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Abstract: This paper explores the development of a smart Structural Health Monitoring (SHM)
platform tailored for long-span bridge monitoring, using the Forth Road Bridge (FRB) as a case study.
It discusses the selection of smart sensors available for real-time monitoring, the formulation of an
effective data strategy encompassing the collection, processing, management, analysis, and visualiza-
tion of monitoring data sets to support decision-making, and the establishment of a cost-effective
and intelligent sensor network aligned with the objectives set through comprehensive communi-
cation with asset owners. Due to the high data rates and dense sensor installations, conventional
processing techniques are inadequate for fulfilling monitoring functionalities and ensuring security.
Cloud-computing emerges as a widely adopted solution for processing and storing vast monitoring
data sets. Drawing from the authors’ experience in implementing long-span bridge monitoring
systems in the UK and China, this paper compares the advantages and limitations of employing
cloud- computing for long-span bridge monitoring. Furthermore, it explores strategies for developing
a robust data strategy and leveraging artificial intelligence (AI) and digital twin (DT) technologies
to extract relevant information or patterns regarding asset health conditions. This information is
then visualized through the interaction between physical and virtual worlds, facilitating timely and
informed decision-making in managing critical road transport infrastructure.

Keywords: smart sensory network; cloud-computing; data strategy; digital twin; bridge monitoring

1. Introduction

Despite playing an indispensable role in global transportation, many large-span
bridges suffer from structural damage and other issues. A very recent statistical analysis
carried out by the RAC Foundation revealed that 3211 bridges in the UK were substandard
as of the end of 2021, a 3.4% increase compared with those in 2020 [1]. As most of 2021 was
under the COVID-19 pandemic lockdown in the UK, this rapid structural deterioration
must have been caused by their natural degradation process. It is estimated that the cost to
bring these substandard bridges back up to perfect condition would be GBP 1.16 billion
and to clean up all the maintenance backlog on 70,944 bridges in the UK the cost would
be GBP 5.44 billion [2]. There are much higher bridge inventories both in China and the
US. The American Road & Transportation Builders Association (ARTBA) 2022 Report
points out that 7% of its total 619,588 highway bridges are “structurally deficient” and
167.5 million daily crossings are on a total of 43,578 structurally deficient US bridges in
poor conditions [3]. The estimated cost to retrofit all 224,000 bridges that need major repair
work or replacement, including the 43,578 structurally deficient bridges, is USD 260 billion.

Sensors 2024, 24, 3163. https://doi.org/10.3390/s24103163 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24103163
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2440-8054
https://orcid.org/0000-0002-2472-4201
https://doi.org/10.3390/s24103163
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24103163?type=check_update&version=2


Sensors 2024, 24, 3163 2 of 20

By 2019, China had built more than 878,300 highway bridges, and 87% of these are medium
and small-size bridges. More than 10% of these bridges are categorized as “structurally
deficient”, which means that immediate retrofitting is required. Most of the long-span
bridges in China (single span > 500 m for a suspension bridge and >300 m for a cable-stayed
bridge) were constructed in the past 30 years and bridges built in the past 10 years usually
have a built-in structural health monitoring (SHM) system due to regulations or laws.

Thanks to the technological development of the Internet of Things (IOTs), sensors,
communication, and computer science, the structural health monitoring of long-span
bridges in real time has gradually become practical and reliable. Many bridges installed
SHM systems to reduce potential lockdown or damage risks worldwide [4–7]. An en-
tire SHM system mainly includes a sensor module, a data acquisition and transmission
module, a data processing and management module, and an assessment and notification
module [8,9]. Correspondingly, many scholars have carried out much research on this topic,
mainly including damage identification, Global Navigation Satellite System (GNSS) sensor
applications, extreme event analysis, and SHM systems. GNSS technology has achieved
significant progress in recent decades, which makes GNSS positioning a reliable sensor
for the deformation monitoring of medium- and long-span bridges [10,11]. To improve
positioning precision, the impact of GPS satellite and pseudolite geometry on structural
deformation monitoring was analyzed [12]. Integrated GPS and triaxial accelerometers
were deployed to detect the dynamic response [13]. A medium-span suspension bridge’s
modal frequencies were attained using multimode GNSS positioning and multipath mitiga-
tion [14]. Luo proposed a component extraction method for the GNSS displacement signals
of long-span bridges and validated it using the SHM data.

The SHM system should monitor the loading and structural parameters set by the
bridge designer, assess the structural health status, guide the bridge-inspection activities,
and, furthermore, provide advice on remedial works if damage is detected [15]. Structural
modal parameters, such as natural frequencies, damping ratios, and mode shapes, are
considered the critical assessment criterion for the structural health status. The use of
a natural frequency from vibrating data as a diagnostic parameter in structural health
assessment was discussed by Lee and Salawu [16,17]. An improved Bayesian modal identi-
fication approach, using scaled Fast Fourier Transform data for uncertainty quantification,
was adopted to reduce the ambient uncertainties and enhance the reliability of modal
tracking [18]. Bayesian spectral density was applied to address the uncertainty of mode
extraction from the output-only response of a long-span suspension bridge to extract modal
parameters from large data sets collected by the SHM system [19]. Deng proposed and
proved the effectiveness of a method based on the correlation of the probability distribution
of the quasi-static response data for damage identification since it is challenging to extract
structural models or parameters that directly indicate structural damage [20]. Svensen
et al. presented a novel hybrid structural health monitoring (SHM) framework for damage
detection in bridges based on the finite element (FE) model and machine learning [21].

