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Abstract: Ammonia (NH3) is a critical chemical for fertilizer production and a potential future en‑
ergy carrier within a sustainable hydrogen economy. The industrial Haber–Bosch process, though
effective, operates under harsh conditions due to the high thermodynamic stability of the nitrogen
molecule (N2). This motivates the search for alternative catalysts that facilitate ammonia synthesis
at milder temperatures and pressures. Theoretical and experimental studies suggest that circum‑
venting the trade‑off between N–N activation and subsequent NHx hydrogenation, governed by the
Brønsted–Evans–Polanyi (BEP) relationship, is key to achieving this goal. Recent studies indicate
metal phosphides as promising catalyst materials. In this work, a comprehensive density functional
theory (DFT) study comparing the mechanisms and potential reaction pathways for ammonia syn‑
thesis on Fe(110) and Fe2P(001) is presented. The results reveal substantial differences in the ad‑
sorption strengths of NHx intermediates, with Fe2P(001) exhibiting weaker binding compared to
Fe(110). For N–N bond cleavage, multiple competing pathways become viable on Fe2P(001), includ‑
ing routes involving the pre‑hydrogenation of adsorbed N2 (e.g., through *NNH*). Analysis of DFT‑
derived turnover rates as a function of hydrogen pressure (H2) highlights the increased importance
of these hydrogenated intermediates on Fe2P(001) compared to Fe(110) where direct N2 dissociation
dominates. These findings suggest that phosphorus incorporation modifies the ammonia synthesis
mechanism, offering alternative pathways that may circumvent the limitations of traditional tran‑
sition metal catalysts. This work provides theoretical insights for the rational design of Fe‑based
catalysts and motivates further exploration of phosphide‑based materials for sustainable ammonia
production.

Keywords: iron phosphides; ammonia synthesis; density functional theory; N2 dissociation; reaction
mechanism

1. Introduction
Ammonia (NH3) is an indispensable chemical compound with vast applications in

agriculture, supporting the production of fertilizers essential for global food security. Ad‑
ditionally, ammonia is increasingly recognized as a potential energy carrier within a future
hydrogen economy, demonstrating its value in sustainable energy systems [1]. TheHaber–
Bosch process, developed over a century ago, remains the industrial mainstay of ammo‑
nia production. It relies on iron‑based catalysts to convert atmospheric nitrogen (N2) and
hydrogen (H2) to ammonia at high temperatures and pressures [2]. Despite its success,
the Haber–Bosch process is notoriously energy‑intensive, consuming approximately 2%
of global energy production [3]. Consequently, driving ammonia synthesis under milder
conditions is a long‑standing challenge in catalysis with extensive economic and environ‑
mental implications.

The central obstacle to efficient, low‑energy ammonia synthesis lies in the inert na‑
ture of the N2 molecule. The exceptionally strong nitrogen triple bond (N≡N) necessi‑
tates harsh reaction conditions to facilitate its dissociation, a key step in ammonia for‑
mation [4–8]. Furthermore, the surface intermediates formed during the reaction (NHx,
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x = 0–3) often bind strongly to transition metal catalysts, requiring sustained high temper‑
atures and pressures to drive the reaction towards completion [9].

Extensive theoretical and experimental research has aimed to identify catalysts that
effectively activate N2 while facilitating the sequential hydrogenation steps towards NH3.
Density Functional Theory (DFT) calculations have revealed a key limitation in this pursuit:
the Brønsted–Evans–Polanyi (BEP) scaling relationship. This relationship dictates that the
nitrogen–nitrogen transition state energy is fundamentally linked to the binding energy
of NHx intermediates [10–14]. Metals which readily cleave the N–N bond also bind NHx
intermediates strongly, thus inhibiting NH3 product formation. As a result, traditional
transition metal catalysts exhibit a volcano‑shaped dependence of turnover frequency on
N* binding energy, with Fe and Ru near the top [10]. Circumventing this limitation is
essential for the design of more efficient catalysts.

To address this challenge, research has explored strategies such as combining met‑
als on opposite sides of the volcano (e.g., Co–Mo catalysts) [15]. Moreover, studies have
ventured beyond pure transition metals, investigating alternative materials with modified
electronic structures. Metal nitrides, in particular transition metal nitrides, have shown
promise for decoupling N2 activation and hydrogenation through the Mars–van Kreve‑
len mechanism, potentially mitigating the BEP scaling relationship [16,17]. Additionally,
hydrides and oxides have emerged as interesting candidates with potential benefits in am‑
monia synthesis [18,19].

