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Abstract: The dependable functioning of switchgear is essential to maintain the stability of power
supply systems. Partial discharge (PD) is a critical phenomenon affecting the insulation of switchgear,
potentially leading to equipment failure and accidents. PDs are generally grouped into metal particle
discharge, suspended discharge, and creeping discharge. Different types of PDs are closely related
to the severity of a PD. Partial discharge pattern recognition (PDPR) plays a vital role in the early
detection of insulation defects. In this regard, a Back Propagation Neural Network (BPNN) for
PDPR in switchgear is proposed in this paper. To eliminate the sensitivity to initial values of BPNN
parameters and to enhance the generalized ability of the proposed BPRN, an improved Mantis Search
Algorithm (MSA) is proposed to optimize the BPNN. The improved MSA employs some boundary
handling strategies and adaptive parameters to enhance the algorithm’s efficiency in optimizing
the network parameters of BPNN. Principal Component Analysis (PCA) is introduced to reduce
the dimensionality of the feature space to achieve significant time saving in comparable recognition
accuracy. The initially extracted 14 feature values are reduced to 7, reducing the BPNN parameter
count from 183 with 14 features to 113 with 7 features. Finally, numerical results are presented
and compared with Decision Tree (DT), k-Nearest Neighbor classifiers (KNN), and Support Vector
Machine (SVM). The proposed method in this paper exhibits the highest recognition accuracy in
metal particle discharge and suspended discharge.

Keywords: back propagation neural network; mantis search algorithm; partial discharge pattern
recognition; principal component analysis; switchgear

1. Introduction

Switchgear is an essential infrastructure in urban power distribution networks. Conse-
quently, the reliability of a power supply is directly related to that of a switchgear. However,
a switchgear faces various issues, such as contamination effects, weak insulations, inad-
equate creepages and air clearances, insufficient manufacturing and assembly qualities,
inadequate contact capacities, or poor contacts, in design, manufacturing, installation,
and maintenance, resulting in a higher accident rate. Condition-based maintenance is a
promising technical means to improve the reliability of power supply equipment. However,
due to the large number of high-voltage switchgears and the low equipment cost of a
switchgear as compared to the high cost of a monitoring device, it is infeasible to use an
online detection approach such as high-voltage transformers for a switchgear to achieve
comprehensive and real-time online monitoring.

The dielectrics or insulator in a switchgear is exposed to an electric field in operation.
Once the electric field strength in a certain area exceeds the breakdown threshold of the
material, discharging will occur in that area in question. Nevertheless, this discharging
will not penetrate the entire insulation system between two conductors under the applied
voltage. This phenomenon is called the partial discharge (PD). PD can lead to a degradation
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of the insulation and the vicious cycle of defects in the power equipment; in severe cases,
it can even cause insulation accidents. Therefore, PD detection is essential in preventing
sudden insulation damage accidents of a power equipment. The partial discharge faults
in a switchgear are generally grouped into metal particle discharge, suspended discharge,
and creeping discharge. Different types of PD are closely related to the severity of a PD.
The partial discharge pattern recognition (PDPR) is thus used to accurately identify and
categorize the PD events based on their unique patterns. The output information of PDPR
is valuable for condition monitoring and the maintenance of the electrical equipment, as it
allows for the early detection of insulation defects and the implementation of appropriate
corrective actions to prevent equipment failure and ensure the reliability and safety of the
power electrical system. Consequently, the PDPR is of great significance to the reliable
operation of a switchgear.

The PDPRs are typically based on the signal characteristics generated in PD events,
which can be classified into two major categories: chemical signals and physical signals.
Chemical signals are mainly various gas derivatives produced in PD [1–4]. Muhamad et al.,
employed the random forest (RF) algorithm to conduct the pattern recognition of a gas
insulated switchgear (GIS) using 12 by-product gases, and the performance of RF confirmed
the feasibility of eight algorithms [3]. Rao et al., proposed a feature selection and ensemble
learning based methodology to diagnose a transformer fault based on dissolved gas analysis
data, and the proposed methodology achieved a 100% accuracy in recognizing fault types
of the IEC TC 10 database [4]. Physical signals typically encompass heat, electromagnetic,
and acoustic signals detected in PDs. Polužanski et al., investigated the influence of the
power transformer oil-temperature on the accuracy for PD locations [5]. Lu et al., proposed
a defect recognition method for GIS PD based on YOLOv5 and ultra-high frequency (UHF)
sensor-detected electromagnetic signals. [6]. He et al., utilized a combination of acoustic
and electrical signals for GIS PD localization [7].

In view of the detected PD electrical or transformed electrical signals, the characteris-
tics, such as the amplitude, the frequency, the duration, and the waveform shape, are first
analyzed to extract the relevant features, and the relevant features are then used to trained
classifiers to recognize and classify the types of PD patterns of a PD. These classifiers can be
based on machine learning algorithms like artificial neural networks (ANNs) [8,9], Support
Vector Machines (SVM) [10,11], fuzzy logic control [12], or random forest (RF) [13]. The
design of the classifier is a crucial part of PDPR. Zhu used an ANN identification method to
identify UHF PD patterns in electrical equipment [8]. Li et al., used the least squares SVM
(LS-SVM) to analyze the PD development stages of a converter transformer based on the PD
statistical characteristics of the phase-resolved partial discharge spectrogram, equivalent
time-frequency spectrogram, and discharge pulse waveform [11]. To address the issue
of insufficient partial discharge data and the low generalization capability caused by the
imbalanced data in field conditions, Zhu et al., proposed an improved WGAN-GP model
that generates data samples of different classes conditionally while ensuring the training
process stability [14]. This model was used for enhancing PD data in power equipment
and detecting PD signals. Xi et al., introduced an attention mechanism (AM) into the PDPR
model to improve the recognition accuracy and the computational complexity by empha-
sizing its effective characteristics and combining the past and future information [15]. They
proposed an intelligent partial discharge detection model based on the Bi-directional Long
Short-Term Memory (AM-Bi-LSTM) network for identifying partial discharge faults in
Insulated Overhead Conductors (IOC)s. Rizzi et al., used a genetic algorithm to extract key
features and selected neuro-fuzzy classifiers for PDPR of cable partial discharge [16]. Feng
et al., started from the phase resolved partial discharge spectrogram, extracted the moment
features and gray level co-occurrence matrix features of the spectrogram, and used a SVM
to classify the combined 7-dimensional features [17]. Hao et al., used a logistic pattern
tree that combines decision trees and logistic regressions to identify partial discharges in
switchgears [18]. Jing et al., applied K-Means clustering for pattern recognition of detected
partial discharge signals in oil-paper insulated cables based on polar coordinate spectra,
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even in the absence of phase information [19]. Lv et al., utilized a particle swarm optimiza-
tion algorithm to optimize a multiple kernel learning relevance vector machine model for
GIS discharge pattern recognitions [20]. Yao et al., extracted features from the PD spectro-
gram using a three-parameter Weibull model and employed the Grey Wolf Optimization
algorithm for fast and accurate determinations of the Weibull model parameters [21]. The
obtained model effectively represents the characteristics of the PD occurrence and discharge
magnitude distribution spectrogram. Wei et al., used a simulated annealing algorithm and
an ant colony algorithm to optimize four different classifiers: decision tree, RF, gradient
boosting and SVM, and performed pattern recognitions on ultrasonic inspection data of
oil-paper insulations [22]. The results show that the classifier optimized by intelligent
algorithms can further improve the recognition accuracy. Li et al., utilized a SVM model
based on the differential evolution adaptive bacterial foraging optimization (DEABFO)
algorithm to fulfill the GIS PD diagnosis [23]. Phase-resolved pulse sequence signals were
used to extract Zernike moment features, and the results proved the effectiveness of the
proposed method in PD pattern recognition applications.