Extreme events, such as earthquakes, strong winds, and collisions, bring a great chance
to watch and assess the bridge’s health status. An investigation of the dynamic properties of
a long-span cable-stayed bridge was conducted during typhoon events based on structural
health monitoring, and the relationship between modal parameters and environmental
factors was revealed [22,23]. The operational modal parameters and seismic response of the
2160 m long Tsing Ma Suspension Bridge, when subjected to different earthquake events,
were analyzed, which was beneficial to the seismic design of long-span bridges [5,24]. A
ship collision incident happened at Jiangyin Bridge in May 2009, and the mode parameters
were identified with GNSS measurements to evaluate the bridge condition [25]. A real-
time artificial neural network model was proposed to investigate the real-time coupling
relationship between multi-loads and bridge deformation, enabling the real-time prediction
of bridge deformations [26].

From 2005, the corresponding author of this paper participated in, and then led, a
series of episodic monitoring campaigns on one of the longest bridges in the UK, the Forth
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Road Bridge in Scotland [27]. With support mainly from the European Space Agency
(ESA), a phased installation of a permanent monitoring system called GeoSHM started
from 2014 [9]. The Forth Road Bridge was opened to traffic on 4 Sept 1964. The total
length of the bridge is 2.5 km, with a main span of 1006 m (Figure 1). It was the world’s
longest bridge outside the US, but now it ranks at number 44. The Forth Road Bridge is
essential for the Scottish/UK economy. According to the former bridge master, closing
one of its four lanes per day will cost GBP 650 K. The structural responses are dominated
by temperature and traffic loadings and the bridge is susceptible to wind effects which
cause excessive lateral movement and predicted over-stress under design wind loading.
Regular repairs to the main components were carried out during its service lifetime of
58 years (https://www.theforthbridges.org/about-the-forth-bridges/forth-road-bridge/
forth-road-bridge-maintenance/, accessed on 11 May 2024).

Sensors 2024, 24, x FOR PEER REVIEW 3 of 20 
 

 

investigate the real-time coupling relationship between multi-loads and bridge defor-
mation, enabling the real-time prediction of bridge deformations [26]. 

From 2005, the corresponding author of this paper participated in, and then led, a 
series of episodic monitoring campaigns on one of the longest bridges in the UK, the Forth 
Road Bridge in Scotland [27]. With support mainly from the European Space Agency 
(ESA), a phased installation of a permanent monitoring system called GeoSHM started 
from 2014 [9]. The Forth Road Bridge was opened to traffic on 4 Sept 1964. The total length 
of the bridge is 2.5 km, with a main span of 1006 m (Figure 1). It was the world’s longest 
bridge outside the US, but now it ranks at number 44. The Forth Road Bridge is essential 
for the Scottish/UK economy. According to the former bridge master, closing one of its 
four lanes per day will cost GBP 650 K. The structural responses are dominated by tem-
perature and traffic loadings and the bridge is susceptible to wind effects which cause 
excessive lateral movement and predicted over-stress under design wind loading. Regular 
repairs to the main components were carried out during its service lifetime of 58 years 
(https://www.theforthbridges.org/about-the-forth-bridges/forth-road-bridge/forth-road-
bridge-maintenance/, accessed on 11 May 2024). 

 
Figure 1. The Forth Road Bridge with the Queensferry Crossing as background (from: Edinburgh 
News). 

This paper uses the Forth Road Bridge in Scotland as an SHM example and the expe-
rience attained from the SHM systems erected on the bridges in China contributes enor-
mously to the concepts and content of this paper. The overall focuses of this paper include 
the following: 
• How to establish a cost-effective and smart sensory network for monitoring long-

span bridges; 
• How to develop an effective SHM data strategy to handle a large quantity of moni-

toring data from a high-rate sensory network; 
• Analysis of the pros and cons of the cloud-computing technique for an SHM system; 

and 
• A discussion of the integrated uses of digital twin (DT) and artificial intelligence (AI) 

for the smart monitoring of bridges. 
We acknowledge that a concise conference version of this research was previously 

published by Meng [28]. However, our initial conference paper did not address how to 
diagnose structural health status. The present manuscript provides a thorough 

Figure 1. The Forth Road Bridge with the Queensferry Crossing as background (from: Edinburgh
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This paper uses the Forth Road Bridge in Scotland as an SHM example and the
experience attained from the SHM systems erected on the bridges in China contributes
enormously to the concepts and content of this paper. The overall focuses of this paper
include the following:

• How to establish a cost-effective and smart sensory network for monitoring long-span
bridges;

• How to develop an effective SHM data strategy to handle a large quantity of monitor-
ing data from a high-rate sensory network;

• Analysis of the pros and cons of the cloud-computing technique for an SHM system;
and

• A discussion of the integrated uses of digital twin (DT) and artificial intelligence (AI)
for the smart monitoring of bridges.