Iron (Fe) and its compounds remain compelling catalysts for ammonia synthesis due
to their abundance, established industrial use, and relative activity. Pioneering work by
Somorjai et al. revealed the structure‑sensitive nature of this reaction, demonstrating the
varying activity of different iron crystal facets [20]. They found that the relative order of ac‑
tivity for ammonia formationwas Fe(111) > Fe(100) > Fe(110) at high pressures and temper‑
atures (20 atm and 638–723 K). The reaction mechanism proceeds through N2 dissociation,
which is considered as the rate‑limiting step, and is followed by sequential hydrogenation
steps to form NH, NH2, and finally NH3 [4,21]. DFT studies have played a crucial role in
furthering our understanding of the reactionmechanism, identifying preferred adsorption
sites for the intermediates involved, and calculating the associated energy barriers.

Recent studies have explored the potential of iron phosphides, particularly Fe2P,
which exhibits modified surface electronic structures compared to pure iron, for the elec‑
trosynthesis of ammonia from nitrite [22,23]. Fe2P offers a departure from pure iron with
its modified surface electronic structure. The addition of phosphorus may alter the inter‑
action between the catalyst and nitrogen‑containing intermediates, potentially influencing
the reaction mechanism and ammonia synthesis activity. This change echoes previous
research demonstrating the impact of phosphorus incorporation on transition metal cat‑
alysts’ properties. For example, nickel phosphide catalysts exhibit enhanced selectivity
towards breaking tertiary 3C–O bonds in oxygenate compounds, in contrast to pure nickel
catalysts where secondary 2C–O bond cleavage is favored [24]. Furthermore, phosphorus
incorporation improved activity and selectivity in other reactions, such as methanol steam
reforming and methane activation [25,26]. These findings suggest that phosphorus modi‑
fication could potentially fine‑tune catalytic properties for specific target reactions [27].

In this work, a comprehensive DFT study comparing the ammonia synthesis mecha‑
nisms on Fe and Fe2P catalysts is presented. These calculations aim to elucidate the key
differences in N2 activation, NHx intermediate binding, and hydrogenation pathways on
these two surfaces. Additionally, a strategy toweaken theN–Nbondbypre‑hydrogenation
prior to cleavage is explored. For example, the findings of this study demonstrate that
cleaving the N–N bond in the NNH2* intermediate is much more facile than direct N2 ac‑
tivation over Fe2P. By understanding these fundamental factors governing the catalytic
performance of iron phosphide, the goal is to advance the rational design of improved
iron‑based catalysts for sustainable, low‑temperature ammonia synthesis.
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2. Results and Discussion
2.1. Optimized Adsorbates and Their Binding Energies

The adsorption of reactants, intermediates, and products on catalytic surfaces signif‑
icantly impacts the mechanisms and feasibility of ammonia synthesis. Therefore, this sec‑
tion investigates the optimized geometries and binding energies for all relevant nitrogen‑
containing intermediates (N2, N, NH, NH2, NH3) and hydrogen on Fe and Fe2P surfaces.
The goal is to identify potential differences in how these catalysts stabilize key intermedi‑
ates, offering insights into potential variations in the reaction pathways. Figure 1 illustrates
the adsorption configurations while Table 1 shows the associated binding energies (calcu‑
lated using Equation (1) relative to gas‑phase species and a clean catalyst surface). The
BEP scaling relationship suggests that these energies directly influence the feasibility of
subsequent hydrogenation steps [10–14]. Surfaces that readily break the N–N bond tend
to bind NHx intermediates more strongly. This strong binding, however, can hinder the
final hydrogenation steps necessary to form NH3. Analyzing the thermodynamic stability
of these intermediates provides insights into the distinct steps potentially involved in the
N2 dissociation and hydrogenation on each catalyst.
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Figure 1. DFT‑optimized structures for NHx* (x = 0–3) and H* on (a–f) Fe and (g–l) Fe2P. The bind‑
ing energies (in kJ mol−1) and adsorption modes are shown beneath each image (see Section 3 for
more details).