Furthermore, methods based on Convolutional Neural Network (CNN) have demon-
strated their advantages in the identifications of PD. Sun et al., proposed a CNN based
classifier for high-speed electric multiple units [24]. The results demonstrated that the
proposed classifier outperformed the two existing NN-based classifiers in accurately iden-
tifying signals from four defect types. Jing et al., proposed an improved Generative
Adversarial Network (GAN) with an auxiliary classifier to address the challenges of small
and unbalanced sample pattern recognition in gas insulated switchgear PD [25]. Aldosari
et al., combined the LSTM networks and the CNN to detect the PD patterns, demonstrat-
ing that the integrated CNN-LSTM network outperformed standalone CNN or LSTM
networks [26]. Yin et al., developed a model to identify the statistical parameters of PD
using the Hausdorff-like distances [27]. They also employed an enhanced CNN for PD
pattern recognition, then employed the Dempster-Shafer (D–S) evidence theory to merge
the outcomes of the two pattern recognition methods, thereby enhancing the accuracy
of PD pattern recognition. However, owing to the intricate nature of image processing
and the substantial convolution operations and parameters involved, CNNs often entail a
higher parameter count and require more computational resources compared to traditional
machine learning methods.

A Back Propagation Neural Network (BPNN) is a multi-layer feedforward network
with a strong nonlinear approximation capability. Existing researches have demonstrated
the effectiveness of BPNN in PDPR [13,28]. Since PD has obvious randomness, and the
degree of a discharge is closely related to factors such as the location where the discharge
occurs, the local field strength of the discharge, and the applied time instant of a voltage,
an identification method oriented to random features should be used, that is, extracting
statistical parameter features from PDs. The signal feature quantity determines the appro-
priate feature space for the PDPR system and provides a good foundation for a classifier
design. However, the existing BPNN classification method for PDPR has a certain degree of
subjectivity in the selection of feature parameters. It usually relies on an expert experience,
has serious information losses, and lacks a certain degree of generalizations, resulting in
a low recognition rate [28]. In addition, some studies usually use human trial and error
experiments in the selection of statistical feature quantities. However, this requires a large
amount of calculations and cannot guarantee that all possibilities are traversed. Moreover,
the back propagation (BP) neural network is sensitive to the initial values of network
parameters, and the algorithm requires a long training time and is prone to falling into a local
minimum [29]. Nevertheless, it is demonstrated that an optimized classifier by an intelligent
optimization algorithm will significantly improve its classification performances [10].

In this regard, this article proposes an improved Mantis Search Algorithm (MSA) [30]
to optimize BPNN to deal with the shortcomings of the BPNN being sensitive to the initial
values of network parameters and uses the optimized BPNN for PDPR in a switchgear. The
PDPR procedure is as follows: firstly, the ultrasonic detection approach is used to obtain
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partial discharge spectrograms under different patterns; then, statistical feature parameters
are extracted from the phase resolved partial discharge (PRPD) spectrograms obtained from
the ultrasonic detection; next, Principal Component Analysis (PCA) is used to reduce the
dimensionality of the statistical feature parameters. The processed features are then input
into the BPNN for learning, with four-fifths of the data used as training data and one-fifth
as validation and testing data. The improved MSA algorithm is used to optimize the initial
values of the neural network parameters. Finally, the trained BPNN, optimized by the
improved MSA, is used for the recognition of partial discharge patterns. The contribution
of this paper not only addresses a specific limitation of the BPNN, but also offers a novel
approach to improving the performance and robustness of neural network optimization,
thereby potentially enhancing the applicability of BPNN in various domains.

The rest of the paper is structured as follows. Section 2 presents the acquisition of
initial PD signal data, the extraction of statistical features from the initial signals, and the
PCA of the extracted features. Section 3 reviews the MSA algorithm and describes the
improvements introduced in this paper. Section 4 employs the proposed improved MSA
algorithm for PDPR and discusses the recognition results with other different methods.
Section 5 concludes the work of this paper.

2. Experimental Data Acquisition and Statistical Feature Extraction
2.1. Switchgear Partial Discharge Data Acquisition

This paper developed a PD defect simulation test device for the switchgear. The
components of the prototype include busbars, a circuit breaker, a current transformer, a
voltage transformer, an arrester, and an insulator. The test voltage is obtained from the
non-partial discharge booster transformer. A high-precision PD detector is used to detect
the apparent discharge of partial discharge under simulated defects. The PD spectrogram
and amplitude of partial discharge ultrasonic detection signals under simulated defects
are obtained by using an ultrasonic sensor. The structure of the test device is shown in
Figure 1. In Figure 1, the resistance-capacitance voltage dividing device is composed
of coupling capacitance and measuring impedance, and the high-precision PD detector
constitutes the PD pulse current test circuit. The ultrasonic sensor installed on the top gap
of the switchgear has the function of testing ultrasonic wave spectrogram. The schematic
diagrams of three types of PD occurring prototypes are shown in Figure 2. The metal
particle discharge occurring prototype is composed of a copper ball electrode and a metal
tip. The suspended discharge occurring prototype involves the use of an insulating sheet
to secure a metal component between two copper ball electrodes. the surface discharge
occurring prototype is achieved by placing an insulating sheet between the two copper
ball electrodes.
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Figure 2. Schematics of three types of PD occurring prototypes, (a) metal particle discharge, (b) sus-
pended discharge, (c) creeping discharge.

2.2. Extraction of Statistical Features

Before extracting statistical features, the measured PD signal data need to be analyzed.
In this regard, the PRPD spectrogram, describing the correspondence between the charge
magnitude q and the phase φ (0◦~360◦), denoted by H(q, φ), of a discharge, is used. In the
following description, Hqmax(φ) and Hqmean(φ) are, respectively, the maximum magnitude,
and the averaged magnitude of the charges in phase φ, for a series discharging tests. The
voltage pulse magnitude is used for the discharge charge magnitude in ultrasonic detections
since the latter cannot be calibrated directly.

In this paper, the data of discharging for a total of 50 power frequency cycles at every
5◦ degree, called a phase window, obtained by an ultrasonic detection are used. The
recorded PRPD spectrogram distributions of metal particle discharge, suspended discharge,
and creeping discharge signals are shown in Figure 3.
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ultrasonic signals, (a−c): Magnitude versus sampling instant, (d−f) Magnitude versus phase.

From Figure 3, it can be observed that the PRPD spectrograms exhibit significant
differences in shapes and magnitudes for different types of partial discharge patterns. The
data obtained directly from images or waveforms are quite extensive, making it challenging
to perform a direct PDPR. Therefore, it is necessary to extract features from the raw data.
Currently, the existing statistical features used to describe PRPD spectrograms primarily
include the skewness, the kurtosis, the local peak count [31], which describe the shape
differences in the spectrogram, as well as the cross-correlation coefficient, which describes
the differences in the positive and negative half-cycle profiles of the spectrogram [32].
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Skewness, Sk, reflects the left and right skewness of the spectrogram shape relative to
the normal distribution, and it is determined from the following:

Sk =

W
∑

i=1
(xi − µ)3 pi∆x

σ3 (1)

where W is the number of phase windows in a half cycle; xi is the phase median of
the ith phase window; ∆x is the width of the phase window; yi is the discharge charge

magnitude; pi is the discharge probability, defined by pi = yi/
W
∑

i=1
yi; µ and σ are the mean

and the standard deviation when the PRPD spectrogram is regarded as a probability density

distribution, defined by µ =
W
∑

i=1
(xi · pi) and σ2 =

W
∑

i=1
[(xi − µ)2 · pi], respectively.