We acknowledge that a concise conference version of this research was previously
published by Meng [28]. However, our initial conference paper did not address how to
diagnose structural health status. The present manuscript provides a thorough investiga-
tion, through data pre-processing and detailed analyses, for detecting structural changes
and damages. Moreover, supplementary images and relevant information have been in-
corporated into the GeoSHM sensor network and data strategy, enhancing the article’s
comprehensibility.

https://www.theforthbridges.org/about-the-forth-bridges/forth-road-bridge/forth-road-bridge-maintenance/
https://www.theforthbridges.org/about-the-forth-bridges/forth-road-bridge/forth-road-bridge-maintenance/
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2. Smart Sensory Network for SHM

The monitoring objectives of the bridge owners, available budget, timeline, and, most
importantly, the user demands together govern the overall design and configuration of
an SHM system. This requires the SHM developers to sit down with bridge owners and
listen to their most significant concerns in managing their assets. The selection of suitable
sensor types, the determination of their optimal placement locations on the structure, and
the design of the data transmission approaches are all essential factors to be considered in
the initial stage of setting up a sustainable SHM system. To make this system adaptable to
accommodate the changing demands of bridge owners and survive the harsh operational
environment, smart sensors, and the network to connect them into an effective and efficient
monitoring system, are widely used in current SHM systems. The smart level of the
sensory system depends on the advancement of many key impact parameters (KPIs) or
affecting factors such as a core chipset design, advanced materials and manufacturing
skills, computing power, wireless or cabled communications, such as 5G/6G and fiber optic
cables, etc.

In general, the monitoring parameters to be considered in a practical bridge monitoring
system include the environmental parameters such as wind speed and its direction, temper-
ature, humidity, rain, snow, ice, etc.; the spatial–temporal displacements (four-dimensional,
4D) of the structure, such as deflection and deformation, crack, fatigue, corrosion, etc.;
and the forces on the structure, such as strain and stress and their 4D distributions. Since
different bridge owners have their specific monitoring priority agenda, and since the size
and complexity of each individual structure are different, the determination of the number
and types of the sensors and their placements on the structure are unique. According to
Xu and Xia [29] and Middleton et al. [30], the sensors used to measure these above three
types of parameters include loading sensors for wind, earthquake, and traffic applied on
the structures, the sensors for measuring structural responses such as displacement, strain,
stress, etc., and the environmental sensors for measuring temperature, humidity, rain, ice,
snow, corrosion, solar radiation, etc.

Nowadays, due to their unique advantages such as higher bandwidth, longer trans-
mission distance, lower latency, and stronger security, optical fibers are extensively used
for large quantities of monitoring data transmission in bridge SHM systems and vari-
ous fiber optic sensors are developed to measure strain, temperature, dynamic and static
vehicular weight, pressure, image, etc. Furthermore, the advancing and application of
micro-electromechanical system (MEMS) sensors make bridge monitoring more accurate
and affordable, significantly improving the density of the sensory network on the structure.
The use of optical fibers and fiber optic and MEMS sensors have paved the way for inte-
grating a digital twin (DT), analytic models such as the finite element model (FEM), and
other advanced data sciences such as big data analytics and machine learning, etc., into the
daily operation of SHM systems.

Clearly, bearing this above development trend in mind and considering affordability,
the Forth Road Bridge owner’s GeoSHM was designed as a phased, open, and scalable sys-
tem [9,31]. The first phase was to prove the GeoSHM’s feasibility in fusing Interferometric
Synthetic Aperture Radar (InSAR) regional inspection and in situ point-based monitoring
with GNSS positioning and laying an optical fiber-based communication network to form
high spatial–temporal monitoring [31,32]. The demonstration phase of GeoSHM develop-
ment was more focused on densifying the existing monitoring footprint and developing a
deep learning method to implement effective data mining, interpretation, and structural
diagnoses [33]. The GeoSHM system consists of online and offline processing modules
which play different roles: the online one for structural condition evaluation and the offline
one for health and safety assessment. Figure 2 shows the main components of the GeoSHM
sub-systems and how the GeoSHM in situ sensors are linked to the processing centers with
the optical fiber network on the bridge and via the TCP/IP protocol through the Inter-
net. The cabled-based network has been further upgraded using hybrid communication
techniques.
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Figure 2. GeoSHM sub-systems and data flow.

In the GeoSHM system, different high-rate sensors are installed at various locations
in the structure to gather the digital or analog signals of interest. Table 1 lists the sensors
intended to be installed during its demonstration phase. Up to now, most sensors have
been successfully installed and run on the bridge, but due to the pandemic replacing two
corroded sensors at two quarter-span locations (SHM8 and SHM9) on the west side of the
bridge, this was delayed. Figure 3 illustrates the current sensor types and locations.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 20 
 

 

8 PP73NE(NAV Channel) 
GNSS SHM6 

Accelerometer ACC6 

9 PP59 NE (1/8 of the main span) 
Accelerometer on cable ACC7 
Accelerometer on deck ACC8 

10 Top of the NE tower leg 

GNSS SHM5 
Anemometer ANE3 

Accelerometer ACC9 
Tiltmeter TLT3 

 
Figure 3. The sensor locations on the Forth Road Bridge (refer to Table 1 for the meaning of num-
bers). 