Table 1. Binding energies ∆Eads (Equation (1); kJ mol−1) of examined intermediates and their pre‑
ferred adsorption configuration on Fe(110) and Fe2P(001).

Fe(110) Fe2P(001)

Species Adsorption Mode ∆Eads Adsorption Mode ∆Eads
kJ mol−1 kJ mol−1

N2* M1 −33 M1 −47
N* M3 −576 M3 −518
NH* M3 −465 M3 −426
NH2* M2 −263 M2 −258
NH3* M1 −52 M1 −64
H* M3 −272 M3 −256

On the Fe(110) surface, the DFT calculations reveal a clear trend in the preferred ad‑
sorption sites and binding energies for the nitrogen‑containing intermediates, where the
interaction with the surface weakens as the species becomemore saturated with hydrogen
(NH, NH2, NH3). N2 favors the atop site (M1) with a binding energy of −33 kJ mol−1
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(Figure 1a), consistent with established theoretical expectations [28,29]. Atomic nitrogen
(N*) and the NH* radical exhibit a strong preference for the three‑fold hollow site (M3),
with substantial binding energies of −576 and −465 kJ mol−1 (Figure 1b,c), respectively.
This strong interaction aligns with previous adsorption studies on Fe(110) and Fe(111), a
similarly close‑packed surface [28,30]. NH2* prefers the bridge site (M2) and NH3* binds
weakly atop a single Fe atom, indicating a favorable pathway towards desorption. Hydro‑
gen (H*) occupies the three‑fold site with a binding energy of −272 kJ mol−1, a finding
corroborated by previous theoretical work on Fe surfaces [30].

It is important to acknowledge that the RPBE functional employed in this study does
not account for attractive dispersion forces. These forces can significantly increase the
binding energy, particularly for large physisorbed species and larger adsorbates in gen‑
eral. However, vdW‑based methods that account for dispersion interactions are known to
often overestimate the binding energy of smaller chemisorbed species. Including disper‑
sion interactions here would likely shift the binding energies of chemisorbed species in a
relatively consistent manner. Therefore, the relative energy barriers between the elemen‑
tary steps investigated here would remain largely unchanged.

The Fe2P(001) catalyst surface exhibits notable differences in adsorption behavior com‑
pared to Fe(110) (Table 1). WhileN2 still weakly favors ametal atop site (M1,−47 kJmol−1),
its binding energy is slightly stronger on Fe2P (Figure 1g). More striking is the shift in bind‑
ing strength for atomic nitrogen (N*) and NH* (Figure 1h,i). The presence of phosphorus
weakens the interaction with these intermediates, with binding energies of −518 kJ mol−1
and−426 kJmol−1 on Fe2P(001) compared to the substantially stronger binding on Fe(110).
Similar to Fe(110), N* and NH* favor the three‑fold hollow site (M3) while NH2* prefers
the bridging site (M2). Ammonia (NH3*) continues to show weak binding in the atop po‑
sition (M1). However, it binds slightly more strongly (by 12 kJ mol−1) on Fe2P compared
to Fe. The adsorption of hydrogen (H*) on the three‑fold site (M3) of Fe2P(001) aligns with
observations on Fe(110), although the binding energy is slightly lower.

These findings suggest that the presence of phosphorus in Fe2P weakens the bind‑
ing strength of NHx species compared to Fe(100). The contrasting binding trends for N2
and NHx on Fe and Fe2P have potential implications for the reaction mechanisms. The
weaker NHx binding on Fe2P could facilitate their hydrogenation steps compared to Fe,
potentially leading to enhanced ammonia synthesis rates. Interestingly, this weakening
does not extend to N2 or NH3, which show slightly increased binding energies on Fe2P.
These observations can be understood by considering the electronic effects of phosphorus.
Previous DFT studies on Ni2P catalysts for selective C–O bond cleavage suggest that the
addition of phosphorus introduces Lewis acid sites [27,31]. This Lewis acidity arises from
a small charge transfer from the transition metal (Fe in our case) to phosphorus. NH3, be‑
ing a Lewis base, interacts more favorably with the Lewis acid sites on metal phosphides,
as demonstrated previously for Ni2P compared to pure Ni.

