ﬁ Sensors

Article

Load Prediction in Double-Channel Residual Self-Attention
Temporal Convolutional Network with Weight Adaptive
Updating in Cloud Computing

Jiang Lin ! and Yepeng Guan

check for
updates

Citation: Lin, J.; Guan, Y. Load
Prediction in Double-Channel
Residual Self-Attention Temporal
Convolutional Network with Weight
Adaptive Updating in Cloud
Computing. Sensors 2024, 24, 3181.
https:/ /doi.org/10.3390/524103181

Academic Editor: Rongxing Lu

Received: 7 April 2024
Revised: 6 May 2024
Accepted: 14 May 2024
Published: 17 May 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1,2,3,%

School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China;
linjiang10001@shu.edu.cn

Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai 200072, China
Key Laboratory of Silicate Cultural Relics Conservation, Shanghai University, Ministry of Education,
Shanghai 200444, China

* Correspondence: ypguan@shu.edu.cn

Abstract: When resource demand increases and decreases rapidly, container clusters in the cloud
environment need to respond to the number of containers in a timely manner to ensure service
quality. Resource load prediction is a prominent challenge issue with the widespread adoption of
cloud computing. A novel cloud computing load prediction method has been proposed, the Double-
channel residual Self-attention Temporal convolutional Network with Weight adaptive updating
(DSTNW), in order to make the response of the container cluster more rapid and accurate. A Double-
channel Temporal Convolution Network model (DTN) has been developed to capture long-term
sequence dependencies and enhance feature extraction capabilities when the model handles long load
sequences. Double-channel dilated causal convolution has been adopted to replace the single-channel
dilated causal convolution in the DTN. A residual temporal self-attention mechanism (SM) has
been proposed to improve the performance of the network and focus on features with significant
contributions from the DTN. DTN and SM jointly constitute a dual-channel residual self-attention
temporal convolutional network (DSTN). In addition, by evaluating the accuracy aspects of single
and stacked DSTNSs, an adaptive weight strategy has been proposed to assign corresponding weights
for the single and stacked DSTNSs, respectively. The experimental results highlight that the developed
method has outstanding prediction performance for cloud computing in comparison with some
state-of-the-art methods. The proposed method achieved an average improvement of 24.16% and
30.48% on the Container dataset and Google dataset, respectively.

Keywords: cloud computing load prediction; residual temporal attention mechanism; double-channel
temporal convolutional network; adaptive weight update

1. Introduction

With the widespread adoption of cloud computing technology, many enterprises
choose to migrate their business to the cloud for greater flexibility and scalability [1]. In the
context of cloud computing, it is very important to plan and utilize resources rationally.
Both server capacity and resources can be better allocated to meet the diverse needs of
customers. Load prediction plays a vital role as a technique that enables businesses to
predict future resource needs [2]. Applying accurate load prediction results to resource
allocation plays a key role in enterprise resource utilization. Accurate load prediction helps
to optimize the performance of cloud computing and server systems.

However, the dynamics and complexity of cloud computing environments pose sev-
eral challenges to load forecasting techniques. To address these challenges, it is crucial to
develop efficient and accurate time series prediction algorithms to achieve high availability
and performance in cloud computing environments. The resource situation in the cloud

Sensors 2024, 24, 3181. https://doi.org/10.3390/5s24103181

https:/ /www.mdpi.com/journal /sensors

https://doi.org/10.3390/s24103181
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24103181
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24103181?type=check_update&version=1

Sensors 2024, 24, 3181

2 of 14

platform can be treated as a time series, and the developed models and algorithms can be
used to predict resource usage. Therefore, developing a prediction algorithm to improve
the accuracy of prediction is an urgent problem that needs to be solved.

Some single-variable time series models including Autoregressive Integrated Moving
Average (ARIMA) [3], linear regression [4], and Exponentiated Linear Regression (ELR) [5]
are widely used for predicting stationary time series. A predictive model [6] based on
ARIMA [3] was proposed for energy consumption prediction. The model was improved by
proposing an ARMA [3] for time series prediction [7]. However, these models have poor
performance for non-periodic time series. Additionally, they are prone to overfitting and
other issues for high-dimensional and long time series.

Another approach is to use machine learning models, such as linear Support Vector Re-
gression (SVR) [8], random forests [9], ridge regression [10], LASSO [11], SOM [12], resource
scaling techniques [13], or statistical learning [14]. However, machine learning models, as
mentioned above, may not be able to incorporate complex nonlinear dependencies between
multiple variables in large datasets.

Deep learning network architectures have been developed to overcome these limits
including Convolutional Neural Networks (CNNs) [15] and Recurrent Neural Networks
(RNNSs) [16,17], Long Short-Term Memory (LSTM) [18], Convolutional LSTM (ConvL-
STM) [19], and Multivariate Attention LSTM-Fully Convolutional Networks (MALSTM-
FCN) [20]. However, these models are time-consuming and not robust when dealing with
non-periodic data predictions. LSTM [18], as a variant of RNN [16], has demonstrated
excellent performance in predicting CPU usage. Nevertheless, RNN [16] suffers from the
issues of vanishing and exploding gradients in time series prediction.