Traditional sensing systems are mostly cable-based systems with monitoring nodes 
installed at essential locations in the structures and these systems are usually sparse and 
expensive. Great efforts are required to maintain the communication systems since the 
communication cables are more vulnerable to the environment than the sensors. With 
wireless communication, a large quantity of sensors could be installed flexibly and the 
overall monitoring systems could be more scalable and cost-effective. 

Current SHM systems extensively use cable-based communications for data trans-
mission due to the drawbacks in power supply, communication bandwidth, effective 
ranges, and signal interference due to complicated operational environments in wireless-
based monitoring. Some wireless sensors operate on unlicensed transmission frequency 
bands such as 2.4 GHz; hence, output power limitations are imposed in different coun-
tries. For instance, this is 1 watt in the US and 0.5 watts in the UK. This affects both data 
transmission throughput and a valid range. 

When the optical fiber connection failed to transmit data due to the installation chal-
lenge and long transmission range limitation for a remote monitoring node in the Ge-
oSHM project, a wireless communication method was tried. It turned out to be a very 
reliable and cost-effective solution. Therefore, the communication network used in the 
GeoSHM project is a combination of an optical fiber for most sensory sites and paired 
long-range Wi-Fi devices for a remote northeast (NE) supporting tower site. The NE mon-
itoring node is the furthest point in the whole GeoSHM system and consists of a GNSS 
receiver, an anemometer, and a triaxial accelerometer. Figure 4 is the wireless communi-
cation set up of SHM5, which sits atop the NE tower of the Forth Road Bridge. 

In this case, a pair of TP-Link’s Outdoor Wireless Base Station 510 (WPS510) and Ac-
cess Point 510 (CPE510) was used to receive and transmit monitoring data. CPE510 is 
linked to the remote sensors of SHM5. WPS510 is installed on the roof of the FRB control 
center and connected to the Internet to stream the received data to the GeoSHM server to 
be processed. The nominal transmission range of these TP-Link devices is 5 km. Figure 5 
demonstrates a schematic diagram of data transmission from the NE tower to the office 
building where the data processing server is located using a TP link device. 

Figure 3. The sensor locations on the Forth Road Bridge (refer to Table 1 for the meaning of numbers).

Traditional sensing systems are mostly cable-based systems with monitoring nodes
installed at essential locations in the structures and these systems are usually sparse and
expensive. Great efforts are required to maintain the communication systems since the
communication cables are more vulnerable to the environment than the sensors. With
wireless communication, a large quantity of sensors could be installed flexibly and the
overall monitoring systems could be more scalable and cost-effective.

Current SHM systems extensively use cable-based communications for data transmis-
sion due to the drawbacks in power supply, communication bandwidth, effective ranges,
and signal interference due to complicated operational environments in wireless-based
monitoring. Some wireless sensors operate on unlicensed transmission frequency bands
such as 2.4 GHz; hence, output power limitations are imposed in different countries. For
instance, this is 1 watt in the US and 0.5 watts in the UK. This affects both data transmission
throughput and a valid range.
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Table 1. A complete list of the sensors planned in the Phase Two development of the GeoSHM system.

No Location Instruments ID

1 Top of the SW tower leg

GNSS SHM4

Anemometer ANE1

Accelerometer ACC1

Tiltmeter TLT1

1-1 Mid-height of the SW tower leg Tiltmeter TLT2

2 PP87 SW (3/8 of the main span)
Accelerometer on cable ACC2

Accelerometer on deck ACC3

3 PP73 SW(NAV channel) GNSS SHM8

4 PP73 SE (NAV channel)
GNSS SHM7

Accelerometer ACC3

5 PP101W (Mid span)
GNSS SHM2

Anemometer ANE2

6 PP101E (Mid span)

GNSS SHM3

MET station MET1

Accelerometer ACC5

7 PP73NW(NAV Channel) GNSS SHM9

8 PP73NE(NAV Channel)
GNSS SHM6

Accelerometer ACC6

9 PP59 NE (1/8 of the main span)
Accelerometer on cable ACC7

Accelerometer on deck ACC8

10 Top of the NE tower leg

GNSS SHM5

Anemometer ANE3

Accelerometer ACC9

Tiltmeter TLT3

When the optical fiber connection failed to transmit data due to the installation chal-
lenge and long transmission range limitation for a remote monitoring node in the GeoSHM
project, a wireless communication method was tried. It turned out to be a very reliable
and cost-effective solution. Therefore, the communication network used in the GeoSHM
project is a combination of an optical fiber for most sensory sites and paired long-range
Wi-Fi devices for a remote northeast (NE) supporting tower site. The NE monitoring node
is the furthest point in the whole GeoSHM system and consists of a GNSS receiver, an
anemometer, and a triaxial accelerometer. Figure 4 is the wireless communication set up of
SHM5, which sits atop the NE tower of the Forth Road Bridge.

