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Abstract: The cyclam derivative (NCCH2CH2)2(4-CF3PhCH2)2Cyclam was prepared by the reaction
of H2(4-CF3PhCH2)2Cyclam with acrylonitrile in methanol. The compound was fully character-
ized by elemental analysis, mass spectrometry as well as IR and NMR spectroscopy. Crystals of
(NCCH2CH2)2(4-CF3PhCH2)2Cyclam suitable for single-crystal X-ray diffraction were obtained by
the slow evaporation of a chloroform solution of the compound. The establishment of non-classical
hydrogen bonds and unusual nitrile–nitrile and π(CN). . .π interactions determined the solid-state
supramolecular architecture of (NCCH2CH2)2(4-CF3PhCH2)2Cyclam.

Keywords: cyclam; C-H. . .N; nitrile–nitrile; π(CN). . .π; single-crystal X-ray diffraction

1. Introduction

Cyclams have received considerable attention over the last few years due to their
chemical and biological properties. The high kinetic and thermodynamic stability ex-
hibited by metal complexes supported by cyclam derivatives led to their application as
catalysts [1–6], radiopharmaceuticals [7–13] and metallodrugs [14–20]. The modification
of the macrocyclic backbone by the attachment of substituents to nitrogen atoms is
essential for the optimization of their electronic and stereochemical properties. Despite
a large number of tetrasubstituted cyclams of formula R4Cyclam being described in
the literature, derivatives of the type trans,trans-R2R’2Cyclam are much less commonly
reported [11,12,20–29].

Aiming to contribute to the continuous development of cyclam-based compounds, we
present herein the synthesis and structural characterization of a new tetrasubstituted cyclam
derivative of formula (NCCH2CH2)2(4-CF3PhCH2)2Cyclam. By exploring the undiscovered
functionalities of this type of compounds, it might be possible to unlock hidden potential
applications in fields ranging from medicine to materials science.

2. Results and Discussion

Refluxing a methanolic solution of H2(4-CF3PhCH2)2Cyclam, 1, with excess of acryloni-
trile afforded (NCCH2CH2)2(4-CF3PhCH2)2Cyclam, 2, in a moderated yield, as shown in
Scheme 1. .

The 1H NMR spectrum of 2 (see Figure S1) shows five multiples for the methylene
protons of the cyclam ring along with a set of resonances corresponding to the protons
of the 4-CF3PhCH2 and NCCH2CH2 pendant arms of the macrocycle. The 19F NMR spec-
trum (see Figure S2) shows one singlet at −62.3 ppm attributed to the CF3 groups of the
4-CF3PhCH2 pendant arms of the cyclam ring. The 13C{1H} NMR spectrum (see Figure S3) is
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in accordance with the pattern observed in the 1H and 19F NMR spectra and, thus, confirms
the C2v symmetry of 2 in solution.
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methylene groups. The band at 2249 cm−1 is assigned to the νC≡N of the nitrile group of the 
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of the cyclam ring. The νC-F stretching vibrational modes of the CF3 groups are observed 
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at 830 cm−1 is characteristic of 1,4-disubstituted aromatic rings. 

Crystals of 2 suitable for single-crystal X-ray diffraction were obtained from the slow 
evaporation of a chloroform solution. Crystal data for 2 (M = 622.70 g/mol) were obtained 
and used in all calculations: monoclinic, space group C2/c (no. 15), a = 25.328(2) Å, b = 
5.7081(5) Å, c = 24.491(2) Å, β = 118.384(4)°, V = 3115.1(5) Å3, Z = 4, T = 150(2) K, µ(MoKα) 
= 0.105 mm−1, Dcalc = 1.328 g/cm3, 10,078 reflections measured (1.905° ≤ Θ ≤ 27.180°), 3475 
unique (Rint = 0.0579, Rsigma = 0.0820). The final R1 was 0.0642 (I > 2σ(I)) and wR2 was 0.1729 
(all data). The ORTEP diagram of the solid-state molecular structure of 2 is shown in Fig-
ure 1. The overall molecular shape of the macrocycle is remarkably flat and disk-like with 
the four nitrogen atoms coplanar, as observed in other tetrasubstituted cyclams [30]. The 
N(1)…N(1#) and N(2)…N(2#) transannular distances are 5.59 and 4.95 Å, respectively, 
which correspond to a cavity size smaller than 1.95 Å calculated from the sum [1.5 + 1.5 = 
3.0 Å] of the van der Waals radii of two nitrogen atoms [31]. 
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The infrared spectrum of compound 2 (see Figure S4) shows bands between 2945 and
2797 cm−1 assigned to the νC-H asymmetric/symmetric stretching vibrational modes of
the methylene groups. The band at 2249 cm−1 is assigned to the νC≡N of the nitrile group
of the CH2CH2CN pendant arms of the macrocycle. The νC-C stretching (in-ring) band
observed at 1615 cm−1 is assigned to the aromatic rings. The strong absorption bands
between 1319 and 1156 cm−1 are due to the combination of the νC-C and νC-N stretching
vibrational modes of the cyclam ring. The νC-F stretching vibrational modes of the CF3
groups are observed as strong absorption bands ranging from 1115 to 1063 cm−1. The
absorption band observed at 830 cm−1 is characteristic of 1,4-disubstituted aromatic rings.