Other novel methods for time series forecasting are the mixed multi-scale method
including empirical mode decomposition (EMD) [21], ensemble empirical mode decompo-
sition (EEMD) [22], multi-level wavelet decomposition network (mWDN) [23], variational
mode decomposition (VMD) [24], and wavelet decomposition [25]. These methods [21-25]
decompose the data into different frequency components to facilitate prediction. However,
they are not generalizable for predicting non-periodic and complex time series.

Temporal Convolutional Network (TCN) [26] has been proposed as a universal archi-
tecture for handling time series tasks. TCN stacking was used in [27] to increase the feature
extraction of the sequence. However, it merely overlapped the network structures without
making any structural modifications. LSTM-TCN network was utilized as a predictive
model in [28]. However, it has limited ability to capture long-term dependency information.
The LMD-ETS-TCN model, consisting of TCN combined with other time series models,
has also demonstrated promising performance [29]. However, the input data are required
to possess a certain level of stationarity and periodicity characteristics. These applications
have not been investigated for handling complex data in cloud platforms [30].

When predicting time series on cloud computing resources, some model methods
mentioned in the references have some specific problems and flaws. Changes in cloud
computing resources are dynamic, complex and non-periodic. These methods fail to
accurately predict long-term sequences, and the problem about long-term dependence of
sequences in complex data has not been solved.

A novel cloud computing load prediction method has been proposed, the Double-
channel residual Self-attention Temporal convolutional Network with Weight adaptive
updating (DSTNW). A Double-channel Temporal convolutional Network (DTN) has been
adopted to improve prediction accuracy and better capture long-term dependencies in the
sequence. A residual temporal Self-attention Mechanism (SM) has been adopted to add
the contribution of historical data to jumps in the process [31-33]. DTN and SM jointly
constitute a dual-channel residual self-attention temporal convolutional network (DSTN).
In addition, by evaluating the accuracy aspects of single and stacked DSTNs, an adaptive
weight strategy has been developed to assign corresponding weights for single and stacked
DSTNSs, respectively.

Sensors 2024, 24, 3181

3o0f14

e e e e e e S Ay

Some main contributions of this paper are summarized as follows:

First, DTN was proposed to capture long-term dependencies in series. Double-channel
dilated causal convolution was adopted to replace the single-channel dilated causal convo-
lution. The developed double-channel dilated causal convolution can be applied to enhance
feature extraction capability and capture dependencies within the complex sequence.

Secondly, SM was developed to improve the performance of the network and focus on
features that have made significant contributions. The SM module can selectively extract
the dependencies and information from DTN.

More importantly, an adaptive weight update strategy was developed to assign the
corresponding weights for single and stacked DSTNs. The weight is adaptively updated
according to the errors in the DSTNS.

The rest of this paper is organized as follows. The DSTNW network is presented in
Section 2. Experimental results are described and discussed in Section 3 and are followed
by some conclusions in Section 4.

2. DSTNW Network

In this section, the details of the DSTNW network are given as shown in Figure 1.
Firstly, the Double-channel Self-attention Temporal convolutional Network (DSTN) is
described in Section 2.1. The DTN unit is introduced in Section 2.1.1. The SM unit is
described in Section 2.1.2. The adaptive weight update strategy is discussed in Section 2.2.

| Fully
DSTN —» connected —»

—_—— e e e~

—_———— e ——

i, S e T s st S

|
) layer

Weight coefficient » >

Output

Q000 (0000]
=

Preliminary results
Figure 1. DSTNW network framework.

2.1. DSTN
The DSTN consists of the DTN and SM modules as shown in Figure 2.

2.1.1. DTN Unit

The DTN unit is shown in the top half of Figure 2. It replaces the TCN [26] with a
double-channel dilated causal convolution unit. In the DTN model, the single-channel
dilated causal convolution in the TCN [26] is transformed into the double-channel dilated
causal convolution. The outputs in the DTN unit are the sum of the outputs of two paths.
One of the paths is the sum that the input passes through the double sides of two layers
of the same dilated causal conv (DCC) and outputs. The input enters the DCC after the
weights of the first layer are initialized. The output is subjected to nonlinear transformation
through the Relu activation function after weight normalization. The nonlinear output is
subjected to dropout regularization to reduce the over-fitting of the model. Another path is
the input that goes directly to the output through a one-dimensional convolutional layer.
The two paths constitute the residual block (RC), which is derived from the residual neural
network. It is helpful for the construction of the deep neural network.

Sensors 2024, 24, 3181 40f14

/ Input \
Il DTN unit \I
: Dilated Causal Conv Dilated Causal Conv :
! |
| WeightNorm WeightNorm |
| * |
! ReLU ReLU !
I \j ¥ \J !
| Dilated Causal Conv Dilated Causal Conv Ix1 ACOHV |
| * * (optional) |
: WeightNorm WeightNorm :
| V V |
| ReLU ReLU |
! |
: Outputl :
! |
\ /

Figure 2. DSTN network structure.