2.2. N–N Bond Activation Pathways on Fe(110)
Understanding the mechanism and energetics of N–N bond activation is crucial for

designing effective ammonia synthesis catalysts since this step is often considered rate‑
limiting. This section analyzes the calculated N–N bond dissociation barriers on Fe(110)
for both molecular N2 and its hydrogenated intermediates (N2Hx) to probe the potential
role of hydrogenation on weakening the N–N bond prior to activation. Scheme 1 summa‑
rizes the reaction network analyzed using DFT on the Fe(110) surface, including reactant
adsorption, hydrogenation steps, and N–N activation pathways, along with the calculated
effective enthalpy (∆H҂) and free energy (∆G҂) barriers (Equations (2) and (3)).

The initial N2 adsorption on Fe(110) is calculated to be exothermicwith an enthalpy of
−40 kJ mol−1. Subsequent N–N bond cleavage can proceed either directly from adsorbed
N2* (Figure 2a) or after partial hydrogenation to form the *NNH* intermediate (Figure 2b).
While N–N bond activation in *NNH* has a lower enthalpic barrier (24 kJmol−1; Scheme 1)
than direct N2 dissociation (65 kJ mol−1), it is crucial to consider the influence of entropy
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on reaction rates. Since hydrogen adsorption from the gas phase leads to a decrease in
entropy, free energy barriers are essential for comparing the feasibility of these pathways.
Incorporating entropic effects reveals that the free energy barriers for N–N bond cleavage
in both adsorbed N2* and *NNH* are calculated to be 174 kJ mol−1 (Scheme 1). However,
*NNH* formation itself has a free energy barrier of 196 kJ mol−1, 22 kJ mol−1 higher than
that of direct N2 dissociation. This suggests that, on Fe(110), direct N–N activation from
the adsorbed N2* state is thermodynamically more favorable than a pathway involving
initial hydrogenation.
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Figure 2. Reactants, transition state, and products’ structures for N–N bond cleavage in (a) *NN* and
(b) *NNH* over the Fe(110) surface. Similar images for all other reactions on Fe(110) are depicted in
Figure S1 in the Supplementary Materials.

After *NNH* is formed, it can undergo further hydrogenation to either *NNH2* or the
isomeric form, diazene (*NHNH*). Diazene formation, however, is thermodynamically
more favorable, with a free energy barrier of 258 kJ mol−1 compared to 272 kJ mol−1 for
*NNH2* formation (Scheme 1). Moreover, N–N bond activation in diazene is more facile,
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requiring a free energy barrier of 193 kJmol−1 compared to 226 kJmol−1 for *NNH2* activa‑
tion. Further hydrogenation steps from either intermediate (*NNH2* or *NHNH*) towards
hydrazine (*NH2NH2*) involve substantial free energy barriers exceeding 300 kJ mol−1.
Finally, N–N bond activation in *NHNH2 and *NH2NH2* requires free energy barriers
of 252 kJ mol−1 and 326 kJ mol−1, respectively. These results highlight a general trend:
while adding more hydrogen atoms to N2 progressively weakens the N–N bond enthalpi‑
cally (Figure 3a), the accompanying entropy costs associated with adsorbing gas‑phase
hydrogen lead to higher free energy barriers for these later reaction steps (Figure 3b).
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Previous experimental work revealed a reactivity trend for ammonia synthesis over
different Fe surfaces: Fe(111) > Fe(100) > Fe(110), with Fe(110) being the least active un‑
der high pressure and temperature conditions (20 atm; 638–723 K) [20]. Here, the Fe(110)
surface was chosen to establish a baseline, allowing the mechanistic and activation energy
changes induced by phosphorus addition in Fe2P to be clearly discerned. Furthermore,
work by Nørskov and collaborators highlighted the importance of steps and defects on
Fe(110). It was shown that N–N activation is significantlymore favorable on step sites (sim‑
ilar to those found on Fe(111)) compared to the flat surface [32]. These findings suggest that
even on Fe(110), low‑coordinated surface sites could play a crucial role in ammonia syn‑
thesis. Therefore, the modifications induced by the addition of phosphorus in Fe2P may
potentially alter the surface structure and electronic properties, offering an opportunity for
improved ammonia synthesis activity.