Crystals of 2 suitable for single-crystal X-ray diffraction were obtained from the slow
evaporation of a chloroform solution. Crystal data for 2 (M = 622.70 g/mol) were obtained and
used in all calculations: monoclinic, space group C2/c (no. 15), a = 25.328(2) Å, b = 5.7081(5) Å,
c = 24.491(2) Å, β = 118.384(4)◦, V = 3115.1(5) Å3, Z = 4, T = 150(2) K, µ(MoKα) = 0.105 mm−1,
Dcalc = 1.328 g/cm3, 10,078 reflections measured (1.905◦ ≤ Θ ≤ 27.180◦), 3475 unique
(Rint = 0.0579, Rsigma = 0.0820). The final R1 was 0.0642 (I > 2σ(I)) and wR2 was 0.1729
(all data). The ORTEP diagram of the solid-state molecular structure of 2 is shown in Figure 1.
The overall molecular shape of the macrocycle is remarkably flat and disk-like with the four
nitrogen atoms coplanar, as observed in other tetrasubstituted cyclams [30]. The N(1). . .N(1#)
and N(2). . .N(2#) transannular distances are 5.59 and 4.95 Å, respectively, which correspond
to a cavity size smaller than 1.95 Å calculated from the sum [1.5 + 1.5 = 3.0 Å] of the van der
Waals radii of two nitrogen atoms [31].
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Figure 1. ORTEP diagram of (NCCH2CH2)2(4-CF3PhCH2)2Cyclam, 2, showing thermal ellipsoids at
40% probability level. Hydrogen atoms were omitted for clarity. Half-molecule is generated by the
symmetry operation −x + 2, −y, −z + 1.

The solid-state molecular structure of 2 reveals the formation of non-classical C-H. . .N
hydrogen bonds between the C(1)-H(1A), C(11)-H(11) and C(15)-H(15A) moieties and
the acceptor nitrogen atom N(3) of neighboring molecules with distances of 2.520, 2.731
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and 2.645 Å, respectively (see Table S1 for details). Unconventional antiparallel nitrile–
nitrile interactions are observed with centroid-to-centroid distances of 3.563 Å between
the π-systems of the nitrile fragments of two neighboring molecules. The corresponding
C(15)-C(16)≡N(3) angle of 179.32◦ attests its linearity. Unusual π-stacking interactions
are also observed between the π-electrons of the nitrile group and the aromatic ring of a
neighboring molecule having centroid-to-centroid distances of 3.790 Å. A detailed view of
the supramolecular interactions in compound 2 is depicted in Figure 2.
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Figure 2. Detailed view of the C-H. . .N (blue dashed lines), nitrile–nitrile (red dashed lines) and
π(CN). . .π (green dashed lines) interactions in compound 2.

Similar C-H. . .N interactions can be observed in other cyclam derivatives containing
CH2CH2CN pendant arms (NUPZII [32], ICALON [33] and ICALON01 [34]). Never-
theless, antiparallel nitrile–nitrile interactions are only observed in 3,3’-(5,5,7,12,12,14-
hexamethyl-1,4,8,11-tetraazacyclotetradecane-1,8-diyl)dipropanenitrile (NUPZII) but with
longer centroid-to-centroid distances (3.653 Å) [32].

The above-mentioned interactions are responsible for the tridimensional arrangement
of 2 at a supramolecular level that reveals tubular chains growing along the b direction (see
Figure 3).

Molbank 2024, 2024, x FOR PEER REVIEW 4 of 7 
 

 
Figure 3. View of the supramolecular assembly of compound 2 along the b axis. 