The DCC increases the value of the expansion coefficient d so that it expands the recep-
tive field of the network to accept longer historical data according to causal convolution.
It is a 3-layer causal convolutional network schematic diagram as shown in Figure 3. The
value of the convolution kernel k in this network is 2, the value of the expansion coefficient
d is 1, and the receptive field is 3.

Vs Ja Vs Vo I B

|
|
/ |
/ / VAN

X

-5 X

-4

(a) Causal Convolution.

X

-3 X

-2 X

-1 X

t

yz—s .j}t*4)3[*3 57;72 j}rfl);z
/ Output
|
27 k=2 d=1
|
|

Hidden

|

SO k=2 d=1
| |
| |

Input

X5

(b) Dilated Causal Convolution.

X

-4 X

-3 X

2 X X,

-1 t

Figure 3. Causal Convolution and Dilated Causal Convolution.

The convolution operation is represented by a dashed line in Figure 3. The green
represents the input, blue represents the output, and orange represents the hidden layer.
The predicted load sequence j; is calculated from the input sequence [x;_», x;_1, x¢], and has
nothing to do with the input sequence [x;11, X¢42, . . .]. The application of causal convolution

Sensors 2024, 24, 3181

50f 14

in the TCN [26] would not cause information leakage. Since the receptive field is small for
the causal convolution in the TCN [26], the DCC is developed by increasing the expansion
coefficient to expand the network receptive field as shown in Figure 3a. It can be seen from
Figure 3 that the receptive field of the DCC under the same number of layers is expanded
to4.

The TCN [26] can be used to receive longer historical sequence data after applying the
proposed DCC. The dilated convolution operation is shown as:

u—1

F(t) = Zof(v)xtfdv (1)

where F(t) represents the dilated convolution operation, X;_4, is the sequence data, f(v)
is the filter function, u is the length of the input sequence data, v is the value of the v-th
element in the input sequence data, and d is the expansion coefficient.

Since the receptive field in this model is effectively expanded, it can acquire substantial
differences and enhance the expressive power. Some long-term dependencies in the se-
quences can be better captured by splitting the dilated causal convolution into two parallel
sides of the dilated causal convolutions.

2.1.2. SM Unit

Self-attention mechanism [31-33] is an important improvement on traditional attention
mechanisms and plays a key role in neural networks. It aims to capture the internal
correlations of data and can help the model focus more on the informative information that
makes a significant contribution to the output. In a time series, a self-attention mechanism is
adopted to capture the features of the temporal dimension. The sequence is given different
contributions on the temporal dimension by assigning different weights to each temporal
element in the time series.

A self-attention layer is the core component of a self-attention mechanism as shown in
Figure 4. The @ symbol represents the addition of two values and the ® symbol represents
the multiplication of two values. It comprises three elements including queries, keys,
and values. These three vectors are obtained by multiplying the input data with the
corresponding weight matrices W;, Wy, and Wy, respectively:

Q = inputs x W, 2)
K = inputs x W 3)
V =inputs x W, 4)

where X is a multiplying operator.
The result of multiplying Q and K by a ratio factor /dj is divided by a softmax
function and then multiplied by V to obtain the output of the self-attention mechanism:

QK™

outputl = softmax(\%4 (5)
Vi

To address the problem of gradient disappearance and explosion in deep neural net-

works, a residual connection is used at the end of the temporal self-attention mechanism to

prevent loss or distortion of information during the hierarchical transmission of information
within the network:

output2 = outputl + input (6)

Sensors 2024, 24, 3181

6 of 14

Times-series

~
|
|

Input

W’l VVI(’/I/\

Query Key Value

Softmax

Outputl

e}=

Output2

Figure 4. Residual temporal self-attention mechanism.

To better capture the relationship between the features and load sequences and obtain
more important temporal information in long sequences, a residual temporal self-attention
mechanism module is proposed. This module aims to capture the contributions of different
elements in the sequence. The network becomes easier to optimize for enhancing the depth
and accuracy of the model by connecting the residual mechanism with the self-attention
mechanism. Moreover, the cross-layer connections in the residual networks can improve the
performance by increasing the network depth without encountering the issues of vanishing
or exploding gradients.

2.2. Adaptive Weight Update Strategy

Since there are some different predictive performances for single and stacked DSTNSs,
an adaptive weight strategy is proposed to assign the corresponding weights for the DSTNSs.
Some errors for single and stacked DSTNs are evaluated. Some corresponding weights are
assigned adaptively to the DSTNs for each time step in the series.

Assuming that the given time step is S, calculate the errors for a single DSTN (block 1)
and a stacked DSTN (block 2) from f — s to t as shown in Figure 5. The results in errorl and
error2 are computed as follows:

t

errorly =Y (Pre_blockl; —) (7)
i=t—s+1
t
error2y = Y (Pre_block2; — i) 8)
i=t—s+1

where errorl; and error2; are the sum of the squared prediction errors in the single DSTN
(block 1) and the stacked DSTN (block 2) at t time. y; is the real value at f time. Pre_blockl,
and Pre_block2 are the predicted values of block 1 and block 2, respectively.

inele DSTN block : Predicted results of
______]BS_TI:I_ - _: two blocks
Predicted value
Stacked DSTN block | .
DSIN — DSIN 1 s ™ oftwoblocke

Figure 5. Adaptive weight update strategy framework.

