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Abstract: Accelerometers worn by animals produce distinct behavioral signatures, which can be
classified accurately using machine learning methods such as random forest decision trees. The
objective of this study was to identify accelerometer signal separation among parsimonious behav-
iors. We achieved this objective by (1) describing functional differences in accelerometer signals
among discrete behaviors, (2) identifying the optimal window size for signal pre-processing, and
(3) demonstrating the number of observations required to achieve the desired level of model ac-
curacy,. Crossbred steers (Bos taurus indicus; n = 10) were fitted with GPS collars containing a
video camera and tri-axial accelerometers (read-rate = 40 Hz). Distinct behaviors from accelerometer
signals, particularly for grazing, were apparent because of the head-down posture. Increasing the
smoothing window size to 10 s improved classification accuracy (p < 0.05), but reducing the number
of observations below 50% resulted in a decrease in accuracy for all behaviors (p < 0.05). In-pasture
observation increased accuracy and precision (0.05 and 0.08 percent, respectively) compared with
animal-borne collar video observations.

Keywords: accelerometers; activity budget; beef cattle; precision livestock technology; spatially
explicit modeling; behavior landscapes

1. Introduction

Precision livestock management is the new frontier in grazing livestock production [1].
The livestock production industry faces a series of challenges, such as labor shortages,
social pressures, and increasing efforts to implement sustainable grazing practices to
protect sensitive ecosystems [1-4]. These challenges may be overcome by developing smart
tracking technology [4,5], such as global positioning systems (GPS) and accelerometers [1,6],
temperature and heart-rate monitors [7], and video cameras [8]. Behavior classification
from collars containing GPS and accelerometers represents a relatively common obstacle to
behavior, spatial, and metabolic research within animal science, rangeland ecology, animal
behavior, and the ecological literature over the past decade [9]. Improving behavioral
categorization in cattle grazing extensive landscapes may be a key to improving precision
livestock technology [10,11].

Monitoring animal behavior using wearable sensors is an extremely difficult endeavor.
Indeed, the number of papers devoted to animal-borne sensors and accelerometers, as
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components of precision animal agriculture, has risen exponentially [12]. The development
of transferable, parsimonious models with high degrees of accuracy across deployments is
the gold standard for accelerometer-based behavior monitoring systems [13,14]. Machine
learning methodologies provide extremely high precision and accuracy but require large
amounts of data for training the models [14,15].

Machine learning methods offer the potential for making quick and accurate decisions
once developed and promote an interdisciplinary approach to innovation. However, bud-
ding ethologists are confronted with a large number of potential pre-processing methods
for analyzing accelerometer data to classify behavior [16,17]. Recent research indicates
that smoothing windows has the largest impact on improving the accuracy of behavioral
classification, with overlapping windows providing important improvements in datasets
with limited data [17]. Concomitantly filtering provides varying results but often does
not improve data quality [16,17]. Thus, it is important to consider both the pre-processing
method applied to accelerometer data alongside the chosen machine learning tool, as well
as the biological relevance and desired temporal resolution of behavioral output.

Observations of behavior, used to train machine learning classification models, are
collected via direct observation or video recording. However, validation and training
data collection is labor intensive, which often means the total data collected is minimal
compared with the duration of the study period and short of what would be desired
by big data scientists [15]. To overcome issues related to direct behavioral observations,
wildlife ecologists have confronted this issue by using remote sensing technologies such
as motion sensors, accelerometers, acoustic recorders, and animal-borne camera systems
(camera collars) to classify animal behavior and activity across broad temporal and spatial
scales at fine resolution [18,19]. Rangeland ecologists experience similar limitations when
working in extensive rangelands [3,6,20]. Behavior classification has been collected via
video cameras mounted on tracking collars [18,21-23]. However, no direct comparison has
been conducted between direct in-pasture behavioral observation and the camera footage
provided by animal-borne video cameras. Utilization of animal-borne video cameras to
calibrate behavior identification algorithms provides several potential benefits, including
increasing the quantity of behaviors observed and temporal representation of the animal’s
behavioral ethogram.