In this case, a pair of TP-Link’s Outdoor Wireless Base Station 510 (WPS510) and
Access Point 510 (CPE510) was used to receive and transmit monitoring data. CPE510 is
linked to the remote sensors of SHM5. WPS510 is installed on the roof of the FRB control
center and connected to the Internet to stream the received data to the GeoSHM server to
be processed. The nominal transmission range of these TP-Link devices is 5 km. Figure 5
demonstrates a schematic diagram of data transmission from the NE tower to the office
building where the data processing server is located using a TP link device.
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Figure 5. Data transmission between the NE tower and the office building using TP link device.

Figure 6 is the time series of the SHM5 vertical movement and an almost 100% trans-
mission rate was achieved in the three-month period from March to June 2020 during the
peak of the COVID-19 pandemic, which reflects the reliability of wireless communication
for SHM. Additionally, it is noted that the transmission entails a time delay of approximately
10 ms, but the latency depends on various factors such as network conditions, distance
between devices, and interference. The negligible data packet loss rate also indicates a
stable signal.

By optimizing the placement of devices and the coverage range of signals, signal
attenuation and interference can be reduced; selecting more advanced and efficient wireless
communication technologies, such as LTE and 5G, can enhance the stability and speed of
data transmission, thereby lowering packet loss and latency.
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3. Development of an SHM Data Strategy
3.1. Data Strategy

Data strategy refers to the tools, processes, and rules that define how to manage,
analyze, and act upon data. A data strategy helps different practitioners to make informed
decisions based on the available data. It also helps to keep the data safe and compliant.
According to Gartner’s definition, a data strategy is a highly dynamic process employed to
support the acquisition, organization, analysis, and delivery of data in support of business
objectives [34].

Using the data-driven approach for the establishment of an SHM system, as illustrated
in Figure 7, the aim of the development of an SHM data strategy is to provide the bridge
owners and operators or service providers with appropriate bridge performance data and
derived information to make informed bridge management decisions. The focus of the
SHM data strategy should cover the procedures for data pre-processing and cleansing,
real time data acquisition, data fusion from different sources, comparisons among real
time data, historical ones and those from models, the detection of extreme events, and
the identification of system changes. As digital twins, big data analytics, IoT, and AI are
being applied more and more in the SHM of large infrastructure and efforts should be
made in seamlessly plugging these into an updated SHM data strategy. As an example, the
developed GeoSHM data strategy that has been utilized in guiding the development of the
GeoSHM system comprises five interlinked components:
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(1) Data acquisition and pre-processing. All the raw measurements and the corre-
sponding derived time series should refer to common spatial–temporal data such as those
defined by the Global Navigation Satellite System (GNSS) and using multi-GNSS, including
BDS, becomes indispensable when a precise spatial–temporal datum is required for life-
cycle infrastructure monitoring [35]. Data acquisition rates and smart triggers for sensor
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controls should be determined, validated, and operational. Also, an appropriate bridge
coordinate system (BCS) should be defined, where its X-axis coincides with the main axis
of the bridge (longitudinal), its Y-axis is perpendicular to the X-axis in the horizontal
plane (lateral), and the Z-axis points in the vertical up-direction. All the global, local, and
body-framed coordinate systems of the monitoring sensors should be linked to the BCS
through rigid coordinate transformations. Outliers and gaps in the acquired data sets
should be detected and removed before further processing.

(2) Data architecture and integration. A data architecture is devised and used to guide
the data archive and storage process. Immediately after data pre-processing, the cleaned
data sets will be pushed to the dedicated SHM Cloud. Further data processing, including
data fusion and mining from summary statistics of whole data sets, will be performed on a
dedicated processing engine. A heterogeneous database structure is used to store all the
data in the same Cloud.

(3) Data storage and technology. The GeoSHM users have access to the layered live
data stream, historic data, structural health status report, and so on, according to their
roles, which include bridge masters, engineers, researchers, and the general public. This
part of the work is to set data storage and access rules (raw data vs. processed ones, and
duration for keeping this large quantity of raw measurements) and the kinds of media for
storing these data. Solutions are compared against KPIs such as cost, performance, ease of
access, etc.

(4) Data insight and analysis. A direct comparison of the short-term statistics with the
historical data will be made using statistical control charts. Bridge performance data will
be presented on a chart relating the maximum displacement (or other variables) to incident
loading (traffic, wind, or combined). Live bridge performance data will be presented as a
time series with thresholds based on historical data analysis. These will include how to use
finite element models, AI, and DT to enhance structural health condition assessments.

(5) Data governance, privacy. Setting up of the rules regarding who is the owner and
who is responsible for the data, who can access the data, and how they can access them.

3.2. Outlier Removal by Hampel Filter

The emergence of outliers represents a crucial aspect of data processing strategies
in structural health monitoring systems. Due to equipment manufacturing and external
environmental factors, the data collected by sensors may sometimes contain outliers. To
ensure the accuracy of subsequent data analysis, outlier removal is the first step in data
processing. In the GeoSHM project, Hampel filtering is applied to detect and remove
outliers in sensor data.