Sensors 2024, 24, 3181

7 of 14

The obtained errorl and error2 are then used to calculate the corresponding weights
including weight1 and weight2 for block 1 and block 2, respectively:

. error2;
weightly = —————— 9
ghtlt errorly + error2; ©)

errorl;

T e —— 10
errorl; + error2; (10)

weight2; =

The weights are then applied to the corresponding time steps of block 1 and block 2
from t to t + s. The result for the total prediction value pre_value is as follows:

Pre_valuel; 1 = weight1; x Pre_blockl; (11)
Pre_value2; 1 = weight2; x Pre_block2; (12)
Pre_value; 1 = Pre_valuel;,q + Pre_value2;,, (13)

The input data are trained by two network modules in process. Two sets of predicted
values from the corresponding modules obtained. Two sets of predicted values are calcu-
lated to obtain two sets of error values. The corresponding weights are calculated from the
two sets of error values.

The input is passed through the single and stacked DSTNs, respectively. Some weight
coefficients are obtained by the adaptive weight update strategy. The predicted results are
provided in the output.

3. Experimental Results and Discussion
3.1. Datasets and Implements

All experiments were conducted with a NVIDIA GeForce GTX 1060, Intel i7-7700
CPU, and 16 GB memory to test the developed method’s performance. Some datasets
were selected to perform a fair comparison with some state-of-the-art methods. Container
workload traces [34] were collected from a real online Kubernetes system. The data in [34]
contains 59 performance indicators collected within 30 days from an online system in-
cluding CPU, memory, and disk usages from 500 containers. Google workload traces [35]
contains 28 days of Google usage data workloads consisting of 4,609,3201 tasks comprising
CPU intensive workloads, memory-intensive workloads, and both CPU and memory-
intensive workloads. The dataset parameters in [35] contain time, job id, parent id, number
of cores (CPU workloads), and memory tasks (memory workloads). All experimental data
in [34,35] were performed with five-fold cross validation.

For evaluation metrics, we used the Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), Mean Absolute Percentage Error (MAPE) and Pearson Correlation Coefficient
(PCC) to measure the difference between the predicted results and true labels. These three
metrics have the property that the smaller the value of MAE and RMSE, the more the
predicted values approach the actual values. The larger the value of PCC, the more the
predicted values approach the actual values. The definitions of these metrics are given by
the following formulas:

1 _
MAE = P Yt — Vil (14)
t=1
1Z R
RMSE = [~ (ye = 91)? (15)
t=1
100% ?t — Yt

MAPE = TZ (16)

t=1

Yt

Sensors 2024, 24, 3181

8 of 14

(ye —9,) (9 — 9,)
—\2 ~ =12
\/Z(yt —7) \/Z(]/t — 7
where y; and ; are the real value and predicted value at time step t, respectively; 7, and 7,
are the real mean value and predicted mean value, respectively; and 7 is the total length of

the time steps.
MSE was selected as the loss function for the model as:

PCC =

(17)

1 .
MSE = ~Y0 (ye — 91)° (18)

The model was trained in Adam optimizer and back-propagation algorithm. The
training process is shown in Algorithm 1:

Algorithm 1 Training process

Input: Epoch, number of trainings iterations. LR, learning rate. Series, load series. Label, ground
truth of the prediction.

1: Normseries<—(Series-Series,,;,) / (Seriesyax-Series i)

2: Series Input<—Preprocess(Normseries)

3: For i in Epoch do:

4: Prediction<—Model. Forward(Series Input)

5: MSELOSS<+MSE(Prediction, Label)

6: Model.Backward(MSELOSS, LR)

7: End For

After the single and stacked DSTNs were trained, they were verified on the test
datasets. The output result passed through the adaptive weight update to produce the
predicted result.

3.2. Parameter Analyses
3.2.1. Network Layer

To obtain the best predicted performance, it is necessary to determine the optimal
number of layers for the DSTNW. A single and a stacked DSTNs, together as shown in
Figure 5, were taken as one network layer. The number of layers changed from one to four
with an interval of one. Some experimental results for different layers are given in Figure 6.

One can find from Figure 6 that the performance is the best when the layer is set to two.
The performance decreases as the layer increases. Moreover, when the DSTNW contains
multiple layers, the network structure becomes complicated and consumes more time. It
becomes unable to respond quickly for load predictions. The number of layers was set to
two and kept the same for the following experiments.

3.2.2. Time Step

When the time step S is too short, the network is unable to learn effective time
information. On the other hand, when S is too long, too much redundant information is
sent to the network. Too much redundant information hinders the model from learning
accurate and efficient advanced representations, which also affects the performance of the
network. To obtain a proper time step S, we changed the time step S from 5 to 35 at an
interval of 5. Some experimental results for different time steps S are given in Figure 7.