Objectives

The purpose of this paper was to collect observed behavior and pre-process accelerom-
eter signals to differentiate parsimonious behaviors. To accomplish this, our objectives were
to (1) describe functional differences in accelerometer signals between discrete behaviors,
(2) identify the optimal smoothing window size for accelerometer signal pre-processing to
maximize behavior classification accuracy, and (3) demonstrate the number of behavior
observations required to achieve the desired level of trained model accuracy.

2. Methods
2.1. Animals and Equipment

All experiments were approved by the Mississippi State University Institutional Ani-
mal Care and Use Committee (IACUC-20502). This study was part of a broader research
project that assessed fundamental grazing ecology principles on animal growth and fitness.
Brahman steers (Bos taurus indicus; n = 10), with an initial body weight of 232 + 32 kg, were
grazed continuously on pasture from 21 February 2020 to 3 December 2020. The study was
located at the Pasture Demonstration Farm (Ardmore, OK, USA), owned, and operated
by the Noble Research Institute. We used a single paddock (£11.5 ha) throughout the
entirety of this study, which was composed of bermudagrass (Cynodon dactylon) and tall
fescue (Festuca arundinacea) and inter-seeded with winter annual ryegrass (Secale cereale)
in November 2019. Water was provided via an automatic ball-type waterer (MiraFount,
Miraco Livestock Water Systems, Grinnell, IA, USA) situated in the fence line between
adjoining pastures [5,24].
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Cattle were fitted with Vectronic Vertex Plus GPS collars (Vectronic Aerospace GmbH,
Berlin, Germany) equipped with tri-axial accelerometers and magnetometers (Wildbytes
Technologies Ltd., Swansea University, Swansea, UK) powered by 1 D-cell battery and
a forward-facing video camera (Figures 1-3) powered by 2 D-cell lithium-ion batteries.
The collars weighed approximately 1500 g and were programmed to collect GPS location
fix data at 15-min intervals, and the forward-facing camera system recorded a 15-s video
recording at 1-h intervals between sunrise and sunset. Both GPS location fixes and collar
videos were timestamped according to Coordinated Universal Time (UTC). Accelerometers
were programmed to record the magnitude of 3-dimensional acceleration at 40 Hz and
magnetometry at 10 Hz. Accelerometers were synchronized with UTC and calibrated
before deployment; they were replaced at three-month intervals, or as needed, for the
duration of the study period. A housing was fashioned from a 1-1/4 inch schedule 40 PVC
pipe, which contained a lithium battery and an insert fashioned from Kaizen foam to hold
the accelerometer in its proper orientation. The accelerometer housing was fixed to the
collar using hose clamps for the first deployment; however, issues developed with housing
retention, so all future deployments were performed using high-tensile strength zip ties.
We oriented the collar with the positive axis facing forward, right, and down for the X-axis,
Y-axis, and Z-axis, respectively (Figure 1). This is similar to other research in cattle [9];
however, orientation is not always consistent across the literature [2].

Figure 1. All steers were fitted with Vectronic Vertex Plus GPS collars (Vectronic Aerospace GmbH,
Berlin, Germany) equipped with an accelerometer (Wildbytes Technologies Ltd., Swansea University,
Swansea, UK), a GPS system, and a camera. Accelerometer housings were created using a 1-1/4 inch
schedule 40 PVC pipe with a lithium-ion battery and Kaizen foam insert to hold the chip containing
the accelerometer, magnetometer, and storage card. Accelerometers were changed at 3-month
intervals or as needed and fastened to the left vertical strap of the tracking collar. As seen, hose clamps
were initially used in the first deployment; however, after multiple failures to retain the accelerometer
housing, the hose clamps were replaced with high-tensile zip ties in all subsequent deployments.
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Figure 2. Brahman (Bas taurus indicus) cross steers were grazed from 21 February 2020 to 3 December
2020 in an improved grass pasture on the Pasture Development Facility owned by the Noble Research
Institute. This picture demonstrates the type and quality of the steers, as well as the collar (Vectronic
Aerospace GmbH, Berlin, Germany) fitment. The center steer was observed to flip his collar upside
down, despite repeated efforts to tighten the collar strap. Collar spinning disorients the positioning of
the accelerometer, potentially confounding accelerometry signals and mitigating the ability to classify

animal behavior accurately.
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2.2. Behavior Collection