The Hampel filter works by analyzing the data and identifying and removing outliers
that deviate from the overall data distribution, resulting in more robust estimation results.
The principle of the Hampel filter is based on the concepts of median and Median Absolute
Deviation (MAD). It involves sliding a window over the data and calculating the absolute
deviation of data points from the median, the marking of data points beyond a pre-set
threshold (usually three times MAD), and replacing these outliers with the median or other
appropriate estimated values. For a data set X1, X2, . . ., Xn, MAD can be calculated using
the following formulas:

∼
X = median(X) (1)

MAD = median
(∣∣∣∣Xi −

∼
X
∣∣∣∣) (2)

The Hampel filter has strong robustness in handling outliers, effectively dealing with
anomalies in the data. Furthermore, it can, to some extent, preserve the original features of
the data compared to other filter methods. However, the Hampel filter requires setting a
window length and threshold beforehand, and the choice of these significantly impacts the
filter effect. Improper selection may lead to the filtering out of important information or
the retaining of too many outliers.
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Figure 8 illustrates the GNSS time series plot comparing the original data set with the
outlier-removed data, focusing on the Y-axis direction at the mid-span, where the sensor ID
is SHM2. Meanwhile, Figure 9 showcases the time series plot derived from data captured
by the ANE2 anemometer, positioned atop the north tower.
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3.3. Data Mining for Structural Health Assessment

The data mining module exploits the GeoSHM database using a combination of
advanced model-free methods (surrogate models and pattern recognition) and model-
based methods (finite-element models) to extract information regarding the health status of
bridges. The data mining module consists of six inter-linked sub-modules to implement
structure diagnosis:

i. Creation of training data for damage detection;
ii. Analysis of baseline performance;
iii. Level 1 diagnosis: System change detection;
iv. Level 2 diagnosis: Damage detection;
v. Level 3 diagnosis: Reliability assessment;
vi. Updating process.
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The relationship between the six sub-modules is shown Figure 10.
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Sub-modules (iii) and (iv) design five warnings for its various stages, each tailored
to detect specific structural health concerns. These warnings enable real-time feedback,
ensuring the continuity and efficiency of the monitoring process. They pinpoint potential
risks, informing critical maintenance and management decisions, and thus enhancing
bridge safety. Figures 13 and 14 demonstrate the flowcharts of the sub-modules (iii)
and (iv).
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• Warning 1.1: No abnormal behaviors detected.
• Warning 1.2: Structural-related changes detected.
• Warning 2.1: Structural damages detected.
• Warning 2.2: Changes due to maintenance activities.
• Warning 2.3: Changes are not diagnosed. Intense monitoring is required.

Sub-module (v) is level 3 diagnosis for reliability assessment, which leverages a FE
model, damage details, and maintenance records to assess the reliability index of a bridge.
Initially, the damage or maintenance specifics obtained from Sub-module (iv) are employed
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to update the FE model using a Bayesian updating framework. Subsequently, an FE
analysis is conducted on the updated model to evaluate the residual resistance capacity
of the bridge. This evaluation is then translated into a reliability index by comparing it
against the current loading conditions and stress levels on critical bridge members. The
effectiveness of this sub-module is contingent on the availability of accurate and timely
damage and maintenance details. See Figure 15.
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Sub-module (vi) is an updating process with the core function of recalling sub-modules
(i) and (ii) to update the FE model and regenerate a surrogate model, including the knowl-
edge of structural changes due to damage or maintenance activities. Subsequently, a new
set of training data for damage detection, baseline performances, and thresholds for change
detection will be created. Generally, adjusting the threshold typically entails updating both
the finite element model and the surrogate model using recent sensor data collected over a
quarter or a year, alongside structural maintenance activities information.

Handling missing parts in measured data is a common challenge in data analysis.
To address this issue, various methods can be employed. One common approach is to
use data imputation techniques to estimate the missing values based on the character-
istics of existing data. For example, linear interpolation, polynomial interpolation, or
machine learning-based methods can be used for imputation. Another approach is to
utilize statistical distributions and models to predict the missing values. For instance,
probability distributions of missing data can be estimated based on the statistical features
of the data, and these distributions can be used to generate random samples for missing
values. Additionally, multiple imputation methods can be considered to generate multiple
plausible data sets, capturing the uncertainty associated with missing data. By carefully
considering the characteristics of the data and the requirements of the analysis, selecting
appropriate methods for handling missing data can improve the accuracy and reliability of
data analysis.

When it comes to evaluating the quality of monitoring data, several considerations
need to be taken into account. Firstly, data completeness should be assessed by evaluating
the proportion of missing data in the data set and the pattern of missingness. Secondly,
the accuracy and precision of the data should be evaluated by comparing them to known
reference standards or other independent data sources. Furthermore, consistency checks
should be performed to ensure the consistency of data across different time points and
locations. Finally, the stability and reliability of the data should be considered to assess
its stability and reproducibility under different conditions. By taking into account these
aspects, a comprehensive method for evaluating the quality of monitoring data can be
established, providing a reliable foundation for data analysis.
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4. Cloud-Computing Technique for SHM

As defined by Ray [36], cloud-computing is the on-demand availability of computer
system resources, especially data storage, which is called cloud storage, and computing
power, without the direct active management of IT facilities by the users. The advantages
and disadvantages of using cloud-computing for an SHM system are listed below.