From Equation (1), it is obvious that, the final statistical parameters for skewness
include the positive half−cycle skewness Sk+max of Humax(φ), the negative half-cycle skew-
ness Sk−max of Humax(φ), the positive half-cycle skewness Sk+mean of Humean(φ), and the
negative half-cycle skewness Sk−mean of Humean(φ). Moreover, Sk = 0 means that the spec-
trogram shape is symmetrical; Sk > 0 means that the spectrogram shape is skewed to the
left relative to the normal distribution shape; Sk < 0 means that the spectrogram shape is
skewed to the right.

Kurtosis, Ku, describes the degree of the prominence of the shape distribution com-
pared to the shape of a normal distribution, and is calculated by using the following:

Ku =

W
∑

i=1
[(xi − µ)4 · pi∆x]

σ4 − 3 (2)

Therefore, the final statistical kurtosis statistical parameters include the positive half-
cycle kurtosis Ku+

max of Humax(φ), the negative half-cycle kurtosis Ku−
max of Humax(φ),

the positive half-cycle kurtosis Ku+
mean of Humean(φ), and the negative half-cycle kurtosis

Ku−
mean of Humean(φ). Moreover, Ku = 0 indicates that the spectrogram profile is a standard

normal distribution; Ku > 0 indicates that the spectrogram profile is sharper and steeper
than the normal distribution profile, and Ku < 0 indicates that the spectrogram profile is
flatter than the normal distribution profile.

The local peak, Pe, is the number of local peaks of a spectrogram. The point (φi, yi) is
a local peak point if the following condition is valid at point (φi, yi):

dyi−1
dφi−1

> 0 & dyi+1
dφi+1

< 0

⇒ yi−yi−1
φi−φi−1

> 0 & yi+1−yi
φi+1−φi

< 0
(3)

Therefore, the final statistical parameter of the local peak is the summation of the
number of the local peak points Pe+max in the positive half cycle of Humax(φ), the number
of the local peak points Pe−max in the negative half cycle of Humax(φ), the number of local
peak points Pe+mean in the positive half cycle of Humean(φ), and the number of local peak
points Pe−mean in the negative half cycle of Humean(φ).

The cross-correlation coefficient, cc, represents the similarity of the shape between the
positive and the negative half-cycles of a spectrogram. cc value close to 1 means that the
profiles of the positive and negative half cycles of the spectrogram are similar in identity,
and cc close to 0 indicates a significant difference in the contour of the spectrogram. cc is
given by the following:

cc =

W
∑

i=1
(y+i y−i )−

W
∑

i=1
y+i

W
∑

i=1
y−i

W√
W
∑

i=1
(y+i )

2−(
W
∑

i=1
y+i )2

W ·

W
∑

i=1
(y−i )

2−(
W
∑

i=1
y−i )2

W

(4)
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where y+i and y−i are the discharge voltage pulse values within the positive and negative
half-cycle phase windows i, respectively. Therefore, the final statistical cross-correlation
coefficient statistical parameters include the cross-correlation coefficient ccmax of Humax(φ)
and the cross-correlation coefficient ccmean of Humean(φ).

Using Humax(φ), Humean(φ), a total of 14 statistical parameters, x1 − x14, for the
3600 measured data of discharging are extracted and tabulated in Table 1. To eliminate
the influence of different units of the measurement for various statistical parameters, all
statistical parameters are subjected to a standardization.

Table 1. Fourteen statistical parameters.

Statistical
Parameters

Humax(φ) Humean(φ)

+ − + −
Sk x1(Sk+max) x2(Sk−max) x3(Sk+mean) x4(Sk−mean)

Ku x5(Ku+
max) x6(Ku−

max) x7(Ku+
mean) x8(Ku−

mean)

Pe x9(Pe+max) x10(Pe−max) x11(Pe+mean) x12(Pe−mean)

cc x13(ccmax) x14(ccmean)

2.3. Principal Component Analysis

If the extracted 14 statistical feature parameters are directly used as the input data of
the neural network for PDPR, the dimensionality is extremely large, which is not conducive
to network training. Moreover, the structure of the BPNN will be extremely complicated
if too many statistical features are used, resulting in a more difficult and time-consuming
training process. On the other hand, different statistical parameters may carry overlapping
statistical information, and there may be certain correlations between the variables. The
existing approach to dress this issue is to select a combination of different features based
on an expert experience or artificial selection based on the minimum error rate of the
classifier. However, such an approach cannot quickly, accurately, and comprehensively
reflect the internal relationship of the statistical parameters. To address the deficiency of
the existing approaches, this paper uses PCA on the 14 statistical feature parameters to
extract fewer comprehensive indicators to represent various types of information existing
in each variable.

PCA is used for analyzing a multivariate statistical distribution of data to reduce the
dimensionality of the data. The main idea of PCA is to map the original n dimensional
features space onto a new k dimensional orthogonal feature space. The k new dimensions
are also known as the principal components of the n dimensional ones. The PCA algorithm
is implemented based on an eigenvalue decomposition covariance matrix by sequentially
finding a set of mutually orthogonal coordinate axes from the original space. The first new
coordinate axis is selected to be the direction with the largest variance in the original data,
and the second new coordinate axis is selected to be the plane that is orthogonal to the first
coordinate axis, and the third one is the plane that is orthogonal to the 1st and 2nd axes. By
repeating this procedure, one can get k coordinate axes. Moreover, most of the variance
is contained in the first k coordinate axis, and the variance contained in the subsequent
coordinate axes is almost 0. Therefore, one can ignore the remaining coordinate axes and
only keep the first k coordinate axis that contain the vast majority of the variance. In fact,
this is equivalent to preserving the dimensions of the features that contain the majority
of the variance and disregarding the dimensions with almost zero variance, achieving a
dimensionality reduction in the data features [33].

The aforementioned PCA is performed on the 14 extracted statistical feature pa-
rameters of the three different PD patterns. The sample sizes for metal particle discharge,
suspended discharge, and creeping discharge are 485, 397, and 61, respectively. The number
of principal components is determined based on the number of the principal components
corresponding to eigenvalues that achieved a cumulative contribution rate of 95%. To give
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an intuitive image of the relationship between the original features and their principal
components, the principal coefficients, as defined in [33], for the suspended discharge of
this case are given in Table 2, a 95% cumulative contribution rate of eigenvalues resulting
in six principal components, z1, z2, z3, z4, z5, and z6.

Table 2. Principal coefficients of statistical parameters of suspended discharge.

Statistical Parameters
Principal Component Coefficients

z1 z2 z3 z4 z5 z6

x1 −0.070 0.203 −0.129 −0.204 0.060 0.030
x2 0.126 −0.396 0.159 0.349 −0.100 −0.396
x3 −0.080 0.173 −0.118 −0.107 0.083 −0.405
x4 0.170 −0.284 0.116 0.146 −0.126 0.577
x5 −0.021 0.048 −0.008 −0.035 0.013 0.075
x6 −0.126 0.383 −0.129 −0.271 0.079 0.409
x7 −0.031 0.046 −0.026 −0.032 0.025 −0.104
x8 −0.141 0.221 −0.080 −0.105 0.084 −0.377
x9 0.166 0.363 0.872 −0.180 −0.202 −0.067
x10 0.310 −0.056 0.188 0.024 0.929 0.033
x11 0.405 0.590 −0.202 0.663 −0.076 0.025
x12 0.787 −0.093 −0.265 −0.494 −0.198 −0.116
x13 0.002 −0.008 0.004 0.008 −0.002 −0.008
x14 0.004 −0.006 0.004 0.004 −0.003 0.012

It can be seen from Table 2 that for the statistical parameter x3, only the principal
components z2 and z5 have positive correlations with it; for the statistical parameter x10, the
principal components z1, z3, z4, z5 and z6 have positive correlations with it, and at the same
time, z1, z3, and z5 all show strong positive correlations with it. After a comprehensive
analysis of the 14 statistical parameters, 3 variables have a positive correlation with at least
4 principal components and at least 3 strong positive correlations, which are as follows: x4,
x10, x11. In the same way, variables with a strong positive correlation with the principal
components in other PD patterns are obtained, as shown in Table 3.