Behavior was assigned according to an ethogram developed for extensively grazed
cattle [25], including the following: grazing, walking, resting, ruminating, or grooming
(Table 1 and Figures 3 and 4). Two observation types were used to increase the number of
behavior observations available because of a disruption in data collection caused by travel
restrictions from the COVID-19 pandemic. We employed focal sampling to continuously
observe individual animal behavior via two methods, including in-pasture observation
and decoded video from the animal-borne camera collar system. In-pasture observation
(in-pasture behavior) was conducted by trained technicians equipped with audio recorders
synchronized with the atomic clock (UTC), who followed target animals and verbally
noted exhibited behaviors. Audio recordings were then transcribed into a continuous
dataset describing behaviors at a 1-s resolution at the corresponding time (UTC). In-pasture
behavior observation occurred during regularly scheduled data collection trips, which
provided 227 min of in-pasture observed behavior (Figure 5a).

Table 1. Ethogram specifying the behaviors and their descriptions used to categorize observed steer
behaviors. Adapted from Kilgour et al., 2012.

Behavior Description

Grazing Foraging for grass with head down

Minimum of 2 steps forward, with each stride initiating a

Walking 1,2, 3, 4 pattern.
Restin Animal idle, either standing or lying, with minimal head
& and foot movement.
Ruminating The process of regurgitating a bolus, chewing, and

re-swallowing, may be performed either standing or lying.

Animal either licking, scratching, or shooing flies from
Grooming themselves (personal grooming) or performing licking or
scratching activity on other animals (social grooming).

The same trained technicians who conducted the in-pasture behavior observations
decoded the video data collected by the animal-borne cameras. Simultaneous in-pasture
behavior observations and animal-borne camera system videos were unavailable because of
travel restrictions in response to the COVID-19 pandemic. Only animals with accelerometer
data during this period were selected for behavior assessment (1 = 8); 2 animals experienced
equipment failure because of water infiltration into the accelerometer housing and loss
of the external accelerometer in the grazing pasture. To mitigate issues of time mismatch
when joining observed with accelerometer data, animal-borne camera collar observed
behavior bouts were removed from the analysis if the animal switched behaviors during
the 15-s video clip (n = 518). This provided 465 min of animal-borne camera collar video
for categorizing animal behavior.
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Foraging

Grazing Drinking

Walking
Walking—1 Walking-2

Resting

Resting—Standing Resting—Lying

Ruminating

Ruminating—Open Ruminating —Closed

Grooming

Grooming—Licking Grooming—Scratching

Figure 4. Graphical ethogram of behaviors observed using the animal-borne cameras [18]. Behaviors
observed from the body parts, image tilt, and change in orientation are evident from the camera
images. Foraging: Head down foraging for grass. Walking: Head up and noted head bob associated
with the rise and fall of each foot, coinciding with objects growing larger within the camera frame as
they draw closer, indicating forward motion. Ruminating: In the bottom jaw, a drop indicative of
bolus regurgitation followed by the commencement of chewing activity. Grooming: The animal is
engaging in licking or scratching activity on themselves or other animals in the social group.
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(a) In-pasture observation (b) Animal-borne collar video behavior

Figure 5. The total number of observations collected via in-pasture observation (a) and animal-borne
collar video (b). This demonstrates the differences in data quality and behavior distribution among
the behavior observation methods.

2.3. Data Management

Accelerometer data were visualized in Daily Diary Multiple Trace software (Wildbytes
Technologies Ltd., Swansea University, Swansea, UK, version DDMT 13 Oct 2019), where
adjustments were made for accelerometer start time (UTC time) and orientation on the
animal, which were then exported to csv files (Figure 3). Next, behavior observations
were loaded into Program R [26] and matched with time-series accelerometer features via
the full_join function and plotted using the geom_line functionality available within the
ggplot package [27]. Accelerometry signals for all behavior bouts were visually checked
for time drift and removed if the accelerometer signal indicated a mismatch between
expected and actual signal appearance for the observed behavior, which can occur because
of misalignment with time sync, device time drift, or issues with collar fit. After building
a complete dataset of verified behaviors matched with their accelerometry signatures, a
category for grazing versus non-grazing was created.