The advantages of using a cloud-computing platform are as follows:

(1) Low-cost and easy to use. Basically, a cloud-computing company provides the plat-
form to make, for example, physical resources, processing, memory, storage, and
network capabilities virtually, which can help clients build their systems easily and
quickly at a low cost.

(2) Scalable computing resource. The cloud company provides a service with the capa-
bility to be expanded and contracted as required. Take the GeoSHM system as an
example; fewer resources need to be purchased at the initial stage, and the computing
performance and storage space can be gradually increased as the amount of data
increases in operation.

(3) Easy to maintain. Because there is no physical infrastructure, there is no need for
dedicated and skilled personnel to perform regular maintenance on the equipment.
Cloud vendors have already carried out all this for the clients.

(4) Provide hacking prevention and data security service. Cloud vendors provide dif-
ferent levels of hacking prevention and data security services according to customer
requirements, which make the whole system more reliable.

The disadvantages of using cloud-computing include the following:

(1) Data security and privacy. Service providers have the opportunity to directly access
the data, which poses potential risks to data security and privacy.

(2) Migration of data and services. Transferring a large quantity of data/services from
an old provider to a new one can be very painful and cumbersome if the SHM user
wishes to switch to another provider.

The traditional way of building a structural health monitoring platform starts from
purchasing computer workstations and servers, routers, gateways, and other hardware
equipment, software tools, etc. Due to the lack of maintenance facilities, such as a UPS
backup power supply, dual network devices, a standard air-conditioning room, 24/7 pro-
fessional maintenance personnel, etc., this may cause data loss because of power failure,
network disconnection or even system failure, etc. The data loss statistics using the tradi-
tional data storage method in a server at the University of Nottingham (UNOTT) from 2017
to 2019 are listed in Table 2.

Table 2. Data loss statistics from 2017 to 2019.

Reason Time Frequency Days of Data Loss

Network disconnection 5 23
Power failure 6 9
System failure 5 20

Total 16 52

From July 2020, the architecture of the GeoSHM system has been changed and the
same data were sent to the Cloud, the physical servers of which are located in London and
provided by Alibaba Cloud Ltd. (Hangzhou, China). Figure 16 is the hybrid computing
architecture of the GeoSHM system. After a period of debugging and optimization, the
entire system was completely transferred to the Alibaba Cloud. There was no data loss
caused by the Ali Cloud server.
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Figure 16. Hybrid SHM processing platform using Ali Cloud and a local server UNOTT.

The Ali Cloud SHM server mainly includes the following three running software
modules:

(1) The data receiving and management software module. This is used for data receiving,
cleaning, and pre-processing and for storing relevant statistical data and original
observation measurements according to the designed SHM data strategy.

(2) Data processing and analysis management software modules. This is used for estimat-
ing the SHM parameters and model update driven by AI, the dynamic adjustment of
thresholds, the real-time health assessment of bridge structures, and warning services.

(3) Web-based network client system. It provides real-time data queries and statistics,
historical data comparison and analysis, real-time health status queries, and other
related SHM functions.

In addition to this, the Ali Cloud provides a database and file storage service. Ac-
cording to the data storage strategy, all of the sensor raw data, cleaned data, intermediate
results, the final assessment, and other management data are stored in the form of files or
databases.

Therefore, addressing the current shortcomings in cloud-computing related to data
security and privacy, as well as data and service migration, the following proposed solutions
are presented. To enhance data privacy and security, it is paramount to reinforce data
encryption measures, ensuring security during data transmission and storage processes.
Strict access control and identity verification mechanisms must be implemented to restrict
access to sensitive data. Additionally, selecting a reputable cloud service provider and,
if necessary, executing a distinct data privacy and security agreement are crucial steps to
safeguarding data. To alleviate the complexities and costs associated with migration, it
is vital to develop a comprehensive data migration plan at the outset of cloud platform
design. Utilizing standardized data formats and interfaces can streamline the migration
process. Moreover, opting for service providers that support open interfaces and leveraging
third-party migration tools and services can simplify migration, ensuring the continuity
and stability of the system.

5. Digital Twin (DT) and Artificial Intelligence (AI) for Smart Monitoring of Bridges

In the SHM of bridges, a digital twin intends to build a virtual model that uses the
real-world heterogenous data sets gathered from an operational bridge as its input for
enhancing asset management process. Once precisely constructed, the DT can be used
to simulate and predict the possible impacts of certain environmental and loading effects
using monitoring data sets as the DT inputs. Linking the DT and artificial intelligence,
especially using deep learning and transfer learning, is essential and a current development
trend in implementing smarter, safer, and higher-quality infrastructure inspection regimes
(Figure 17).
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The method for real-time bridge condition assessment utilizing Digital Twin tech-
nology comprises the establishment of a Digital Twin model, the deployment of sensor
networks, data fusion, real-time simulation and analysis, and fault diagnosis and predictive
maintenance. Firstly, the Digital Twin model accurately reflects the geometric structure,
material properties, and environmental influences of the bridge. Subsequently, the key
parameters of the bridge, such as the vibration, strain, and temperature, are monitored in
real-time through sensor networks. The collected sensor data are then fused with other
data sources, such as meteorological and traffic data, to obtain comprehensive informa-
tion on the bridge’s operational status. Next, the collected data are subjected to real-time
simulation and analysis using the Digital Twin model to evaluate the current condition
of the bridge and predict potential faults. Finally, maintenance strategies are formulated
based on the analysis results to ensure the safe operation of the bridge. Throughout this
process, measures are recommended to ensure model accuracy, deploy advanced sensor
technologies, and develop efficient data processing algorithms to enhance the efficiency
and accuracy of bridge condition assessments.