Table 3. Variables with strong positive correlation with principal components under different
PD patterns.

Detection Approach
Partial Discharge Mode

Metal Particle Discharge Suspended Discharge Creeping Discharge

Ultrasonic testing x9, x12 x4, x10, x11 x1, x3, x11, x12

Based on the above analysis, it can be concluded that for the 14 statistical variables,
the seven statistical parameters selected that can better characterize the three PD patterns
are: x1, x3, x4, x9, x10, x11, x12. The statistical parameters obtained by the above Principal
Component Analysis can effectively characterize different types of single PD patterns,
which will be used as the input data of the BPNN for training.

3. Mantis Search Algorithm and Its Improvements
3.1. Mantis Search Algorithm

The MSA is a global optimization algorithm inspired by the natural behavior of pray-
ing mantises. Praying mantises are capable of capturing prey through camouflage or
confrontation. They use camouflage to approach their prey closely and then launch a
sudden attack using their highly modified forelegs. When searching for food, mantises
can detect prey, evade it, and use their forelegs for targeted attacks. Additionally, in the
mantis species, females sometimes cannibalize males in the mating process. Inspired by
the unique hunting behavior and cannibalistic nature of mantises, the MSA consists of four
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phases: initialization, searching for prey (exploration), attacking prey (exploitation), and
sexual cannibalism. Equations and definitions for updating the mantis positions in each
phase are listed in Table 4. Detailed explanations can be found in [30]. The MSA boasts
several advantages: it is easy to implement, preserves the population diversity in optimiza-
tion, demonstrates a high ability to escape local optima, possesses a strong exploitation
operator for solving unimodal functions, and effectively balances between exploration and
exploitation searches. The algorithm’s performance is rigorously evaluated across fifty-two
optimization problems and three real-world applications, including five engineering design
problems, as well as parameter estimation problems related to photovoltaic modules and
fuel cells [30]. These tests demonstrate the algorithm’s versatility and adaptability across
diverse scenarios.

Table 4. Position updating equation of MSA.

Phase Equations Explanations Number

Initialization
→
x

t
i =

→
x

l
+

→
r ∗

(
→
x

u
−→

x
l
)

Generate initial positions of
the population. (5)

Exploration

→
x

t+1
i =


→
x

t
i +

→
τ 1 ∗

(
→
x

t
i −

→
x

t
a

)
+ |τ2| ·

→
U ∗

(
→
x

t
a −

→
x

t
b

)
, r1 ≤ r2

→
x

t
i ∗

→
U +

(
→
x

t
a +

→
r 3 ∗

(
→
x

t
b −

→
x

t
c

))
∗ (1 −

→
U), Otherwise

Mantises usually stay motionless
on branches or in weeds, waiting
for prey to approach an ambush

distance before striking.

(6)

→
x

t+1
i =


→
x

t
i + α ·

(
→
x
′
ar −

→
x

t
a

)
, r9 ≤ r10

→
x
′
ar + (r7 ∗ 2 − 1) ∗ µ ∗

(
→
x

l
+

→
r 8 ×

(
→
x

u
−→

x
l
))

, Otherwise

Find prey without
using camouflage.

(7)

Exploitation

xt+1
i,j =

(
xt

i,j + x∗j
)

/2.0 + vs · dt
si,j

Mantis uses the front legs to
attack prey. (8)

xt+1
i,j = xt

i,j + r12 ·
(

xt
a,j − xt

b,j

) If the mantis fails to attack, it
needs to change direction before

attacking again.
(9)

xt+1
i,j = xt

i,j + e2l · cos(2lπ) ·
∣∣∣xt

i,j −
→
x
′
ar,j

∣∣∣+ (r13 · 2 − 1) ·
(

xu
j − xl

j

) Failure of the mantis attack means
that the mantis fell into the trap of
the local optimal solution. Mantis

should escape from the local
optimal solution.

(10)

Sexual
cannibalism

→
x

t+1
i =

→
x

t
i +

→
r 16 ∗

(
→
x

t
i −

→
x

t
a

) Female mantises attract male
mantises to their location by

attracting them.
(11)

→
x

t+1
i =

→
x

t
i ∗

→
U +

(
xt

11 +
→
r 18 ∗

(
−xt

11 +
→
x

t
i

))
∗ (1 −

→
U)

A male mate and a female to
produce a new offspring. (12)

→
x

t+1
i =

→
x

t
a · cos(2πl) · µ Female eats male. (13)

The main parameters of the MSA include the maximum number of iterations, T; the
population size, N; the probability of an attack failure, a; the probability of exchange be-
tween the exploration and the exploitation phases, p; the probability for the determining
sexual phase, Pc; etc. Compared to other heuristic algorithms, MSA is simple to implement
and has a sufficient population diversity and a strong global searching ability. However,
in practical applications, MSA requires an accurate and deliberate adjustment of the con-
trol parameters to maximize its performance. Nevertheless, some parameters, such as
parameters p and Pc, are kept fixed in the existing algorithms. Furthermore, it is found
that the position updating in the MSA algorithm can easily leap out of the search space. To
solve this issue, a re-initialization mechanism, that is, to generate a new position through
Equation (5) to replace the position that leapt out of the search space after updating, is
introduced in the MSA of [30]. However, this will result in a high computational cost
and a low search efficiency. In response to the above problems, this paper proposes some
improvements to the MSA in parameter tuning and out-of-bounds updating control.
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3.2. Improvements on Mantis Search Algorithm

As mentioned above, to address the deficiencies of using fixed control parameters
and a lack of search focus in the evolution process of the MSA, this paper proposes adap-
tive handling mechanisms of the probability p for exchanging between exploration and
exploitation phases and the probability Pc for determining whether to enter the sexual
cannibalism phase. Furthermore, to address the point of easily leaping out of the search
space in each step of the original MSA, this paper applies a boundary handling approach
to the positions exceeding the feasible space.

3.2.1. Adaptive Updating of Algorithm Parameters

In the MSA, the probability parameter p is used to balance the exploration and the
exploitation searches. At the early stage of evolution, p should be large enough to guarantee
the diversity of the algorithm while at the late stage of evolution, p should be small enough
to bias exploitation searches to speed up the convergence of the algorithm. In this point of
view, parameter p is proposed to be adaptively updated by using the following:

p =
1 + e−10 t

T

2
(14)

where t is the generation index of evolution. Obviously, at the early stage of evolution, p is
set to be 1, which is conducive to exploration; at the late stage of evolution p is set to be 0.5
to ensure that the exploration and the exploitation searches have the same probability.

In nature, a mantis will become sexually mature incrementally. In line with this natural
law, the probability parameter Pc should also increase incrementally. In this regard, the
probability Pc of entering the sexual cannibalism phase is adaptively updated by using
the following:

Pc =
Pc0

1 + e−10 t
T

(15)

where Pc0 is a coefficient determined by users. This paper sets it to be 0.2 as in the original
MSA. Obviously, this probability during the early stage of evolution is approximately
0.16, while it approaches 0.3 during the later stage. The smaller probability in the early
stage aligns with the fact that the mantis population is becoming mature, and the mating
probability between male and female mantises is increasing, which is more in line with
natural laws.