2.4. Data Analysis and Model Fitting

Next, using the complete dataset containing both in-pasture observed behavior and
animal-borne collar video behavior data, we created a series of density plots (objective 1) to
assess the functional differences in discrete behaviors relative to the magnitude of acceleration
on various axes using the geom_density plot in the ggplot2 package [27,28] for both the com-
plete behavioral ethogram and grazing versus non-grazing category (Figures 3, 6 and 7). To
assess the appropriate pre-processing smoothing function (objective 2), we applied smoothing
window sizes from 1 to 60 s to the raw accelerometer data to calculate the accelerometer
features (Table 2) and extracted at 1-s epochs. The data from each smoothing window was
split into training data (70%) and testing data (30%) sets and used to train a random forest
from each smoothing window size using the randomforest function in the randomforest 4.7-1.1
package [29]. Predicted outcomes from each model were created from each dataset using the
predict function in base R 4.2.3 [26]. The performance of predictive models was measured
using the proportion of true positives compared to false positives and false negatives using
the confusionmatrix command within the Caret 6.0-94 package [30]. We examined model
performance using accuracy, precision, sensitivity, and specificity [9] from each parsimonious
model from each smoothing epoch. Model accuracy represents the total number of correctly
classified behavior instances divided by the total number of instances [9]. Sensitivity measures
the number of correctly identified behavior instances divided by the sum of correctly and
incorrectly labeled behavior instances for each discrete behavior [9]. Specificity measures the
number of correctly labeled instances where the behavior did not occur, divided by the sum of
incorrectly labeled behavior instances and correctly labeled instances where the behavior did
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not occur [9]. Precision measures the total number of correctly classified behavior instances
divided by the sum of correct and incorrectly classified behavior instances [9]. These metrics
of model performance were plotted against smoothing window size using the geom_point
and geom_line functions in the ggplot2 3.4.1 package [27]. See Appendix A for complete details
of the R session info.

Table 2. Features calculated from the raw accelerometer data at each smoothing window size,
extracted at 1-s epochs, and used to train random forest classification algorithms to identify discrete
animal behavior.

Type Accelerometer Features

Raw acceleration Acceleration X, Y, Z, g

Mean acceleration X, Y, Z, g
Median acceleration X, Y, Z, g
Smoothed acceleration Standard deviation of acceleration X, Y, Z, g
Minimum acceleration X, Y, Z, g
Maximum acceleration X, Y, Z, g

Dynamic acceleration X, Y, Z, g
Overall dynamic body acceleration (ODBA)
Vector of dynamic body acceleration (VeDBA)
. Mean ODBA and VeDBA
Acceleration vectors Median ODBA and VeDBA
Standard deviation ODBA and VeDBA
Minimum ODBA and VeDBA
Maximum ODBA and VeDBA

Raw magnetometry Magnetometry X, Y, Z, geomagnetism

Mean geomagnetism X, Y, Z, geomagnetism
Median geomagnetism X, Y, Z
Smoothed magnetometry Standard deviation geomagnetism X, Y, Z, geomagnetism
Minimum geomagnetism X, Y, Z, geomagnetism
Maximum geomagnetism X, Y, Z, geomagnetism

@ VeDBA (b) X-axis

. 2 I

H
20 1

= 1 0 1 -1 0 1
1)
S © Y-axi @ Z-axi
S -ax|s -axis
5 12

| 3
1
. A . N ,&_
-1 0 1 -1 0 1
Acceleration, g

Foraging |:| Grazing D Other

Figure 6. Grazing behavior indicates foraging activity and energy intake, which is fundamental to

animal well-being, making it an integral indicator of metabolic status. Plotting density grazing versus
other behaviors demonstrates distinctive signal separation. The head-down posture when consuming
forage transfers gravitational energy from the Z-axis to the X-axis. Also, the higher energy associated
with biting and tearing of forage increases VeDBA values, as seen below.
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Figure 7. Accelerometer signals were passed through a Butterworth High- (a—c), and Low-Panel
(d—f) pass filter. The density plot demonstrates the separation of the extracted features from ac-
celerometer signals among the behaviors. The transfer of gravity shown as steady acceleration
between the X-axis and Z-axis shows distinct separation from the other behaviors.