One can find from Figure 7 that the performance is the best when S is set to 20. When S
is less than 20, the prediction performance gradually improves with an increase of S. When
S is larger than 20, the prediction performance begins to degrade as S increases. The time
step S was set to 20 and kept the same in the following experiments.

Sensors 2024, 24, 3181

9 of 14

0.16 \
A 0.10
014 \/
012 0.08
w 010 —¥— Container w —v— Container
006 |- e

= —_ I .—

X 0.08 Google | = Google
0.06 e
004

0.02 =
0.02 T——— - e e S
0.00; 2 3 2 0.00 2 3 4
Number of layers Number of layers
8 1.00
- //,_—v\"_\‘
- g
1 ~ \
\ 0.98 <
6 \ / ek \
E \/ —v— Container o —¥— Container
o —+— Google b \ —+— Google
0.96 AN
N RS It ;
0.95 " —
P e g e e e e e
= 0.94
3
1 2 3 4 093y 2 3 4
Number of layers Number of layers

Figure 6. Prediction performance in different layers.

0.200,
U — —]
0150 =
0.125 \/

il b6 —¥— Container W oo —¥— Container

E ' —+— Google é & —+— Google
0.075 - S - - 0.06 [

0.050 : 0.04
0,025 e T e S—— S S S
— —
0.0005 10 15 20 25 30 35 0-005 10 15 20 25 30 35
time step time step
1.00 -
/ 0.99 |
R
0.98 | bbb S
H \/ ! 0.97 / T
! —¥— Container)
! —— Google 9
0.96
S — + —— 0.95 oot
3 ==
¥ T R e
2 o8 —¥— Container
—— Google
1
5 o i5 20 25 30 35 0-935 10 15 20 25 30 35
time step time step

Figure 7. Prediction performance for different time steps S.

3.3. Ablation Experiment

To evaluate the effectiveness of both DTN and SM, some different models were used
to perform experimental tests. Some experimental results are given in Table 1. The optimal
results in Table 1 are highlighted in boldface.

One can find from Table 1 that our proposed model and mechanism including the
DTN, SM, and DSTNW help to improve the prediction performance, and DSTNW has the
best prediction performance. The reason is as follows. The double-channel dilated causal
convolution has been adopted to replace the single-channel dilated causal convolution in
the developed DTN. Therefore, its prediction performance is superior to that of TCN [26].
Since the SM focuses on features with significant contributions, it helps to improve the
network prediction performance. Therefore, the performance of both the TCN-SM and

Sensors 2024, 24, 3181

10 of 14

DSTN has been improved to some extent after the TCN [26] and the DTN combined with
the SM. Since there are different prediction performances from the single and stacked
DSTNs under a complex dynamic cloud environment, an optimal performance is obtained
by adaptively assigning different weights to the single and stacked DSTNs. The experi-
mental results showed that the proposed DSTNW has the best performance among the
investigated models.

Table 1. Ablation experimental results in different models.

Container [34] Google [35]

Methods
RMSE, MAE| MAPE, PCCt RMSE, MAE| MAPE| PCC}
TCN [26] 0.164 0124 7.146% 0.988 0.027 0.021 3.186% 0.945
DTN 0.148 0129 6.138% 0.987 0.026 0.021 3297% 0.950
TCN-SM 0.153 0.119 7.154% 0.985 0.027 0.021 3.336% 0.947
DSTN 0.148 0129 7.850% 0.990 0.025 0.015 2.329% 0971
DSTNW 0.128 0.090 5491% 0.994 0.020 0.013 2312% 0.988

Symbol “|” in Table 1 represents better performance as the value decreases, while symbol ‘1" represents better
performance as the value increases.

3.4. Comparisons with Some State-of-the-Art Methods

Some state-of-the-methods were selected to further evaluate the performance of the
DSTNW, including ARIMA [3], LSTM [18], and TCN [26]. To achieve a fair comparison, all
corresponding parameters used are the authors’ recommended ones for each method. Some
comparative results are given in Table 2. The optimal results in Table 2 are highlighted
in boldface.

Table 2. Experimental comparisons in different methods.

Container [34] Google [35]
RMSE| MAE| MAPE| PCCt RMSE| MAE|, MAPE| PCCt
ARIMA [3] 0.194 0.155 10.235% 0.975 0.029 0.023 3.502% 0.948

Methods

LSTM [18] 0.168 0129 8413% 0976 0.028 0.022 3.383% 0.944
TCN [26] 0.164 0124 7.146% 0.988 0.027 0.021 3.186% 0.945
Ours 0.128 0.090 5491% 0.994 0.020 0.013 2.312% 0.988

Symbol ‘| in Table 2 represents better performance as the value decreases, while symbol ‘1" represents better
performance as the value increases.