The adaptive updating curves of p and Pc are shown in Figure 4 under T being 100.
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Figure 4. Adaptive updating curves of (a) parameter p, (b) parameter Pc.

3.2.2. Out-of-Bounds Control

Since the existing strategies of updating the mantises’ position based on hunting
behaviors and sexual cannibalism characteristics are prone to escape the search space
during the optimization, the improved MSA proposes some boundary handling techniques
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to the position updating for Equations (6)–(13) of Table 4, replacing the original ones used
in MSA. By ensuring that the position updating remains within the feasible space while
retaining the original movement information, the algorithm’s optimization efficiency is
significantly enhanced.

To ease the boundary handling control explanation, one firstly quantitatively analyses
the variation rang of the position variable in the equation in question. Taking Equation (6)
as an example, for the jth variable of the ith mantis

→
x i, when r1 ≤ r2, its value is between[

3xl
j − 2xu

j , 3xu
j − 2xl

j

]
; when r1 > r2, its value is between [2xl

j − xu
j , 2xu

j − xl
j], where r1 and

r2 are two random numbers between [0, 1], xl
j is the lower bound of the value of the jth

variable xj, xu
j is the upper bound of the value of xj. From the above analysis, Equation (6)

will easily jump out of its value range, [xl
j, xu

j ], after mantis position updating. Therefore,
after the position updating by using Equation (6), one first determines whether the updated

position,
→
x

t+1
i , are out of bounds. For the case that the updated jth variable jumps out of

the feasible space, one then combines it with its variation range using Equation (16), that is,
normalizes the variables using the current variation range into the interval [xl

j, xu
j ], and the

obtained xt+1
i

′
is the new position of the mantis. Moreover,

xt+1
i,j

′
=


xl

j +
xt+1

i,j +2xu
j −3xl

j

5xu
j −5xl

j
, r1 ≤ r2

xl
j +

xt+1
i,j +xu

j −2xl
j

3xu
j −3xl

j
, Otherwise

(16)

The (position) variable variation ranges of Equations (6)–(13) are shown in Table 5.
When a mantis position jumps out of the search space, it is processed according to these
ranges, [xmin

j , xmax
j ], of its equation, so that it is forced to return to the feasible space, as

shown in Equation (17), where xmin
j is the minimum value of the variable in the equation in

question, and xmax
j is the maximum value of the variable in the equation in question.

xt+1
i,j

′
= xl

j +
xt+1

i,j − xmin
j

xmax
j − xmin

j
(17)

Table 5. Updated position range.

Phase Equation Number Variable Variation Ranges

Exploration

(6)

[
3xl

j − 2xu
j , 3xu

j − 2xl
j], r1 ≤ r2

[2xl
j − xu

j , 2xu
j − xl

j], Otherwise

(7)
[2xl

j − xu
j , 2xu

j − xl
j], r9 ≤ r10

[xl
j − xu

j , 2xu
j ], Otherwise

Exploitation

(8) [− 1
2 xl

j,
3
2 xu

j ]

(9) [2xl
j − xu

j , 2xu
j − xl

j]

(10) [xl
j + (−e−3 − 1)(xu

j − xl
j), xu

j + (e−2 + 1)(xu
j − xl

j)]

Sexual cannibalism

(11) [2xl
j − xu

j , 2xu
j − xl

j]

(12) [xl
j, xu

j ]

(13) [−xl
j, xu

j ]

3.2.3. Flowchart of Improved Mantis Search Algorithm

To facilitate the implementation of the improved MSA, its flowchart is shown in
Figure 5.
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4. PDPR of Switchgear Based on Improved Mantis Search Algorithm—Back
Propagation Neural Network
4.1. PDPR Process and Parameter Settings

As explained previously, a BPNN is a multi-layer feedforward network with strong
nonlinear approximation capabilities. Existing research has demonstrated the effectiveness
of BPNNs in PDPR [13,28]. However, the BPNN classification method exhibits some
subjectivity in feature selections, often relying on expert experience, resulting in a significant
information loss and a lack of generalization, leading to low recognition rates [28]. To
address these deficiencies, this paper employs PCA to reduce the dimensionality of the
features of the discharge data obtained from ultrasonic detections. The processed features
are then input into BPNN for learning, enabling the recognition of partial discharge patterns.
Additionally, the BPNN is sensitive to the choice of initial values of network parameters,
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and the algorithm requires a long training time and is prone to getting stuck in local
minima [29]. To overcome the drawback of BPNN potentially converging to local optima,
this paper utilizes the improved MSA to conduct a global search for the initial parameters
of BPNN. The complete PDPR process is shown in Figure 6.

Sensors 2024, 24, x FOR PEER REVIEW 15 of 20 
 

 

patterns. Additionally, the BPNN is sensitive to the choice of initial values of network 

parameters, and the algorithm requires a long training time and is prone to getting stuck 

in local minima [29]. To overcome the drawback of BPNN potentially converging to local 

optima, this paper utilizes the improved MSA to conduct a global search for the initial 

parameters of BPNN. The complete PDPR process is shown in Figure 6. 

 

Figure 6. PDPR process based on improved MSA-BPNN. 

The node number of the input layer of the BP neural network is equal to the number 

of statistical feature parameters, and the output layer has three neurons representing three 

types of discharge patterns [8], i.e., [1 0 0] represents metal particle discharge, [0 1 0] rep-

resents suspended discharge, and [0 0 1] represents creeping discharge. Initially, the num-

ber of neurons in the hidden layer is initially fixed at 10 according to [34], and experiments 

are conducted using a data set with 14 statistical features. The number of neurons varies 

from 5 to 15, and the recognition accuracy is shown in Figure 7. From Figure 7, it can be 

observed that within the range of experimental neuron numbers, the recognition accuracy 

does not exhibit a linear proportional relationship with the number of neurons. Specifi-

cally, the validation accuracy peaks with 15 neurons, whereas the test accuracy achieves 

its peak with 10 and 13 neurons. Furthermore, as the number of neurons increases, the 

computational load of the network inevitably rises. Considering both accuracy and com-

putational load, the number of neurons in the hidden layer of this study is set at 10.  

 
Data Collection 
for 3 Types of 

Partial Discharge

Amplitude-
Phase Spectrum 
Feature Dataset

Spectral Statistical 
Feature Extraction

PCA for Extracting 
Key Statistical 

Features

Test Dataset

Training 
Dataset

BPNN 
Training

  Initial Parameter 
Values for BPNN 

Optimized by 
Modified-MSA

Partial Discharge 
Pattern Recognition 

BPNN Model

Recognition 
Results

Figure 6. PDPR process based on improved MSA-BPNN.

The node number of the input layer of the BP neural network is equal to the number
of statistical feature parameters, and the output layer has three neurons representing three
types of discharge patterns [8], i.e., [1 0 0] represents metal particle discharge, [0 1 0] repre-
sents suspended discharge, and [0 0 1] represents creeping discharge. Initially, the number
of neurons in the hidden layer is initially fixed at 10 according to [34], and experiments are
conducted using a data set with 14 statistical features. The number of neurons varies from 5
to 15, and the recognition accuracy is shown in Figure 7. From Figure 7, it can be observed
that within the range of experimental neuron numbers, the recognition accuracy does not
exhibit a linear proportional relationship with the number of neurons. Specifically, the
validation accuracy peaks with 15 neurons, whereas the test accuracy achieves its peak with
10 and 13 neurons. Furthermore, as the number of neurons increases, the computational
load of the network inevitably rises. Considering both accuracy and computational load,
the number of neurons in the hidden layer of this study is set at 10.