After identifying the appropriate smoothing bandwidth, we subsampled the complete
dataset to identify the effect of reducing behavior observations on predictive model accuracy
(objective 3). The data were subsampled in a structured manner to maintain the original
proportion of observed behavior for each animal. A bootstrap of 100 was run for each
proportion of data retained (1-100%, n = 190 to 28,244 observations), with data from each
resampled dataset used to train a random forest classification model with methods identical
to those described previously. The bootstrapped results provided a distribution of expected
model fit from which the average and standard error were calculated [30]. The results were
graphed by plotting averages of model performance using the geom_point and geom_line
functions (Figure 8), while the geom_ribbon function was used to graph the standard
deviation [27]. The results are reported in Figure 8.
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Figure 8. Collecting sufficient observed behavior is critical to creating a robust classification model;
however, collecting more data than is required may waste valuable resources. The total data collected
were split into training (70%) and testing (30%). As the total proportion of the data used in training
increased, the performance of the random forest improved, as indicated by an increase in the accuracy,
precision, and sensitivity metrics. (a) shows the effect of a structured reduction in data availability on
model accuracy for the random forest classification model used to predict behavior bouts consisting of
grazing, walking, resting, and ruminating. (b) shows the effect of structured data reduction between
active (grazing and walking) and inactive (resting, ruminating, and grooming) behaviors. (c) shows
the effect of structured data reduction when classifying grazing versus non-grazing behavior.

The behavior composition and spatial-temporal distribution were compared between
in-pasture and collar video observed behaviors. A column and treemap plot was constructed
for both in-pasture- and collar video-observed behavior using the ggplot and geom_treemap
functions available in the ggplot2 [27] and treemapify [31] packages (Figure 5). To compare
the spatial distribution between in-pasture- and collar video-observed behavior, each
observed behavior bout was matched with the nearest temporal GPS location using the
nearest function in the data.table package [32], converted to a spatial object, and mapped
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according to observation method and behavior (Figure 9) using the st_as_sf and geom_sf
functions in the sf package [33].

(@)

34.218°N

(b)

34.218°N

34.217°N

34.217°N

34.216°N 1

34.216°N 1

34.215°N 1

34.215°N 1

34.214°N 1 34.214°N 1

34.213°N 34.213°N
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= = = = = &3 =3 &3 = 3
® Animal-borne collar video ® Grazing e Ruminating
Source Behavior
® In-pasture observation ® Resting © Walking

Figure 9. Linking behavioral observations and geolocation data indicates the spatial distribution of
exhibited behaviors. This map (a) demonstrates the increased spatial distribution of behavior collected
using an autonomous data collection system such as collar videos versus in-pasture observation.
Further, this allows for an analysis of space use (b) for each behavior and demonstrates the advantage
that animal-borne collar video behavior observation has on increasing the spatial area and temporal
data collection period. This may improve model resiliency by mitigating temporal and spatial bias.
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3. Results

In total, 1171, 3438, 135, and 1603 and 8285, 6580, 2524, and 4508, seconds of behav-
ior were observed for grazing, resting, ruminating, and walking behavior for in-pasture
observations and animal-borne camera collars, respectively (Figure 5). A combined total
of 41,549 s (11.5 h) of animal behavior was reviewed across eight animals split among five
grazing behaviors (Table 1). After visually inspecting accelerometer signals, 7324 and 6007 s
of data were discarded from the in-pasture observations and animal-borne collar video
observations, respectively. This left a total of 28,244 s of observation used for subsequent
analysis. Grooming was only recorded for 122 s during in-pasture observation, but after
signal cleaning, only 26 s remained (Figure 5). Resting was the most common behavior
observed, which constituted 35.5% (n = 10,018 s) of the total behavior observed. Grazing
closely followed, which constituted 33.5% (1 = 9456 s). Ruminating behavior was observed
for 21.5% of the total (n = 6106 s). Walking (n = 2659 s, proportion = 9.4%) represented the
smallest proportion of the summed total for all observed behavior (Figure 5).