One can find from Table 2 that the proposed method exhibits the best performance
among the selected methods ARIMA [3], LSTM [18], and TCN [26]. Compared with
these comparative models, the algorithm we propose has better prediction performance
and higher prediction accuracy. The experimental results show that on the Container
dataset and the Google dataset, our model has smaller errors in the indicators of RMSE,
MAE, and MAPE, and performs better for the PCC indicator. The reason is as follows.
ARIMA [3] is a linear model in essence, while the cloud load prediction sequence has
nonlinear characteristics. LSTM [18] performs poorly in extracting shallow information
and is prone to encountering the gradient disappearance problem. This makes it difficult
to predict accurately. TCN [26] demonstrates better performance in handling long-term
dependencies and has certain advantages in improving generalization and scalability.

Our proposed DSTNW has a stronger generalization ability. It combines single and
stacked DSTNs together with an adaptive weight update, which considers more complex
dynamic information and extracts deeper network information. A Double-channel Tem-
poral convolution Network model is to capture long-term sequence dependencies and
enhance feature extraction capabilities when the model handles long load sequences. A
residual temporal self-attention mechanism was proposed to improve the performance of
the network and focus on features with significant contributions from the DTN.

Sensors 2024, 24, 3181 110f 14

In order to explore the training efficiency and convergence performance of each model,
the changing trends of the train loss during the training process of the four models on the
Container and Google datasets were recorded. The train losses in the figure are the result
of training after normalizing the data. On the two datasets, compared with the other three
models, the train loss of our model can quickly converge to a smaller value during the
training process. It also ends up being stable at a lower point than the others.

In order to test the complexity and training time of the proposed approach, a com-
parative experiment was conducted on the training time of the DSTNW, DSTN, DTN and
TCN models. As shown in Figure 8, the experiments used the Container dataset and
the Google dataset. The Container dataset and Google dataset used more than 7000 and
5600 datapoints, respectively, for the experiments. The training time was collected and
calculated from the beginning of training to the generation of the results. All experimental
data were performed with five-fold cross validation. The t/s values in the figure represent

time/second.
0.1 T T T T 0.1
ARIMA ARIMA
—&—— LST™M —&— LSTM
—A—TCN A TN
0.08 —#%— Ours 0.08 *— Ours
\
\

0.06 0.06. \
r E \
E E \

0.04 0.04 |+

\
\
b
0.02 0.02 \
N e .
\ e R R S S SN Ry — e |
~— W e D TR S SN = s
0 0 i i H

0 10 20 30 40 50 0 10 20 30 40 50
epochs epochs
Figure 8. The change trend of the train loss with the number of training epochs on the Container
dataset and the Google dataset. The figure on the left is tested on the Container dataset, the figure on
the right is tested on the Google dataset.

Compared with the TCN, the DTN uses dual channels instead of single channels, and
the model becomes more complex. Although the model has more calculation steps, the
parameter numbers do not increase during the training process of the model. This is why
although the computational complexity increases, the training time of the network is only
slightly longer. After adding the SM to the DTN, although there is an increase in parameter
numbers, the SM module can help the model pay attention to more important features
in the sequence, which also makes the training time of the DSTM network not increase,
or even decrease. An adaptive weight strategy was adopted in the DSTNW network.
This strategy includes the need to train the single and stacked DSTN, as well as weight1
and weight2, which increases the computational complexity, and its training time is also
significantly longer.

Although the above Figure 9 shows a significant difference in its training time, this
is because we used 5000 pieces of data for comparison in the enlarged experiment. In
actual production, its prediction time is much shorter than this, so the difference in their
prediction times will also be smaller.

This model is used for resource load prediction in cloud environments. The load
prediction result is used for elastically scaling the container in advance. Although the
proposed approach has a slight delay compared to the TCN, when we use these methods in
a container cluster, the cluster where the DSTNW is located will respond more quickly than
the cluster where the TCN is located, and this time difference will be much larger than the
model prediction time difference. This is because the prediction accuracy of the DSTNW is
higher and the container’s response will be more timely.

Sensors 2024, 24, 3181

12 of 14

References

N DTN 1
[TCN 1
[IDSTN 1
[IDSTNW 1

Container dataset Google dataset

Figure 9. The training time of the DSTNW, DSTN, DTN and TCN models on the Container dataset
and the Google dataset.

4. Conclusions

Due to the low feature extraction efficiency of some existing models and complex
load environments, load prediction in cloud computing is challenging. A novel cloud
computing load prediction model DSTNW has been proposed. It consists of DSTNs with
an adaptive weight update strategy. First, double-channel dilated causal convolution was
adopted to replace the single-channel dilated causal convolution in DTN. Secondly, the
SM was applied to extract the part with the greater contribution in the temporal series. In
addition, since it is handling dynamic cloud computing load data in different periods of
time, an adaptive weight update strategy was proposed. Some corresponding weights were
assigned adaptively to the single and stacked DSTNs. The developed DSTNW has excellent
prediction performance for some challenging cloud computing datasets in comparison with
the state-of-the-art methods. The proposed method achieved an average improvement
of 24.16% and 30.48% on the Container datasets and Google datasets, respectively. This
improvement in prediction accuracy has a significant impact on the resource scheduling
strategy of cloud computing container clusters, and it can enhance the resource utilization
rate of container clusters in the cloud platform.

