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Abstract: Quinazolines are an important class of heterocyclic compounds that have proven their
significance, especially in the field of organic synthesis and medicinal chemistry because of their wide
range of biological and pharmacological properties. Thus, numerous synthetic methods have been
developed for the synthesis of quinazolines and their derivatives. This review article briefly outlines
the new synthetic methods for compounds containing the quinazoline scaffold employing transition
metal-catalyzed reactions.

Keywords: quinazoline heterocycles; transition metal-catalyzed synthesis; C-H activation; cascade
reactions; intramolecular dehydrative/dehydrogenative cyclizations

1. Introduction

The development of novel and improved synthetic methods with or without the
assistance of transition-metal catalysts for the synthesis and functionalization of a nitrogen-
containing heterocyclic framework has always been a hot topic of research in synthetic
organic chemistry due to their potential applications in the area of medicinal chemistry and
material sciences [1–6].

Nitrogen heterocycles may have significant potential in medicinal chemistry and drug
discovery due to their ability to modify solubility, lipophilicity, and polarity, thereby changing
the physicochemical properties and enhancing potency, selectivity, and metabolic stability [7,8].
Among all nitrogen heterocycles, quinazolines have attracted much attention from synthetic
and medicinal chemists due to their ubiquity among various natural products, pharmaceu-
ticals, functional organic materials, and agrochemicals [9–14]. As the main building block,
the quinazoline core is found in several natural products isolated from plants, animals, and
microorganisms [15,16]. The first natural quinazoline, vasicine, was isolated as a pure al-
kaloid by Hooper et al. in 1888. Later on, many natural products bearing the quinazoline
skeleton were isolated from natural sources (Figure 1) [17–19]. More importantly, quinazoline
derivatives exhibit a wide range of pharmacological activities, such as anti-malarial [20],
anti-microbial [21], anti-inflammatory [22,23], anti-convulsant [24,25], anti-diabetic [26], anti-
hypertensive [27], anti-cancer [28–30], anti-tumorous [31], anti-cholinesterase, dihydrofolate
reductase inhibitory [32,33] and kinase inhibitory activities [34,35]. Additionally, quinazoline-
based compounds serve as ligands for benzodiazepine and GABA receptors in the central
nervous system, cellular phosphorylation inhibitors, and as DNA binding agents [36,37].
Quinazolines are the core structures in various clinical drugs, such as gefitinib, erlotinib,
canertinib, vandetanib, afatinib, dacomitinib, prazosin, KF31327 and doxazosin, which are
used for the treatment of various diseases (Figure 1) [38].
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strated by these catalytic reactions is the ability to employ simple substrates. This review 
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Due to the great importance of quinazoline derivatives across many fields, several 

synthetic methods have been developed to access quinazoline scaffolds. In 1903, Gabriel 
described the synthesis of quinazolines (II) via the oxidation of 3,4-dihydroquinazoline 
(I) (Scheme 1) [43].  

Figure 1. Molecular structures of selected natural products and clinical drugs containing quinazoline motif.

Owing to the importance of quinazolines, efficient routes for the synthesis of these
compounds have received significant attention from synthetic communities over recent
years [39,40]. Over the last decade, tremendous efforts have been made in utilizing various
transition metal catalysts for the synthesis of simple and functionalized quinazolines.
Transition metal-assisted methods have advantages over traditional methods in terms of
reducing waste generation and the avoidance of pre-functionalized substrates, making
the process more efficient and straightforward [41,42]. Another crucial improvement
demonstrated by these catalytic reactions is the ability to employ simple substrates. This
review describes a complete overview of the synthetic applications of transition metal-
catalyzed reactions toward the preparation of substituted and polycyclic fused quinazolines
from 2010 to 2022.

2. Classical Method

Due to the great importance of quinazoline derivatives across many fields, several synthetic
methods have been developed to access quinazoline scaffolds. In 1903, Gabriel described the
synthesis of quinazolines (II) via the oxidation of 3,4-dihydroquinazoline (I) (Scheme 1) [43].
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In 1905, Riedel described the synthesis of quinazolines (II) from o-nitrobenzaldehyde 
(III) and formamide (IV) in the presence of zinc and dilute acetic acid, leading to the pro-
duction of corresponding quinazolines (II) with good yields (Scheme 2a). Later, Riedel 
modified the reaction conditions for an improvement in the reaction yield. This is one of 
the best methods for quinazoline synthesis, and has also been applied for the preparation 
of 6,7-dimethoxyquinazolines (II) by using 6-nitro vertraldehyde (III) and amide (IV) un-
der similar reaction conditions (Scheme 2b) [44,45]. 
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Riedel method for quinazoline synthesis from using 6-nitro vertraldehyde and amides. 

