the accuracy of the sensors by removing the optical
aberrations inherent to lenses, and that a slit could be amenable to simpler analysis
algorithms—or at least algorithms that are less computationally expensive. We have shown
that line-by-line analysis of the diffraction pattern of a reflected laser spot through a slit is
not only simpler but gives more accurate results than the image analysis of a reflected laser
spot through a lens, and that this was true for both fit methods (simplified Gaussian and
Fraunhofer’s diffraction formula) and for all considered test materials.

Further work is of course considered. Preliminary testing (not shown in this work)
seems to indicate that the gain from using the Fraunhofer diffraction formula to find the
center is negligible compared to the simple Gaussian approximation, but we intend to
explore more complex models of the diffraction pattern, especially to take the asymmetry
arising from larger incident angles into account.
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