It is extremely useful while seeking timely, robust, accurate, and cost-effective solutions
to address the many overdue bridge inspections around the world. This new way of
inspecting includes the integration of smart sensors or other field data acquisition, secured
data transmission via cabled and 5G/6G or even LEO satellite broadband comms, building
high-definition (HD) 3D or 4D models of the assets with DT techniques, and using both
AI and analytic models such as FEM to process, analyze, and visualize huge monitoring
data. Pairing DT with AI that uses the data from a smart sensory system on the structures
as its inputs, and the high-speed data communications, provides great opportunities for
conducting instant interactions among the physical-world features and the cyber-world
models to maximize monitoring effects [37].

Artificial Neural Networks (ANNs) have been successfully applied in many fields
including pattern recognition, connected and autonomous vehicles, civil engineering,
public security, etc. [38]. In the area of SHM, ANNs are one of the most common methods for
studying the relationship between the bridge responses and loading factors. Bayes is used
to determine the conditional probability, which is the likelihood of an outcome occurring,
based on a previous outcome having occurred in similar circumstances. Compared with
other AI algorithms, Bayes-based Artificial Neural Networks (BANNs) have the following
characteristics:
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• A single-layer feed-forward neural network;
• A quicker learning process;
• Better generalization;
• The quantification of the uncertainty of predictions.

The last character is extremely important, since sensors on the structures bear errors
or outliers which are detrimental to the success of structural condition assessments. In the
GeoSHM data analytics toolbox, a BANN is employed to generate a non-linear regression
model to estimate time-dependent lateral and heaving responses with respect to variations
in wind, temperature, and traffic. The inputs and outputs of the regression model are
10 min average statistics and the use of the BANN for monitoring data analysis is described
in Figure 18.
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The formula of the Bayesian inference is as follows:

p(θ|D) =
p(D|θ) · p(θ)

p(D)
(3)

where

p(θ) is the prior probability of a parameter θ before having seen the data.
p(D|θ) is called the likelihood and is the probability of the data D given θ.
p(θ|D) is the posterior probability of θ given the data D.

Instead of considering a single answer to a question, Bayesian methods allow us
to consider an entire distribution of answers which can solve issues like regularization
(overfitting or not), model selection/comparison, and cross-validation data set separation.

Empowered by the BANN, a new rolling assessment and updating approach has been
developed for the GeoSHM project to detect structural changes in the Forth Road Bridge,
as shown in Figure 19. The first row in this figure is a time series comparison between the
measured mean lateral movements and those predicted using the BANN. The second row
includes the difference in the two time series in the comparison (called residual), the upper
and lower thresholds determined using at least one year’s monitoring data (loading and
response), and the daily mean residual, which is used to assess the structural changes. It is
apparent that, after 13 February 2017, the daily means are either close to or moved out of
the set thresholds. A further investigation reveals that, on this date, the maintenance team
had completed the truss end link repair at the northeast main span, which changed the
dynamic characteristics of the bridge (https://www.theforthbridges.org/news-and-blogs-
from-the-forth-bridges/truss-end-links-repair-one-year-on/, accessed on 11 May 2024).

https://www.theforthbridges.org/news-and-blogs-from-the-forth-bridges/truss-end-links-repair-one-year-on/
https://www.theforthbridges.org/news-and-blogs-from-the-forth-bridges/truss-end-links-repair-one-year-on/
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6. Conclusions

In this paper, the authors discussed four aspects in establishing structural health
monitoring systems for long-span bridges. There is a wide range of smart sensors that
could be used to monitor loading, response, and environmental factors; however, on the
journey to establish digital twins to support timely and informed SHM decision-making,
both the sensors’ quality and density need to be improved. Wireless communication
might be a good option when other means of data transmission fail to work, and authors
have demonstrated how long-range Wi-Fi could bridge this gap. Large and high-quality
monitoring data are the basic requirements for an SHM system and to manage these data;
a data strategy is essential for building a successful and long-lasting SHM. Using the
GeoSHM project as an example, the authors presented in detail what should be covered in
data strategy development, especially regarding how to detect the structural status change
and damage. This paper also analyzed the pros and cons of cloud-computing techniques
for an SHM system. Based on the authors’ experience, cloud-computing represents a
significant advancement in SHM system architecture design. Finally, an introduction of
the integration of DT and AI for smart bridge monitoring is followed by a discussion of
the successful application of the BANN model in detecting structural changes in the Forth
Road Bridge and its associated benefits. In summary, integrating a smart sensory system,
IoT, a data strategy, cloud-computing, DT, and AI will greatly benefit the monitoring and
inspection work of long-span bridges.
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