Author Contributions: J.L. conceived the presented idea. J.L. developed the theory and performed
the computations. J.L. wrote the main manuscript version and completed all of the experiments,
and Y.G. revised the manuscript. J.L. and Y.G. verified the analytical methods. Y.G. encouraged J.L.
to investigate and supervised the findings of this work. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: All datasets are available in the Internet Traffic Archive https://github.
com/Hardy-linjiang/datasets (accessed on 5 January 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

1. Bi, J; Li, S; Yuan, H.; Zhou, M. Integrated deep learning method for workload and resource prediction in cloud systems.
Neurocomputing 2021, 424, 35-48. [CrossRef]

2. Tang, Z.; Du, L,; Zhang, X,; Yang, L.; Li, K. AEML: An acceleration engine for multi-GPU load-balancing in distributed
heterogeneous environment. IEEE Trans. Comput. 2021, 71, 1344-1357. [CrossRef]

3. Maryam, C.; Faramarz, S. ARIMA: Predictive consolidation of virtual machines applying ARIMA method.]. Supercomput. 2021,

77,2172-2206.

4. Dhaval, B.; Deshpande, A. Short-term load forecasting using method of multiple linear regression. New Approaches Eng. Res. 2021,

14, 67-77.

https://github.com/Hardy-linjiang/datasets
https://github.com/Hardy-linjiang/datasets
https://doi.org/10.1016/j.neucom.2020.11.011
https://doi.org/10.1109/TC.2021.3084407

Sensors 2024, 24, 3181 13 of 14

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

Kaur, M.; Kaur, P; Sood, S. Energy efficient IoT-based cloud framework for early flood prediction. Nat. Hazards 2021, 109,
2053-2076. [CrossRef]

Ediger, V.; Akar, S. ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy 2007, 35, 1701-1708. [CrossRef]
Rojas, I.; Valenzuela, O.; Rojas, F.; Guillen, A.; Herrera, L.; Pomares, H.; Marquez, L.; Pasadas, M. Soft-computing techniques and
ARMA model for time series prediction. Neurocomputing 2008, 71, 519-537. [CrossRef]

Sapankevych, N.; Sankar, R. Time series prediction using support vector machines: A survey. IEEE Comput. Intell. Mag. 2009, 4,
24-38. [CrossRef]

Hamidi, O.; Tapak, L.; Abbasi, H.; Maryanaji, Z. Application of random forest time series, support vector regression and
multivariate adaptive regression splines models in prediction of snowfall. Theor. Appl. Climatol. 2018, 134, 769-776. [CrossRef]
Lima, C.; Lall, U. Climate informed monthly streamflow forecasts for the Brazilian hydropower network using a periodic ridge
regression model. J. Hydrol. 2010, 380, 438—449. [CrossRef]

Li, J.; Chen, W. Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic
factor models. Int. |. Forecast. 2014, 30, 996-1015. [CrossRef]

Cao, L. Support vector machines experts for time series forecasting. Neurocomputing 2003, 51, 321-339. [CrossRef]

Yang, J.; Liu, C.; Shang, Y.; Cheng, B.; Mao, Z.; Liu, C.; Niu, L.; Chen, J. A cost-aware auto-scaling approach using the workload
prediction in service clouds. Inf. Syst. Front. 2014, 16, 7-18. [CrossRef]

Ahmed, H.U.; Mostafa, R.R.; Mohammed, A.; Sihag, P; Qadir, A. Support vector regression (SVR) and grey wolf optimization
(GWO) to predict the compressive strength of GGBFS-based geopolymer concrete. Neural Comput. Appl. 2023, 35, 2909-2926.
[CrossRef]

Lu, W,; Li, J.; Wang, J.; Qin, K. A CNN-BiLSTM-AM method for stock price prediction. Neural Comput. Appl. 2021, 33, 4741-4753.
[CrossRef]

Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D
Nonlinear Phenom. 2020, 404, 132306. [CrossRef]

Xia, M.; Shao, H.; Ma, X.; de Silva, C.W. A stacked GRU-RNN-based approach for predicting renewable energy and electricity
load for smart grid operation. IEEE Trans. Ind. Inform. 2021, 17, 7050-7059. [CrossRef]

Karim, E.; Maswood, M.M.S,; Das, S.; Alharbi, A.G. BHyPreC: A novel Bi-LSTM based hybrid recurrent neural network model to
predict the CPU workload of cloud virtual machine. IEEE Access 2021, 9, 131476-131495. [CrossRef]

Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach
for precipitation nowcasting. In Proceedings of the Neural Information Processing Systems Conference, Montreal, QC, Canada,
7-12 December 2015; pp. 802-810.

Karim, F.; Majumdar, S.; Darabi, H.; Harford, S. Multivariate LSTM-FCNs for time series classification. Neural Netw. 2019, 116,
237-245. [CrossRef]

Meng, D.; Wang, H.; Yang, S.; Lv, Z.; Hu, Z.; Wang, Z. Fault analysis of wind power rolling bearing based on EMD feature
extraction. Comput. Model. Eng. Sci. 2022, 130, 543-558. [CrossRef]

Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal.
2009, 1, 1-41. [CrossRef]

Wang, J.; Wang, Z.; Li, J.; Wu,]. Multilevel wavelet decomposition network for interpretable time series analysis. In Proceedings
of the 24th ACM SIGKDD International Conference, London, UK, 19-23 August 2018; pp. 2437-2446.

Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2014, 62, 531-544. [CrossRef]

Ma, Q.; Wang, H.; Luo, P; Peng, Y.; Li, Q. Ultra-short-term railway traction load prediction based on DWT-TCN-PSO_SVR
combined model. Int. |. Electr. Power Energy Syst. 2022, 135, 107595-107605. [CrossRef]

Yang, W.; Xia, K.; Fan, S. Oil logging reservoir recognition based on TCN and SA-BiLSTM deep learning method. Eng. Appl. Artif.
Intell. 2023, 121, 105950. [CrossRef]

Xiong, C.; Guan, Y. A cloud computing load prediction hybrid model with adaptive weight strategy. Signal Image Video Process.
2022, 17,2101-2109. [CrossRef]

Limouni, T.; Yaagoubi, R.; Bouziane, K.; Guissi, K.; Baali, E.H. Accurate one step and multistep forecasting of very short-term PV
power using LSTM-TCN model. Renew. Energy 2023, 205, 1010-1024. [CrossRef]

Luo, W.; Dou, J.; Fu, Y,; Wang, X.; He, Y.; Ma, H.; Wang, R.; Xing, K. A novel hybrid LMD-ETS-TCN approach for predicting
landslide displacement based on GPS time series analysis. Remote Sens. 2023, 15, 229. [CrossRef]

Wan, R.; Mei, S.; Wang, J.; Liu, M.; Yang, F. Multivariate temporal convolutional network: A deep neural networks approach for
multivariate time Series forecasting. Electronics 2019, 8, 876. [CrossRef]

Shang, Z.; Zhang, B.; Li, W.; Qian, S.; Zhang, J. Machine remaining life prediction based on multi-layer self-attention and temporal
convolution network. Complex Intell. Syst. 2022, 8, 1409-1424. [CrossRef]

Liu, X.; Chen, S.; Song, L.; Wozniak, M.; Liu, S. Self-attention negative feedback network for real-time image super-resolution.
J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 6179-6186. [CrossRef]

Cao, H.; Wu, C; Lu, J.; Wu, J.; Wang, L. Spatial-temporal injection network: Exploiting auxiliary losses for action recognition with
apparent difference and self-attention. Signal Image Video Process. 2023, 17, 1173-1180. [CrossRef]

https://doi.org/10.1007/s11069-021-04910-7
https://doi.org/10.1016/j.enpol.2006.05.009
https://doi.org/10.1016/j.neucom.2007.07.018
https://doi.org/10.1109/MCI.2009.932254
https://doi.org/10.1007/s00704-017-2300-9
https://doi.org/10.1016/j.jhydrol.2009.11.016
https://doi.org/10.1016/j.ijforecast.2014.03.016
https://doi.org/10.1016/S0925-2312(02)00577-5
https://doi.org/10.1007/s10796-013-9459-0
https://doi.org/10.1007/s00521-022-07724-1
https://doi.org/10.1007/s00521-020-05532-z
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1109/TII.2021.3056867
https://doi.org/10.1109/ACCESS.2021.3113714
https://doi.org/10.1016/j.neunet.2019.04.014
https://doi.org/10.32604/cmes.2022.018123
https://doi.org/10.1142/S1793536909000047
https://doi.org/10.1109/TSP.2013.2288675
https://doi.org/10.1016/j.ijepes.2021.107595
https://doi.org/10.1016/j.engappai.2023.105950
https://doi.org/10.1007/s11760-022-02424-8
https://doi.org/10.1016/j.renene.2023.01.118
https://doi.org/10.3390/rs15010229
https://doi.org/10.3390/electronics8080876
https://doi.org/10.1007/s40747-021-00606-4
https://doi.org/10.1016/j.jksuci.2021.07.014
https://doi.org/10.1007/s11760-022-02324-x

Sensors 2024, 24, 3181 14 of 14

34. Tang, X.; Liu, Q.; Dong, Y.; Han, J.; Zhang, Z. Fisher: An efficient container load prediction model with deep neural network
in clouds. In Proceedings of the 2018 IEEE International Conference on Parallel & Distributed Processing with Applications,
Melbourne, Australia, 11-13 December 2018; pp. 199-206.

35. Yao, L, John, P; Lu, L.; Yan, W. RVLBPNN: A workload forecasting model for smart cloud computing. Sci. Program. 2016,
2016, 5635673.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	DSTNW Network
	DSTN
	DTN Unit
	SM Unit

	Adaptive Weight Update Strategy

	Experimental Results and Discussion
	Datasets and Implements
	Parameter Analyses
	Network Layer
	Time Step

	Ablation Experiment
	Comparisons with Some State-of-the-Art Methods

	Conclusions
	References