Schofield et al. described the synthesis of 2,4-dimethyl quinazolines (II) from substi-
tuted o-amino acetophenone (VI) and ammonia (VII) in ethanol at 100 °C (Scheme 3a) 
[46]. Subsequently, the same group synthesized 2-hydroxy-4-phenylquinazolines (IX) by 
means of the reaction of o-amino benzophenone (VI) with urea (VIII). The reaction of IX 
with POCl3 followed by reductive dehalogenation provided dihydroquinazoline (X), 
which on treatment with K3[Fe[CN]6 produced 4-phenyl quinazoline (II) (Scheme 3b). 

 
Scheme 3. (a) Schofield method for the synthesis of 2,4-dimethyl quinazolines; (b) Schofield method 
for the synthesis of 4-phenyl quinazoline from o-amino benzophenone. 

The above-mentioned synthetic methods developed for quinazolines based on clas-
sical transformation suffer from some drawbacks, such as harsh reaction conditions, a 
stepwise procedure and a limited substrate scope. In the last decade, transition metal-

Scheme 1. Gabriel method for quinazoline synthesis.

In 1905, Riedel described the synthesis of quinazolines (II) from o-nitrobenzaldehyde
(III) and formamide (IV) in the presence of zinc and dilute acetic acid, leading to the
production of corresponding quinazolines (II) with good yields (Scheme 2a). Later, Riedel
modified the reaction conditions for an improvement in the reaction yield. This is one of
the best methods for quinazoline synthesis, and has also been applied for the preparation of
6,7-dimethoxyquinazolines (II) by using 6-nitro vertraldehyde (III) and amide (IV) under
similar reaction conditions (Scheme 2b) [44,45].
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Scheme 2. (a) Riedel method for quinazoline synthesis from o-nitrobenzaldehyde and amides;
(b) Riedel method for quinazoline synthesis from using 6-nitro vertraldehyde and amides.

Schofield et al. described the synthesis of 2,4-dimethyl quinazolines (II) from substi-
tuted o-amino acetophenone (VI) and ammonia (VII) in ethanol at 100 ◦C (Scheme 3a) [46].
Subsequently, the same group synthesized 2-hydroxy-4-phenylquinazolines (IX) by means
of the reaction of o-amino benzophenone (VI) with urea (VIII). The reaction of IX with
POCl3 followed by reductive dehalogenation provided dihydroquinazoline (X), which on
treatment with K3[Fe[CN]6 produced 4-phenyl quinazoline (II) (Scheme 3b).
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Scheme 3. (a) Schofield method for the synthesis of 2,4-dimethyl quinazolines; (b) Schofield method
for the synthesis of 4-phenyl quinazoline from o-amino benzophenone.

The above-mentioned synthetic methods developed for quinazolines based on clas-
sical transformation suffer from some drawbacks, such as harsh reaction conditions, a
stepwise procedure and a limited substrate scope. In the last decade, transition metal-
catalyzed reactions have been employed to overcome these issues for the synthesis of
quinazolines derivatives.



Molecules 2024, 29, 2353 4 of 54

3. Manganese-Catalyzed Protocols

Manganese-catalyzed C-H activation reactions have recently been recognized as a
powerful tool in organic synthesis due to the Earth-abundance of manganese and the
inexpensive less toxic and eco-friendly nature of these reactions [47,48]. Manganese is the
twelfth most abundant element in the Earth’s crust and the third most abundant transition
metal. The growing need for less toxic and less expensive methods prompted researchers
to design and synthesize a quinazoline scaffold using Mn-catalyzed C-H functionaliza-
tion reactions.