3. Materials and Methods 
3.1. General Considerations 

Compound 1 was prepared according to a previously published procedure [6]. All 
other reagents and solvents were commercial grade and used without purification. NMR 
spectra were recorded in a Bruker AVANCE II 300 MHz spectrometer, at 296 K, referenced 
internally to residual proton-solvent (1H) or solvent (13C) resonances, and reported relative 
to tetramethylsilane (0 ppm). Two-dimensional NMR experiments such as 1H-13C HSQC 
and 1H-1H COSY were carried out to make all the assignments. The infrared spectrum was 
acquired using a Bruker ALPHA II ATR spectrometer with an individual diamond in the 
range of 3400–400 cm−1 at a resolution of 4 cm−1. Elemental analysis was performed at the 
SSADS-CACTI UVIGO Laboratory, Spain, using a FISONS EA-1108 automatic analyzer 
instrument. The mass spectrum was performed at the Structural Analysis Lab of the Fac-
ulty of Pharmacy of the University of Lisbon, Portugal, using a AcquityTM triple-quadru-
pole mass spectrometer (Waters®, Wexford, Ireland) operating with an electrospray ioni-
zation (ESI) source at 120 °C and applying a capillary voltage of 3.0 kV and a sampling-
cone voltage of 60 V. Acetonitrile was used as the solvent and nitrogen was used as both 
the drying and nebulizing gas. 

3.2. Synthesis and Characterization 
(NCCH2CH2)2(4-CF3PhCH2)2Cyclam, 2: Compound 1 (0.47 g, 0.91 mmol) was dissolved 

in methanol (15 mL) and acrylonitrile was added (0.30 mL, 4.58 mmol). The reaction mix-
ture was refluxed overnight. The volume of the solution was reduced by the evaporation 
of the solvent in a rotavapor, and the concentrated solution was placed in the freezer. The 
product precipitated out of solution as a white solid that was isolated by filtration, washed 
with diethyl ether, and dried in vacuum. Yield: 58% (0.33 g, 0.53 mmol). 1H NMR (CDCl3, 

300.1 MHz, 296 K): δ (ppm) 7.58 (d, 4H, 3JH-H = 8.1 Hz, Ph), 7.47 (d, 4H, 3JH-H = 7.8 Hz, Ph), 
3.58 (s, 4H, CH2Ph), 2.64–2.56 (overlapping, 16H total, 4H, [C3]CH2N, 8H, [C2]CH2N and 
4H, α-CH2), 2.52–2.47 (m, 4H, [C3]CH2N), 2.35 (t, 3JH-H = 6.7 Hz, 4H, β-CH2), 1.74–1.68 (m, 
4H, CH2CH2CH2). 13C{1H} NMR (CDCl3, 75.5 MHz, 296 K): δ (ppm) 144.2 (i-Ph), 129.4 (q, 
2JC-F = 32.5 Hz, p-Ph), 129.2 (o-Ph), 125.3 (q, 3JC-F = 3.8 Hz, m-Ph), 124.4 (q, 1JC-F = 271.8 Hz, 
CF3), 119.2 (CN), 59.2 (CH2Ph), 51.5 (CH2), 51.4 (CH2), 51.3 (CH2), 51.1 (CH2), 50.0 (CH2), 
24.5 (CH2CH2CH2), 16.4 (β-CH2). 19F{1H} NMR (CDCl3, 282.2 MHz, 296 K): δ (ppm) -62.3 

Figure 3. View of the supramolecular assembly of compound 2 along the b axis.



Molbank 2024, 2024, M1807 4 of 6

3. Materials and Methods
3.1. General Considerations

Compound 1 was prepared according to a previously published procedure [6]. All
other reagents and solvents were commercial grade and used without purification. NMR
spectra were recorded in a Bruker AVANCE II 300 MHz spectrometer, at 296 K, referenced
internally to residual proton-solvent (1H) or solvent (13C) resonances, and reported relative
to tetramethylsilane (0 ppm). Two-dimensional NMR experiments such as 1H-13C HSQC
and 1H-1H COSY were carried out to make all the assignments. The infrared spectrum was
acquired using a Bruker ALPHA II ATR spectrometer with an individual diamond in the
range of 3400–400 cm−1 at a resolution of 4 cm−1. Elemental analysis was performed at the
SSADS-CACTI UVIGO Laboratory, Spain, using a FISONS EA-1108 automatic analyzer
instrument. The mass spectrum was performed at the Structural Analysis Lab of the Faculty
of Pharmacy of the University of Lisbon, Portugal, using a AcquityTM triple-quadrupole
mass spectrometer (Waters®, Wexford, Ireland) operating with an electrospray ionization
(ESI) source at 120 ◦C and applying a capillary voltage of 3.0 kV and a sampling-cone
voltage of 60 V. Acetonitrile was used as the solvent and nitrogen was used as both the
drying and nebulizing gas.