2.3. N–N Bond Activation Pathways on Fe2P(001)
Building upon the understanding of N–N activation on the Fe(110) surface gained

from the previous section, the corresponding mechanisms on the Fe2P(001) surface are
analyzed in this section. This analysis aims to elucidate how phosphorus influences the
energetics of N–N bond cleavage, identify potential changes in the preferred reaction path‑
ways, and ultimately provide insights into the design of more active phosphide‑based cat‑
alysts for ammonia synthesis. Scheme 2 shows the reaction pathways examined on the
Fe2P(001) surface.

The initial N2 adsorption on Fe2P(001) remains exothermic, with an enthalpy simi‑
lar to that on Fe(110) (−40 kJ mol−1). However, subsequent N–N bond cleavage path‑
ways on Fe2P(001) diverge significantly from those observed on Fe(110). The direct N–N
bond dissociation in adsorbed N2 has a higher enthalpic barrier on Fe2P(001) (∆H҂ = 139 kJ
mol−1) compared to Fe(110) (65 kJ mol−1). Activating the N–N bond in the *NNH* inter‑
mediate, however, has a significantly lower enthalpic barrier on Fe2P(001) (94 kJ mol−1).
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Importantly, when considering the entropic penalties associated with hydrogen adsorp‑
tion, both activation routes on Fe2P(001) possess similar effective free energy (∆G҂ barriers
(approximately 250 kJ mol−1). The formation of *NNH* also has a free energy barrier
of around 255 kJ mol−1 on Fe2P. Considering the expected uncertainty when comparing
DFT‑calculated energy barriers (typically around 5 kJ mol−1), this suggests that multiple
competing N–N cleavage routes, direct N–N activation in N2 and the pathway involving
*NNH* formation, might coexist on Fe2P(001).
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Scheme 2. The examined reactions network on Fe2P(110) surface. Effective enthalpy (∆H҂) and free
energy (∆G҂) barriers are shown in kJ mol−1 at 673 K, calculated relative to gas‑phase N2 and H2
using Equations (2) and (3).

For direct N2 dissociation, the initial step involves N2 adsorption in a vertical atop
configuration (Figure 4a), followed by a lateral shift to a parallel geometry. The transition
state features bothN atoms bridging two Fe atoms on the surface. Finally, N–Nbond cleav‑
age leads to adsorbedN atoms occupying separate three‑fold (M3) sites. *NNH* activation,
on the other hand, appears to proceed through a similar transition state structure on the
same active site, with both N atoms bridging Fe atoms (Figure 4b). However, the pres‑
ence of hydrogen weakens the N–N bond to a greater extent, leading to a lower enthalpic
barrier for this pathway. The reaction products, N* and NH*, also occupy three‑fold sites
after the cleavage event. Here, phosphorus atoms do not directly participate in binding
the transition states. Instead, their role lies in altering the electronic properties of the Fe
atoms and also breaking up Fe atoms ensembles. The Fe–Fe bond distance in Fe2P(001) is
larger (3.06 Å) compared to the Fe–Fe bond distances in the Fe(110) catalyst (2.48 Å). We
have also shown previously that the incorporation of the phosphorus atom in Fe2P(001)
results in a cationic shift in the surface Fe atoms to +0.09 e [27]. These modifications in the
electronic structure and surface geometry induced by phosphorus likely contribute to the
observed differences in the N–N activation pathways on Fe2P(001).

TheN–N bond cleavage in diazene (*NHNH*) has a free energy barrier comparable to
both direct N2* dissociation and *NNH* activation pathways (253 kJ mol−1), as shown in
Scheme 2. While the *NNH2* pathway (Figure 4c) has a slightly lower N–N cleavage free
energy barrier (226 kJ mol−1), its formation from *NNH* requires a significant barrier of
281 kJ mol−1. The familiar trade‑off observed on Fe(110) is also seen here: hydrogenation
can decrease enthalpic barriers for N–N cleavage, however, the entropic cost associated
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with hydrogen adsorption introduces higher overall free energy barriers. Further hydro‑
genation to *NHNH2* and hydrazine (*NH2NH2*) remains highly unfavorable due to their
significant free energy barriers (>300 kJ mol−1).
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These findings reveal that the introduction of phosphorus in Fe2P(001) leads to a
more complex landscape for N–N bond activation compared to Fe(110). Unlike the single
thermodynamically preferred pathway observed on Fe(110), Fe2P(001) exhibits multiple
competitive N–N activation routes with similar free energy barriers. Phosphorus‑induced
modifications to the surface structure and electronic properties appear to be crucial fac‑
tors in facilitating these alternative pathways. To further explore the implications of these
findings, the next section investigates the turnover rates for these N–N activation routes,
incorporating the effects of varying H2 pressure.