Functional differences in accelerometer signals among the discrete behaviors can be
seen in Figures 6 and 7. As demonstrated in both figures, grazing behavior presented the
most distinct signal on the X-axis, indicating a transfer of acceleration force because of
gravity between the X-axis and the Z-axis as the position of the head changed. Walking
presented greater density on the negative X-axis, indicating higher acceleration values while
the head was up. Finally, grooming presented the most general behavior, with a proportion
of signals distributed across positive and negative values for all acceleration axes.

Model performance improved with increasing window size; the optimal smoothing
window size was reached at ~10 s for all behaviors and ~15 s when discriminating only
between grazing and the other behaviors (Figure 10). Walking behavior reported the lowest
sensitivity across all smoothing windows, which is expected given the heterogeneous nature
of accelerometer features demonstrated in the density plots (Figures 6 and 7). To identify the
number of observations required to achieve the desired classification model performance,
we sub-sampled the data from 1 to 100% (n = 190 to 28,244 s) in a structured manner to
maintain the original representation of each behavior. As shown in Figure 8, the behaviors
with the most complex accelerometer signals, i.e., resting and ruminating, demonstrated the
strongest asymptotic curves, reaching an asymptote at ~50% (n observations = 14,531). The
behaviors with at least one visually unique identifier in the raw accelerometry, i.e., grazing
and walking, showed less sensitivity to a reduction in the number of observed behaviors
(Figure 8). Grooming had the lowest number of observed events (Figure 5) and returned
the lowest classification accuracy and highest sensitivity to a reduction in the number
of behaviors observed (Figure 8). After categorizing behaviors into respective activity
levels, the classification accuracy results were similar, and greater than 95% accuracy was
achieved using only 25% percent of the available data (Figure 8). These results demonstrate
the importance of ensuring a broad representation of behaviors is observed for training
classification data, while gross quantities of discrete behaviors with unique signal attributes
are unnecessary.

It is important to note that walking behavior was more frequently observed in the
animal-borne collar video-collected data than in-pasture observations, demonstrating
an advantage to obtaining a temporally and spatially representative sample of animal
behavior via the video collar (Figures 5 and 9). Behaviors observed in-pasture were
collected frequently throughout the day and evening, which may have skewed observations
toward resting and grazing behaviors. Animal-borne collar-video-observed behaviors were
distributed spatial-temporally across the pasture. They showed a spatial concentration of
ruminating and walking behavior, while grazing behavior was more spatially distributed
across the pasture landscape (Figure 9).
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Figure 10. Accuracy of random forest-predicted behavior bouts. (a) foraging, resting, ruminating,
and traveling. (b) active (walking and grazing) versus inactive (resting, ruminating, and grooming)
behaviors. (c) foraging bouts (foraging vs. non-foraging) across increasing smoothing window size.

4. Discussion

Continuously observing cattle behavior promises to provide detailed insight into fun-
damental metabolic processes at the individual level. Yet, calibration models are extremely
difficult to transfer among studies, requiring each study to collect a dataset of accelerometer
features matched with visually observed behavior to train classification algorithms. The
duration of behavior observation in training datasets ranges from less than 2 h to greater
than 50 h, with most studies choosing to observe less than 10 h or more than 50 h [9]. We
observed 11.5 h of behavior, which is congruent with 42% of the accelerometer studies [9].
Observed behavior is extremely difficult and time-consuming to collect, which explains
the short duration of observation reported by many studies. Further, visually collected
data are normally collected over relatively short periods, which may not fully represent the
diversity of terrain or behaviors in the study animal.