3.2. Synthesis and Characterization

(NCCH2CH2)2(4-CF3PhCH2)2Cyclam, 2: Compound 1 (0.47 g, 0.91 mmol) was dissolved
in methanol (15 mL) and acrylonitrile was added (0.30 mL, 4.58 mmol). The reaction mixture
was refluxed overnight. The volume of the solution was reduced by the evaporation of
the solvent in a rotavapor, and the concentrated solution was placed in the freezer. The
product precipitated out of solution as a white solid that was isolated by filtration, washed
with diethyl ether, and dried in vacuum. Yield: 58% (0.33 g, 0.53 mmol). 1H NMR (CDCl3,
300.1 MHz, 296 K): δ (ppm) 7.58 (d, 4H, 3JH-H = 8.1 Hz, Ph), 7.47 (d, 4H, 3JH-H = 7.8 Hz, Ph),
3.58 (s, 4H, CH2Ph), 2.64–2.56 (overlapping, 16H total, 4H, [C3]CH2N, 8H, [C2]CH2N and
4H, α-CH2), 2.52–2.47 (m, 4H, [C3]CH2N), 2.35 (t, 3JH-H = 6.7 Hz, 4H, β-CH2), 1.74–1.68 (m,
4H, CH2CH2CH2). 13C{1H} NMR (CDCl3, 75.5 MHz, 296 K): δ (ppm) 144.2 (i-Ph), 129.4 (q,
2JC-F = 32.5 Hz, p-Ph), 129.2 (o-Ph), 125.3 (q, 3JC-F = 3.8 Hz, m-Ph), 124.4 (q, 1JC-F = 271.8 Hz,
CF3), 119.2 (CN), 59.2 (CH2Ph), 51.5 (CH2), 51.4 (CH2), 51.3 (CH2), 51.1 (CH2), 50.0 (CH2),
24.5 (CH2CH2CH2), 16.4 (β-CH2). 19F{1H} NMR (CDCl3, 282.2 MHz, 296 K): δ (ppm) -62.3
(CF3). FT-IR (ATR, cm−1): 2945 (νC-H), 2797 (νC-H), 2249 (νC≡N), 1615 (νC=C), 1355 (νC-C,
νC-N), 1319 (νC-C, νC-N), 1279 (νC-C, νC-N), 1156 (νC-C, νC-N), 1115 (νC-F), 1102 (νC-F), 1063
(νC-F), 830 (νC=C). ESI-MS (m/z): 623 [C32H41F6N6]+, 465 [C24H36F3N6]+. Anal. calcd for
C32H40F6N6.H2O: C, 59.99; H, 6.61; N, 13.12. Found: C, 60.29; H, 7.19; N, 13.90.

3.3. General Procedure for Single Crystal X-ray Crystallography

Crystals of compound 2 suitable for single-crystal X-ray diffraction were coated and
mounted on a loop with Fomblin® oil. Data were collected using graphite-monochromated
Mo-Kα radiation (λ = 0.71073 Å) on a Bruker AXS-KAPPA APEX II diffractometer (Bruker
AXS Inc., Madison, WI, USA) equipped with an Oxford Cryosystem open-flow nitrogen
cryostat at 150(2) K. Data were corrected for Lorentzian polarization and absorption effects
using the SAINT [35] and SADABS [36] programs. SIR2004 [37] was used for structure
solution and SHELXL-2014/7 [38] was used for full-matrix least-squares refinement on
F2. These programs are included in the WinGX-Version 2023.1 program package [39]. The
hydrogen atoms were inserted in idealized positions and allowed to refine in the parent
carbon atom. Crystallographic and experimental details of data collection and crystal
structure determinations are available in Table S2. Illustrations of the molecular structures
were made with MERCURY 2022.3.0 [40].
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Supplementary Materials: Crystallographic data (Tables S1 and S2), NMR spectra (Figures S1–S3),
IR spectrum (Figure S4) and ESI-MS spectrum (Figure S5) of compound 2 are presented as supporting
information and can be downloaded online Data for 2 was deposited in the Cambridge Crystallo-
graphic Data Centre (CCDC) under the deposit number 2337050 and can be obtained free of charge
via http://www.ccdc.cam.ac.uk/conts/retrieving.html.
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