2.4. DFT‑Predicted N–N Bond Cleavage Turnover Rate
Having established the energetics of N–N bond activation on both Fe(110) and

Fe2P(001) surfaces, the focus now shifts to the prediction of the turnover rates for the
competing pathways. Analyzing the influence of pressure on rate is important because
ammonia synthesis typically occurs at high pressure and temperature conditions. Using
the DFT‑derived free energy barriers at 673 K in conjunction with Equation (4), it is pos‑
sible to assess how these rates depend on both N2 and H2 pressures, providing insights
into the feasibility of each pathway under practical NH3 synthesis conditions. Analysis
of Figure 3b reveals that, on Fe(110), direct N2 dissociation and *NNH* activation have
similar free energy barriers (174 kJ mol−1). Moreover, Fe2P(001) exhibits multiple compet‑
ing N–N cleavage routes with close free energy barriers (226–255 kJ mol−1). This finding
highlights the need to examine the N–N activation rate as a function of H2 pressure, as the
pathways involving pre‑hydrogenation could become more favorable at higher H2 pres‑
sures according to Equation (4).

Figure 5a illustrates theDFT‑predictedN–Nbond cleavage turnover rates for allN2Hx
intermediates on Fe(110) and Fe2P(001) at 5 atm H2 pressure, with arrows indicating how
the rates change between 1 atm and 20 atm H2. For more hydrogenated intermediates,
larger arrows emphasize their greater sensitivity to H2 pressure. On Fe(110), *NNH* ac‑
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tivation exhibits the highest rate (4.52 s−1) at 5 atm H2, followed closely by direct N2
dissociation (2.39 s−1). All other intermediates show significantly lower rates, even at
20 atm H2. However, as shown in Scheme 1, the high free energy barrier (196 kJ mol−1)
for *NNH* formation makes this pathway less likely compared to direct N2 dissociation
(174 kJ mol−1). These results are consistent with experiments [20,21], where Fe(111) ex‑
hibits a higher turnover rate (9.7 s−1) at 15 atmH2 and 5 atmN2 compared to the predicted
2.39 s−1 value here for the less reactive Fe(110) surface.

Molecules 2024, 29, x FOR PEER REVIEW 9 of 13 
 

 

similar free energy barriers (174 kJ mol−1). Moreover, Fe2P(001) exhibits multiple 
competing N–N cleavage routes with close free energy barriers (226–255 kJ mol−1). This 
finding highlights the need to examine the N–N activation rate as a function of H2 
pressure, as the pathways involving pre-hydrogenation could become more favorable at 
higher H2 pressures according to Equation (4). 

Figure 5a illustrates the DFT-predicted N–N bond cleavage turnover rates for all 
N2Hx intermediates on Fe(110) and Fe2P(001) at 5 atm H2 pressure, with arrows indicating 
how the rates change between 1 atm and 20 atm H2. For more hydrogenated intermediates, 
larger arrows emphasize their greater sensitivity to H2 pressure. On Fe(110), *NNH* 
activation exhibits the highest rate (4.52 s−1) at 5 atm H2, followed closely by direct N2 
dissociation (2.39 s−1). All other intermediates show significantly lower rates, even at 20 
atm H2. However, as shown in Scheme 1, the high free energy barrier (196 kJ mol−1) for 
*NNH* formation makes this pathway less likely compared to direct N2 dissociation (174 
kJ mol−1). These results are consistent with experiments [20,21], where Fe(111) exhibits a 
higher turnover rate (9.7 s−1) at 15 atm H2 and 5 atm N2 compared to the predicted 2.39 s−1 
value here for the less reactive Fe(110) surface. 

 
Figure 5. (a) DFT-predicted rates for N–N bond cleavage in N2Hx intermediates (5 atm H2, 5 atm N2, 
673 K). Up/down arrows represent 20 and 1 atm H2, respectively. (b) Total N–N bond activation rate 
as a function of H2 pressure (5 atm N2, 673 K). 