Grazing and walking behaviors demonstrated significantly higher VeDBA values,
with a greater density of higher values on the Y-axis compared with resting and ruminating
behaviors. Grazing created a distinctly unique signature, with lower acceleration measured
on the vertical axis (Z-axis), which was transferred to the horizontal fore and aft directions
(X-axis), indicating the head-down posture indicative of foraging (searching and grazing)
behavior (Figure 6). Our values demonstrated a greater degree of separation in the raw
accelerometry signal than those reported in other free-ranging cattle using handmade
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accelerometry collars [20], which is indicative that substantial differences exist to create an
accurate classification algorithm using the random forest machine learning architecture.
Combined with a lower degree of separation and the machine learning approach to setting
thresholds, this explains our higher degree of temporal and spatial accuracy compared with
other studies using a threshold approach to classifying grazing cattle behavior [1,6,20].

A plethora of pre-processing methodologies have been utilized for a variety of pur-
poses in accelerometer signal processing into various features [17]. We found that pre-
processing 10-s smoothing windows and the most available data provided the best model
performance, with the prediction of steer behaviors returning an accuracy of 0.98 when
predicting behaviors (Figure 10a). This is in agreement with other studies in cattle [2,17] and
sheep [14,34] and places our results within what is commonly expected from other similar
studies [9]. Also unknown is the quantity of behavior data required to train classification
models [9]. This leads many researchers either to collect as much data as possible, poten-
tially wasting valuable resources, or utilize what is available, potentially under-sampling,
which may result in unreliable models. We tested this phenomenon by proportionally re-
ducing the number of observed behaviors and found approximately 5.5 h (50% of observed
behavior) were required to obtain optimum model accuracy (Figure 8). Behaviors with
distinct accelerometry signals, such as grazing (Figure 7), were the least affected by data
reduction, while those with mixed signals on multiple axes, such as resting and ruminating
behaviors (Figure 7), were affected most (Figure 8). Grooming, the least observed behavior
(Figure 5), was the most affected by data reduction (Figure 8). This demonstrates the
difficulty in predicting biologically important, but rarely observed, behaviors using ac-
celerometry signals, which is an issue noted unilaterally within the accelerometry behavior
literature [9].

The use of camera collar technology to remotely observe free-ranging animal behavior
is extensively used in difficult-to-observe animals [22]. Passive camera systems allow for
observing specific animal behaviors and provide ecologists with a greater perspective of
species life history, including patch selection and calf survival in Caribou [35]. Further,
collar video data have been utilized in training accelerometer algorithms in the Gobi Khulan
(Equus hemionus hemionus), a free-ranging wild horse in the Mongolian steppes [18]. Our
study illustrates the advantage of using animal-borne collar video cameras for behavior
observation to capture a greater distribution of the animal ethogram (Figure 5), increase
the spatial-temporal area over which behavior is observed (Figure 9), and from a fixed
perspective, which should aid in mitigating observer bias. Most animal observations, at
least in domesticated livestock, are performed continuously by at least one observer using
either direct or continuous video [9,17,36].

5. Conclusions

Smart collars present a new frontier in animal agriculture and will improve nutri-
tion and forage management [11] while integrating with other new technologies [12]. We
demonstrated the parsimonious differences among behaviors evident in accelerometer
signatures and identified optimal smoothing windows that improve the accuracy of be-
havior classification when using random forest machine learning methodologies. Further,
we demonstrated the increased spatial and temporal diversity of behaviors collected us-
ing animal-worn cameras and compared the accuracy of behavior classification models
developed using each of the two methods. While they performed with demonstrably less
accuracy, the accuracy and increased quantity of behavior observed indicate this may be a
viable solution for extensively managed animals whose behavior is difficult to observe.
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Appendix A. System Report

The following is the system, R version, and packages utilized in this analysis:

sessionInfo()