Ultrasonic testing is used for measurements, where four-fifths of each discharge
mode’s data are used for training and one-fifth for testing. In the study, there are 388 training
data sets and 97 testing data sets for metal particle discharge, 318 training data sets and
79 testing data sets for suspended discharge, 49 training data sets, and 12 testing data sets
for creeping discharge.

The objective function is to minimize the root mean square error (RMSE) of the BPNN:

min fobjective =

√√√√√ I
∑

i=1
(yout − ytest)

2

I
(18)

where yout is the measurement output, ytest is the neural network output, I is the number
of data sets.
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4.2. Experimental Results

The optimized results of BPNN parameters using different approaches, including
using MSA optimization algorithm and using the proposed improved MSA optimization
algorithm, are compared. To further compare the effectiveness of the selected seven features
by PCA, the study also compared the training of the BPNN model for partial discharge
pattern recognition using the original 14 features. The experiments were conducted using
MATLAB R2022b on a system equipped with an AMD Ryzen 7 4800H processor featuring
Radeon Graphics operating at 2.90 GHz, coupled with 16.0 GB of RAM. The algorithm
parameters for MSA and the improved MSA algorithm are shown in Table 6, and the
obtained results are shown in Figure 8. From Figure 8, it can be observed that after
100 iterations of optimizations, the BPNN optimized using the improved MSA gives
smaller errors in both the 7 extracted statistical feature parameters and 14 statistical feature
parameters. Furthermore, the improved MSA algorithm exhibits a faster convergence and
a higher efficiency as compared to the original MSA in optimizing the BPNN.

Table 6. MSA and improved MSA algorithm parameter settings.

Parameter MSA Improved MSA

N 30 30
T 100 100
p 0.5 p = 1+e−10 t

T
2

a 0.5 0.5
Pc 0.2 Pc =

Pc0

1+e−10 t
T

Sensors 2024, 24, x FOR PEER REVIEW 17 of 20 
 

 

cP  0.2 
0

10

1

c
c t

T

P
P

e
−

=

+

 

0 20 40 60 80 100

Iterations

0.39

0.395

0.4

0.405

0.41

0.415

R
M

S
E

MSA with 7 feature parameters

Improved MSA with 7 feature parameters

0 20 40 60 80 100

Iterations

0.265

0.27

0.275

0.28

0.285

0.29

0.295

0.3

0.305

R
M

S
E

MSA with 14 feature parameters

Improved MSA with 14 feature parameters

(a) (b)  

Figure 8. Comparison of MSA and Improved MSA algorithms with (a) 7 feature parameters, (b) 14 

feature parameters. 

In the final determination of partial discharge types, the maximum output value will 

be set to 1, and the other values will be set to 0, corresponding to the three discharge 

modes. The accuracies of the training data and testing data using different classifiers are 

shown in Table 7. To demonstrate the efficiency of PCA, the results of testing the training 

data and testing data using different classifiers trained by all 14 extracted statistical feature 

parameters are shown in Table 8. 

In the PDPR results of the BPNN trained with seven features, both for training and 

testing data, the recognition accuracy of the BPNN optimized by the improved MSA is 
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the two is comparable. Taking the example of using the improved MSA-BPNN, the recog-

nition accuracy for metal particle discharge using 7 features is 92.59%, which is lower than 

the corresponding model using 14 features. However, the model trained with 7 features 

for suspended discharge recognition is 64.39%, higher than the 62.88% achieved with 14 

features. For surface discharge, both have an equal accuracy of 90% in testing data. Fur-

thermore, when using 7 features, the BPNN has 113 network parameters, while using 14 

features, the BPNN has 183 network parameters. From the runtime data in Tables 7 and 8, 
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In the final determination of partial discharge types, the maximum output value will
be set to 1, and the other values will be set to 0, corresponding to the three discharge modes.
The accuracies of the training data and testing data using different classifiers are shown
in Table 7. To demonstrate the efficiency of PCA, the results of testing the training data
and testing data using different classifiers trained by all 14 extracted statistical feature
parameters are shown in Table 8.

Table 7. PD pattern recognition accuracies using 7 statistical feature parameters.

Classifier Model Discharge Pattern Validation
Accuracy

Test
Accuracy Runtime

Improved
MSA-BPNN

metal particle discharge 91.33% 92.59%
427.4 ssuspended discharge 89.81% 64.39%

creeping discharge 95.12% 90.00%

MSA-BPNN
metal particle discharge 90.09% 90.74%

379.6 ssuspended discharge 89.06% 62.88%
creeping discharge 92.68% 85.00%

Table 8. PD pattern recognition accuracies using 14 statistical feature parameters.

Classifier Model Discharge Pattern Validation
Accuracy

Test
Accuracy Runtime

Improved
MSA-BPNN

metal particle discharge 98.45% 94.44%
697.7 ssuspended discharge 97.73% 62.88%

creeping discharge 100.0% 90%

MSA-BPNN
metal particle discharge 97.83% 94.44%

610.6 ssuspended discharge 97.36% 57.58%
creeping discharge 100.0% 85.00%

In the PDPR results of the BPNN trained with seven features, both for training and
testing data, the recognition accuracy of the BPNN optimized by the improved MSA is
higher than that of the BPNN optimized by the original MSA. The same conclusion is
drawn from the PDPR results of the BPNN trained with 14 features, as shown in Table 8.
Comparing the BPNN training using 7 and 14 features, the accuracy using 14 features is
higher on the training data; however, on the testing data set, the recognition efficiency
of the two is comparable. Taking the example of using the improved MSA-BPNN, the
recognition accuracy for metal particle discharge using 7 features is 92.59%, which is
lower than the corresponding model using 14 features. However, the model trained with
7 features for suspended discharge recognition is 64.39%, higher than the 62.88% achieved
with 14 features. For surface discharge, both have an equal accuracy of 90% in testing data.
Furthermore, when using 7 features, the BPNN has 113 network parameters, while using
14 features, the BPNN has 183 network parameters. From the runtime data in Tables 7
and 8, it is evident that using a comprehensive but minimal number of features can reduce
runtime while ensuring the accuracy of PDPRs.

To assess the merits of the proposed method, this paper also compares the pat-
tern recognition accuracy rates of Decision Tree (DT) [35], k-Nearest Neighbor classifiers
(KNN) [36], and Support Vector Machine (SVM) [37,38]. Experiments using fine DT, fine
KNN, and cubic SVM are conducted on the Classification Learner App in MATLAB R2022b. The
test accuracy results using 7 features and 14 features are shown in Figures 9 and 10, respectively.

From Figures 9 and 10, it is evident that the Improved MSA-BPNN proposed in this
paper exhibits the highest overall recognition accuracy. Compared to using the 7 features
after PCA, the recognition accuracy using the original 14 features is slightly higher. Specif-
ically, in the case of the suspended discharge with 7 features, the recognition accuracies
for Improved MSA-BPNN, MSA-BPNN, DT, KNN, and SVM are 64.39%, 62.88%, 48.1%,
51.9%, and 50.6%, respectively, while with 14 features, the recognition accuracies are 62.88%,
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57.58%, 53.2%, 53.2%, and 54.4%. Moreover, the SVM achieves 100% recognition accuracy
for creeping discharge when utilizing 7 features. However, with 14 features, the recognition
accuracy decreases to 75%. This decline can be attributed in part to the relatively low num-
ber of samples associated with creeping discharge, which is the least represented among
the three types of discharges. Moreover, this outcome underscores the effectiveness of PCA
in reducing the number of features while still maintaining effective recognition accuracy.
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It should be pointed out that, the most damage to low- and medium-voltage switch-
boards comes from the overloads, and the temperature control itself allows us to predict a
possible failure in advance. Nevertheless, in this paper, we have focused on using ultrasonic
signals to identify types of partial discharge faults in a switchgear. The presented algorithm
is still valid if one can abstract the features of the local over heat and use these features as
the input of the subsequent procedure of the proposed algorithm.