For Fe2P(001), Figure 5a shows that N–N bond cleavage in *NNH2* has the highest 
calculated turnover rate (1.02 × 10−3 s−1) at 5 atm H2, followed closely by *NHNH2* (5.21 × 
10−4 s−1). However, the large free energy barriers for forming *NNH2*, *NHNH*, and 
*NHNH2*, as shown in Scheme 2, likely limit their overall contribution to ammonia 
synthesis. A crucial difference from Fe(110) emerges here where N–N bond cleavage in 
*NNH* on Fe2P(001) exhibits a higher turnover rate (6.37 × 10−6 s−1) than direct N2 
dissociation (1.93 × 10−6 s−1). Furthermore, Scheme 2 reveals that the formation of *NNH* 
on Fe2P(001) has a free energy barrier comparable to direct N2 dissociation. This suggests 
that N–N bond activation via the *NNH* intermediate could be a significant pathway on 
Fe2P(001), in contrast to Fe(110), where direct N2 dissociation likely dominates. 

Figure 5b reveals a clear distinction between Fe(110) and Fe2P(001) in the total N–N 
activation rate (sum of turnover rates for N–N bond activation in all N2Hx intermediates) 
dependence on H2 pressure. On Fe(110), the total N–N activation rate exhibits a H2 
pressure dependence of approximately [H2]0.295 (Equation (4)), indicating a greater 
contribution from intermediates with fewer hydrogen atoms. In contrast, Fe2P(001) 
displays a much stronger dependence ([H2]1.115), suggesting that more hydrogenated N2Hx 
species are likely crucial for the ammonia synthesis rate. This fundamental difference 

Figure 5. (a) DFT‑predicted rates for N–N bond cleavage in N2Hx intermediates (5 atm H2, 5 atm
N2, 673 K). Up/down arrows represent 20 and 1 atmH2, respectively. (b) Total N–N bond activation
rate as a function of H2 pressure (5 atm N2, 673 K).

For Fe2P(001), Figure 5a shows that N–N bond cleavage in *NNH2* has the high‑
est calculated turnover rate (1.02 × 10−3 s−1) at 5 atm H2, followed closely by *NHNH2*
(5.21 × 10−4 s−1). However, the large free energy barriers for forming *NNH2*, *NHNH*,
and *NHNH2*, as shown in Scheme 2, likely limit their overall contribution to ammonia
synthesis. A crucial difference from Fe(110) emerges here where N–N bond cleavage in
*NNH* on Fe2P(001) exhibits a higher turnover rate (6.37 × 10−6 s−1) than direct N2 dis‑
sociation (1.93 × 10−6 s−1). Furthermore, Scheme 2 reveals that the formation of *NNH*
on Fe2P(001) has a free energy barrier comparable to direct N2 dissociation. This suggests
that N–N bond activation via the *NNH* intermediate could be a significant pathway on
Fe2P(001), in contrast to Fe(110), where direct N2 dissociation likely dominates.

Figure 5b reveals a clear distinction between Fe(110) and Fe2P(001) in the total N–
N activation rate (sum of turnover rates for N–N bond activation in all N2Hx intermedi‑
ates) dependence on H2 pressure. On Fe(110), the total N–N activation rate exhibits a H2
pressure dependence of approximately [H2]0.295 (Equation (4)), indicating a greater contri‑
bution from intermediates with fewer hydrogen atoms. In contrast, Fe2P(001) displays a
much stronger dependence ([H2]1.115), suggesting that more hydrogenated N2Hx species
are likely crucial for the ammonia synthesis rate. This fundamental difference highlights
the potential of phosphide‑based catalysts to unlock alternative ammonia synthesis mech‑
anisms. This shift towards activation in more hydrogenated species, while maintaining
favorable NHx binding energies, could be an important design consideration for develop‑
ing improved ammonia synthesis catalysts.

3. Computational Methods
All periodic DFT calculations were carried out using the Vienna ab initio simula‑

tion package (VASP) [33–36], in conjunction with the computational catalysis interface
(CCI) [37]. The projector augmented‑wave (PAW) method was employed with a plane‑
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wave energy cutoff of 396 eV [38,39]. Exchange‑correlation energies were treated using
the revised Perdew−Burke−Ernzerhof (RPBE) functional [40–42]. Gaseous species were
modeled using 15 × 15 × 15 Å unit cells. The initial bulk structures for Fe (space group
Im3m) and Fe2P (space group P62m) were obtained from crystallographic data [43,44]. DFT
optimization was then performed to determine lattice parameters, resulting in values of
(a = b = c = 2.83 Å) for Fe and (a = b = 5.81 Å, c = 3.42 Å) for Fe2P. Spin‑polarization was
included in all calculations due to the ferromagnetic nature of Fe and Fe2P.