## R version 4.2.3 (2023-03-15)

## Platform: aarch64-apple-darwin20 (64-bit)

## Running under: macOS Ventura 13.2.1

##

## Matrix products: default

## BLAS: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/1
ib/1ibRblas.0.dylib

## LAPACK: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources
/1lib/1ibRlapack.dylib

##

## locale:

## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##

## attached base packages:

## [1] stats graphics grDevices utils datasets methods base

##

## other attached packages:

## [1] ggspatial_1.1.7 treemapify_2.5.5 rstatix_0.7.2

## [4] tinytex_0.44 flextable_0.9.0 officedown_0.3.0

## [7] officer_0.6.1 knitr_1.42 caret_6.0-94

## [10] lattice_0.20-45 randomForest_4.7-1.1 zoo_1.8-11

## [13] cowplot_1.1.1 ggpubr_0.6.0 gridExtra_2.3

## [16] sf_1.0-12 terra_1.7-18 svMisc_1.2.3

## [19] scales_1.2.1 english_1.2-6 moments_0.14.1

## [22] fuzzyjoin_0.1.6 lubridate_1.9.2 forcats_1.0.0
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[25] stringr_1.5.0 dplyr_1.1.1 purrr_1.0.1

[28] readr_2.1.4 tidyr_1.3.0 tibble_3.2.1

[31] ggplot2_3.4.1 tidyverse_2.0.0 data.table 1.14.8
[34] readxl 1.4.2

loaded via a namespace (and not attached):

[1] uuid_1.1-0 backports_1.4.1 systemfonts_1.0.4
[4] plyr_1.8.8 splines_4.2.3 listenv_0.9.0

[7] digest_0.6.31 foreach_1.5.2 htmltools _0.5.4
[10] fansi_1.0.4 magrittr_2.0.3 memoise_2.0.1

[13] tzdb_0.4.0 ggfittext_0.9.1 recipes_1.0.6

[16] globals_©.16.2 gower_1.0.1 askpass_1.1

[19] hardhat_1.3.0 timechange_0.2.0 gfonts_0.2.0
[22] jpeg_©.1-10 colorspace_2.1-0 textshaping 0.3.6
[25] xfun_0.37 crayon_1.5.2 jsonlite_1.8.4

[28] survival_3.5-5 iterators_1.0.14 glue_1.6.2
[31] rvg_0.3.2 gtable _0.3.3 ipred_0.9-14

[34] car_3.1-1 future.apply_1.11.0 abind_1.4-5

[37] fontquiver_0.2.1 DBI_1.1.3 Rcpp_1.0.10

[40] xtable_1.8-4 units_0.8-1 proxy_0.4-27

[43] stats4_4.2.3 lava_1.7.2.1 fontLiberation_0.1.0
[46] prodlim_2023.03.31 RColorBrewer_1.1-3 ellipsis 0.3.2
[49] farver_2.1.1 pkgconfig 2.0.3 nnet_7.3-18

[52] utf8_1.2.3 crul_1.3 labeling 0.4.2

[55] tidyselect_1.2.0 rlang_1.1.0 reshape2_1.4.4
[58] later_1.3.0 munsell ©.5.0 cellranger_1.1.0
[61] tools_4.2.3 cachem_1.0.7 cli_3.6.1

[64] generics_©.1.3 broom_1.0.4 evaluate_0.20

[67] fastmap_1.1.1 yaml _2.3.7 ragg 1.2.5

[70] ModelMetrics_1.2.2.2 zip_2.2.2 future_1.33.0
[73] nlme_3.1-162 mime_0.12 xml2_1.3.3

[76] compiler_4.2.3 rstudioapi_©.14 curl_5.0.0

[79] el1071_1.7-13 ggsignif_0.6.4 stringi_1.7.12
[82] gdtools_©.3.2 Matrix_1.5-3 classInt_0.4-9

[85] fontBitstreamVera_0.1.1 vctrs_0.6.1 pillar_1.9.0
[88] lifecycle 1.0.3 httpuv_1.6.9 R6_2.5.1

[91] promises_1.2.0.1 KernSmooth_2.23-20 parallelly 1.36.0
[94] codetools_0.2-19 MASS_7.3-58.3 openssl_2.0.6
[97] withr_2.5.0 httpcode_0.3.0 parallel_4.2.3
[1e0] hms_1.1.3 grid_4.2.3 rpart_4.1.19

[103] timeDate_4022.108 class_7.3-21 rmarkdown_2.20
[1e6] carData_3.0-5 pROC_1.18.4 shiny 1.7.4
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