5. Conclusions

The reliable operation of the switchgear is crucial to the reliability of the power supply
of the power system. From this point of view, it is of great significance to perform PDPR on
the switchgear. BPNNs are widely used for PDPR. However, the BPNN has its inherent
limitations and shortcomings, such as requiring a long training time and converging to
local minimums, etc., making it incompetent in engineering applications.

This paper uses PCA to reduce the dimensionality of statistical feature parameters
obtained from PRPD spectrograms. It extracts the main features as the inputs of the BPNN



Sensors 2024, 24, 3174 17 of 19

for training to recognize the partial discharge patterns. To address the high sensitivity of
BPNNs to the initial values of the network parameters, this paper adopts an improved
MSA to conduct global searches for the parameters of the BPNN and determine the initial
values of the BPNN, thereby reducing the training time and overcoming the drawback of
potentially converging to local optima in BPNN. The improved MSA handles boundary
conditions in each step of the search when the position is moved out of the search space.
By retaining the original movement information, the search is forced back into the feasible
space, greatly improving the solution efficiency of the algorithm. Experimental results
show that compared to the MSA, the BPNN optimized by the improved MSA has smaller
errors. Compared to the utilization of 14 feature parameters, the application of seven
features derived through PCA achieves a commensurate recognition accuracy in PDPRs,
evidently resulting in time savings. The results of the algorithm are also compared with
three commonly used algorithms, DT, KNN, and SVM, in PDPRs. The recognition accuracy
results demonstrate the effectiveness of the algorithm proposed in this paper.

In engineering applications, the presented algorithm can be used in a system to
monitor if a distribution device has experienced a partial discharge fault and to identify the
types of a partial discharge fault (if yes) from the measured ultrasonic signals.

In this study, the primary emphasis is on signals obtained by ultrasonic detection
methods, without conducting an experimental analysis of signals acquired from other types
of sensors. Our future endeavors will involve applying the algorithm developed in this
study to recognize partial discharge patterns using different types of signals to augment
the precision of pattern recognitions.
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5. Polužanski, V.; Kartalović, N.; Nikolić, B. Impact of Power Transformer Oil-Temperature on the Measurement Uncertainty of
All-Acoustic Non-Iterative Partial Discharge Location. Materials 2021, 14, 1385. [CrossRef] [PubMed]

6. Lu, Y.; Qiu, Z.; Liao, C.; Zhou, Z.; Li, T.; Wu, Z. A GIS Partial Discharge Defect Identification Method Based on YOLOv5. Appl. Sci.
2022, 12, 8360. [CrossRef]

7. He, R.; Yan, J.; Zhao, D.; Lu, L.; Geng, Y. Gas-Insulated Switchgear Partial Discharge Acoustic–Electric Joint Localisation Method
Based on the Salp Swarm Algorithm and Least Squares Estimation. Measurement 2024, 225, 114020. [CrossRef]

https://doi.org/10.1016/j.apsusc.2020.146570
https://doi.org/10.1016/j.apsusc.2023.156811
https://doi.org/10.1109/ACCESS.2020.3040421
https://doi.org/10.1016/j.asoc.2023.111072
https://doi.org/10.3390/ma14061385
https://www.ncbi.nlm.nih.gov/pubmed/33809223
https://doi.org/10.3390/app12168360
https://doi.org/10.1016/j.measurement.2023.114020


Sensors 2024, 24, 3174 18 of 19

8. Zhu, R. Research on pattern recognition of Ultra-High Frequency partial discharge in electrical equipment based on artificial
neural network. Chin. J. Electron. Devices 2023, 46, 831–835.

9. Mas’ud, A.A.; Stewart, B.G.; McMeekin, S.G. An Investigative Study into the Sensitivity of Different Partial Discharge φ-q-n
Pattern Resolution Sizes on Statistical Neural Network Pattern Classification. Measurement 2016, 92, 497–507. [CrossRef]

10. Zhou, Y.; Liu, Y.; Wang, N.; Han, X.; Li, J. Partial Discharge Ultrasonic Signals Pattern Recognition in Transformer Using BSO-SVM
Based on Microfiber Coupler Sensor. Measurement 2022, 201, 111737. [CrossRef]

11. Li, S.; Si, W.; Li, Q. Partition and Recognition of Partial Discharge Development Stages in Oil-Pressboard Insulation with
Needle-Plate Electrodes under Combined AC-DC Voltage Stress. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1781–1793. [CrossRef]

12. Abdel-Galil, T.K.; Sharkawy, R.M.; Salama, M.M.A.; Bartnikas, R. Partial Discharge Pattern Classification Using the Fuzzy
Decision Tree Approach. IEEE Trans. Instrum. Meas. 2005, 54, 2258–2263. [CrossRef]

13. Cheng, Y.; Zhang, Z. Multi-source Partial Discharge Diagnosis of Transformer Based on Random Forest. Proc. CSEE 2018, 38,
5246–5256+5322. [CrossRef]

14. Zhu, G.; Zhou, K.; Lu, L.; Fu, Y.; Liu, Z.; Yang, X. Partial Discharge Data Augmentation Based on Improved Wasserstein Generative
Adversarial Network With Gradient Penalty. IEEE Trans. Ind. Inform. 2023, 19, 6565–6575. [CrossRef]

15. Xi, Y.; Zhou, F.; Zhang, W. Partial Discharge Detection and Recognition in Insulated Overhead Conductor Based on Bi-LSTM with
Attention Mechanism. Electronics 2023, 12, 2373. [CrossRef]

16. Rizzi, A.; Frattale Mascioli, F.M.; Baldini, F.; Mazzetti, C.; Bartnikas, R. Genetic Optimization of a PD Diagnostic System for Cable
Accessories. IEEE Trans. Power Deliv. 2009, 24, 1728–1738. [CrossRef]

17. Feng, Q.; Shao, Z.; Yu, Z. Partial discharge pattern recognition of multiple defects in gas insulated switchgear based on PRPD
spectrum. Electr. Appl. 2023, 42, 48–54.

18. Hao, Y.; Xu, L.; Yin, Y.; Chen, Z.; Zheng, W.; Huang, C. Recognition of Partial Discharge Pattern in Switchgear Based on Logistic
Model Tree. High Volt. Appar. 2014, 50, 80–85. [CrossRef]

19. Jing, X.; Peng, X.; Jiang, W.; Zhou, W.; Zhou, C.; Tang, Z. Phase resolved partial discharge pattern recognition method for online
cable condition monitoring system based on K-Means clustering. High Volt. Eng. 2012, 38, 2437–2446.

20. Lv, F.; Jin, H.; Wang, Z.; Zhang, B. GIS Partial Discharge Detection and Recognition Based on the Kernel Combination and
Multiple Feature Fusion Method. Trans. China Electrotech. Soc. 2014, 29, 334–340.