The closed‑packed Fe(110) surface was modeled using a 3 × 3 periodic lattice with
four atomic layers and 10 Å of vacuum orthogonal to the surface (Figure 6a,b). For the
Fe2P catalyst, the Fe‑rich (001) surface (Figure 6c), which is identical to the Ni2P(001) sur‑
face previously shown to be active for selective C–O bond activation [24], was constructed
using two repeating units (four atomic layers) and a 10 Å vacuum layer (Figure 6d). In
both models, the bottom two layers were fixed during optimization and a k‑point mesh of
3 × 3 × 1 was used for all surface calculations [45,46].
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Figure 6. (a,b) Fe(110) and (c,d) Fe2P(001) slabs as seen from top and side views. Labels denote the
binding sites (M1: metal atop; M2: metal–metal bridge; M3: metal three‑fold hollow; MP: metal–
phosphorus bridge; P1: phosphorus atop).

Transition state structures were located using a combination of the nudged elastic
band (NEB) method and the dimer method [47–49]. The convergence criteria for electronic
energies and forces were set to 10−6 eV and 0.05 eVÅ−1, respectively. Frequency calcula‑
tionswere performed, with all catalysts’ atoms constrained, to estimate enthalpies and free
energies at 673 K. The binding energy (∆Eads) is defined as:

∆Eads = Especies/sur f − Especies(g) − Esur f (1)

and effective enthalpy (∆H҂) and free energy (∆G҂) barriers are calculated using:

∆H҂ = H҂− 0.5yHH2(g) − HN2(g) − Hsur f (2)

∆G҂ = G҂− 0.5yGH2(g) − GN2(g) − Gsur f (3)
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at 673 K where y is the number of hydrogen atoms added to N2 prior to N–N activation.
Since ammonia synthesis typically occurs at high pressure conditions, it is essential to an‑
alyze the influence of pressure on the turnover rate using the DFT‑derived free energy
barriers. The N–N bond cleavage turnover rate can be predicted by:

r
[L]

=
kBT

h
exp

(
−G҂
RT

)
(N2)(H2)

0.5y (4)

assuming that the N2 hydrogenation steps are quasi‑equilibrated and N–N activation is
the rate‑limiting step. More details of the computational methods can be found in Section
S1 in the Supplementary Materials.

4. Conclusions
In this study, themechanisms of ammonia synthesis on Fe(110) and Fe2P(001) surfaces

have been systematically examined. The results illustrate that the incorporation of phos‑
phorus significantly alters catalyst behavior. The weakening of NHx intermediate binding
on Fe2P(001) suggests the potential for more facile hydrogenation steps compared to pure
Fe(110). We also find that multiple competing N–N activation pathways become viable
on Fe2P(001), including the routes involving pre‑hydrogenated intermediates like *NNH*.
Moreover, analysis of the H2 pressure dependence of turnover rates reveals that contribu‑
tions frommore hydrogenated intermediates could become dominant on Fe2P(001), unlike
on Fe(110), where direct N2 dissociation remains the primary pathway.

This shift away from the single pathway limitation of traditional transition metal cat‑
alysts offers a promising avenue for catalyst design. Phosphorus‑modified catalysts could
potentially circumvent the limitations imposed by the traditional BEP relationship, allow‑
ing the design of highly active catalysts operating undermilder conditions. The theoretical
insights provided in this work lay a foundation for the rational design of Fe‑based phos‑
phide catalysts tailored for improved ammonia synthesis performance. Further studies,
including investigations of the influence of phosphorus content and the potential role of
step sites on Fe2P, will be crucial for realizing the full potential of phosphide‑based mate‑
rials for sustainable ammonia production.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29081894/s1, Section S1: Computational Methods Details;
Figure S1: Reactions images on Fe(110) surface; Figure S2: Reactions images on Fe2P(001) surface.
References [43,44,50] are cited in the Supplementary materials.
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