21. Yao, W.; Si, W.; Fu, C.; Yan, N.; Wang, X.; Zhou, X.; Wu, X.; Zhou, J.; Li, Q. Feature Extraction of PD Spectrum Based on
Three-parameter Weibull Model. High Volt. Appar. 2021, 57, 184–190. [CrossRef]

22. Woon, W.L.; El-Hag, A.; Harbaji, M. Machine Learning Techniques for Robust Classification of Partial Discharges in Oil–Paper
Insulation Systems. IET Sci. Meas. Technol. 2016, 10, 221–227. [CrossRef]

23. Li, Z.; Qian, Y.; Wang, H.; Zhou, X.; Sheng, G.; Jiang, X. Partial Discharge Fault Diagnosis Based on Zernike Moment and
Improved Bacterial Foraging Optimization Algorithm. Electr. Power Syst. Res. 2022, 207, 107854. [CrossRef]

24. Sun, C.; Wu, G.; Pan, G.; Zhang, T.; Li, J.; Jiao, S.; Liu, Y.-C.; Chen, K.; Liu, K.; Xin, D.; et al. Convolutional Neural Network-
Based Pattern Recognition of Partial Discharge in High-Speed Electric-Multiple-Unit Cable Termination. Sensors 2024, 24, 2660.
[CrossRef] [PubMed]

25. Jing, Q.; Yan, J.; Wang, Y.; Ye, X.; Wang, J.; Geng, Y. A Novel Method for Small and Unbalanced Sample Pattern Recognition of
Gas Insulated Switchgear Partial Discharge Using an Auxiliary Classifier Generative Adversarial Network. High Volt. 2023, 8,
368–379. [CrossRef]

26. Aldosari, O.; Aldowsari, M.A.; Batiyah, S.M.; Kanagaraj, N. Image-Based Partial Discharge Identification in High Voltage Cables
Using Hybrid Deep Network. IEEE Access 2023, 11, 50325–50333. [CrossRef]

27. Yin, K.; Wang, Y.; Liu, S.; Li, P.; Xue, Y.; Li, B.; Dai, K. GIS Partial Discharge Pattern Recognition Based on Multi-Feature
Information Fusion of PRPD Image. Symmetry 2022, 14, 2464. [CrossRef]

28. Basharan, V.; Maria Siluvairaj, W.I.; Ramasamy Velayutham, M. Recognition of Multiple Partial Discharge Patterns by Multi-class
Support Vector Machine Using Fractal Image Processing Technique. IET Sci. Meas. Technol. 2018, 12, 1031–1038. [CrossRef]

29. Xi, Y.; Yu, L.; Chen, B.; Chen, G.; Chen, Y. Research on Pattern Recognition Method of Transformer Partial Discharge Based on
Artificial Neural Network. Secur. Commun. Netw. 2022, 2022, e5154649. [CrossRef]

30. Abdel-Basset, M.; Mohamed, R.; Zidan, M.; Jameel, M.; Abouhawwash, M. Mantis Search Algorithm: A Novel Bio-Inspired
Algorithm for Global Optimization and Engineering Design Problems. Comput. Methods Appl. Mech. Eng. 2023, 415, 116200.
[CrossRef]

31. Candela, R.; Mirelli, G.; Schifani, R. PD Recognition by Means of Statistical and Fractal Parameters and a Neural Network. IEEE
Trans. Dielect. Electr. Insul. 2000, 7, 87–94. [CrossRef]

32. Li, J.; Sun, C.; Wang, Y.; Yang, J.; Du, J.; Yang, L. PD Pattern Recognition Using Combined Features. In Proceedings of the
Conference Record of the 2004 IEEE International Symposium on Electrical Insulation, Indianapolis, IN, USA, 19–22 September
2004; pp. 139–142.

33. Liu, T.; Xue, Y.; Zhao, X.; Zou, L.; Meng, Y.; Cheng, Y.; Zhang, Y.; Li, R. Principal Component Analysis for Statistical Param-eters
of Phase Resolved Partial Discharge Spectra of Single Partial Discharge Pattern in Power Transformers. South. Power Syst. Technol.
2014, 8, 33–37. [CrossRef]

34. Shen, H.; Wang, Z.; Gao, C.; Qin, J.; Yao, F.; Xu, W. Determining the number of BP neural network hidden layer units. J. Tianjin
Univ. Sci. Technol. 2008, 24, 13–15. [CrossRef]

https://doi.org/10.1016/j.measurement.2016.06.043
https://doi.org/10.1016/j.measurement.2022.111737
https://doi.org/10.1109/TDEI.2017.006361
https://doi.org/10.1109/TIM.2005.858143
https://doi.org/10.13334/j.0258-8013.pcsee.171469
https://doi.org/10.1109/TII.2022.3197839
https://doi.org/10.3390/electronics12112373
https://doi.org/10.1109/TPWRD.2009.2016826
https://doi.org/10.13296/j.1001-1609.hva.2014.02.015
https://doi.org/10.13296/j.1001-1609.hva.2021.08.025
https://doi.org/10.1049/iet-smt.2015.0076
https://doi.org/10.1016/j.epsr.2022.107854
https://doi.org/10.3390/s24082660
https://www.ncbi.nlm.nih.gov/pubmed/38676276
https://doi.org/10.1049/hve2.12274
https://doi.org/10.1109/ACCESS.2023.3278054
https://doi.org/10.3390/sym14112464
https://doi.org/10.1049/iet-smt.2018.5020
https://doi.org/10.1155/2022/5154649
https://doi.org/10.1016/j.cma.2023.116200
https://doi.org/10.1109/94.839345
https://doi.org/10.13648/j.cnki.issn1674-0629.2014.05.014
https://doi.org/10.3969/j.issn.1673-095X.2008.05.004


Sensors 2024, 24, 3174 19 of 19

35. Tang, J.; Liu, F.; Meng, Q.; Zhang, X.; Tao, J. Partial Discharge Recognition through an Analysis of SF6 Decomposition Products
Part 2: Feature Extraction and Decision Tree-Based Pattern Recognition. IEEE Trans. Dielect. Electr. Insul. 2012, 19, 37–44.
[CrossRef]

36. Harbaji, M.M.O.; Zahed, A.H.; Habboub, S.A.; AlMajidi, M.A.; Assaf, M.J.; El-Hag, A.H.; Qaddoumi, N.N. Design of Hilbert
Fractal Antenna for Partial Discharge Classification in Oil-Paper Insulated System. IEEE Sens. J. 2017, 17, 1037–1045. [CrossRef]

37. Jain, U.; Nathani, K.; Ruban, N.; Joseph Raj, A.N.; Zhuang, Z.; Mahesh, V.G. Cubic SVM Classifier Based Feature Extraction and
Emotion Detection from Speech Signals. In Proceedings of the 2018 International Conference on Sensor Networks and Signal
Processing (SNSP), Xi’an, China, 28–31 October 2018; pp. 386–391.

38. Wang, G.; Yang, F.; Peng, X.; Wu, Y.; Liu, T.; Li, Z. Partial Discharge Pattern Recognition of High Voltage Cables Based on the
Stacked Denoising Autoencoder Method. In Proceedings of the 2018 International Conference on Power System Technology
(POWERCON), Guangzhou, China, 6–9 November 2018; pp. 3778–3792.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TDEI.2012.6148500
https://doi.org/10.1109/JSEN.2016.2638804

	Introduction 
	Experimental Data Acquisition and Statistical Feature Extraction 
	Switchgear Partial Discharge Data Acquisition 
	Extraction of Statistical Features 
	Principal Component Analysis 

	Mantis Search Algorithm and Its Improvements 
	Mantis Search Algorithm 
	Improvements on Mantis Search Algorithm 
	Adaptive Updating of Algorithm Parameters 
	Out-of-Bounds Control 
	Flowchart of Improved Mantis Search Algorithm 


	PDPR of Switchgear Based on Improved Mantis Search Algorithm—Back Propagation Neural Network 
	PDPR Process and Parameter Settings 
	Experimental Results 

	Conclusions 
	References