In 2015, Wang and his group developed a robust and reusable method for the α-MnO2-
catalyzed synthesis of quinazolines (3) from 2-amino-benzylamines (1) with alcohols (2) in the
presence of TBHP as an oxidant in chloro-benezene solvent (Scheme 4) [49]. Various alcohols,
including aromatic alcohols, heterocyclic alcohols and aliphatic alcohols, reacted with 2-amino-
benzylamines under optimized conditions and delivered the desired products with 59–91%
yields. A radical-mediated mechanism was deduced for this transformation based on the control
experiments using a radical quencher, i.e., TEMPO (2,2,6,6-tetramethylpiperidin-1-yl)oxy) and
BHT (butylated hydroxy toluene), in the reaction.
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In 2019, Das et al. described an acceptorless dehydrogenative annulation strategy
for the synthesis of quinazolines (3) from 2-amino-benzylalcohols (4) and nitriles (5) in
the presence of the phosphine-free Earth-abundant well-defined Mn(I) pincer complex
(Scheme 5) [50]. A broad range of EDGs and EWGs on both the aryl nitriles and 2-amino-
benzylalcohols were well tolerated and delivered the desired products in good yields
under optimal conditions. In contrast, the reaction of an aliphatic nitrile, i.e., valeronitrile,
produced a complex mixture and the desired product was isolated with only a 10% isolated
yield. The present transformations eliminated H2O and H2 gas as side products. The
evolved H2 gas was used to transform styrene to ethylbenzene through a Pd/C-catalyzed
hydrogenation reaction.
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In 2020, Balaraman and his group developed a Mn(I)-catalyzed acceptorless dehydro-
genative coupling strategy of 2-amino-benzylalcohol (4) with primary amides (6) for the
synthesis of 2-substituted quinazolines (3) in toluene at 130 ◦C (Scheme 6) [51]. A variety
of aryl and alkyl amides reacted well with 2-aminobenzyl alcohol to deliver the respective
products in 58–81% yields under the optimized reaction conditions. Limitations included
trans-cinnamamide and 2-F-/2-NO2-substituted benzamides, since the developed method
failed to produce the desired products for these substrates when they were subjected to
a similar set of reaction conditions. The Mn(I)-catalyst and KOtBu base displayed an
important role in this transformation by facilitating the dehydrogenative and condensation
steps, respectively.
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Also in 2020, Begum and co-workers reported a Mn/TBHP-mediated oxidative radical
cyclization of 2-(azidomethyl)phenyl isocyanides (7) and methyl carbazate (8) for the synthesis
of quinazoline-2-carboxylates (9) in an eco-friendly solvent, i.e., ethyl acetate (Scheme 7) [52].
Different functional groups on 2-(azidomethyl)phenyl isocyanides were well tolerated under
optimized conditions. The radical intermediate (•CO2Me) was generated via the oxidative
decomposition of methyl carbazate into the reaction, as confirmed by NMR and LCMS analysis,
which further reacted with 2-(azidomethyl)phenyl isocyanide to provide the respective product.
In general, this protocol represented a novel, reliable, straight-forward, atom-efficient method for
the synthesis of methyl quinazoline-2-carboxylates in good yields.
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4. Iron-Catalyzed Protocols

Iron is the most abundant transition metal present in the Earth’s crust. Iron’s ready
availability, low toxicity, low cost, variable oxidation states, and ligand binding abilities
make iron catalysis a promising area for chemical synthesis. Iron catalysis has become
a rapidly growing area of research in various chemical transformations, such as C-H
activation reactions [53], cycloaddition reactions [54], and substitution reactions [55]. Iron
catalysis has also been used for the design and synthesis of quinazoline derivatives.

In 2012, Yin et al. developed an efficacious route for the synthesis of 2,4-diaminoquinazolines
(13) and tricyclic quinazolines (14) via cascade reductive cyclization of methyl N-cyano-
2-nitrobenzimidates (11) in the presence of an Fe/HCl system (Scheme 8) [56]. The
key substrate, i.e., methyl N-cyano-2-nitrobenzimidates, was produced in a quantitative
yield via the cyanoimidation of 2-nitrobenzaldehyde (10) with NH2CN, which further
reacts with different primary amines (12) substituted with aliphatic chains or rings to
produce the respective diamino quinazolines products in 78–95% yields. Moreover, the
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tricyclic quinazolines, i.e., 2,3-dihydroimidazo[1,2-c]quinazolin-5-amines (14), are syn-
thesized in good yields by treating various methyl N-cyano-2-nitrobenzimidate with
2-chloro-ethanamine/3-chloropropan-1-amine under the developed reaction conditions.
The formation of two heterocycles in a one-pot procedure is the most advantageous aspect
of this methodology. Notably, the cascade ring-opening/ring-closing of tricyclic quinazo-
lines was demonstrated to produce quinazolinones bearing a cyclic guanidine motif.
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In 2013, Rohlmann et al. explored the oxidative tandem synthesis of dihydroquina-
zolines (16) from N-alkylanilines (15) in presence of Fe(OTf)2 as a catalyst and TEMPO
oxoammonium salt as a mild and nontoxic oxidant (Scheme 9) [57]. The developed method
tolerated a wide range of electron-deficient functional groups on N-alkylanilines to provide
the desired products in good yields. On the other hand, the mono-substituted o-Me and o-
and m-OMe groups bearing substrates produced a complex reaction mixture in which the
respective products were not identified. This might be due to the relatively higher reactivity
of electron-rich anilines toward both oxidation and aromatic nucleophilic substitution, as
deduced by the authors. In this transformation, an iminium species is a key intermediate
produced from the initial α-oxidation of N-alkylanilines by TEMPO salt.
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In 2015, Wu and co-workers described a highly efficient Fe/Cu relay-catalyzed domino
protocol for the synthesis of 2-phenylquinazolin-4-amines (20) from commercially available
ortho-halogenated benzonitriles (17), aldehydes (18), and sodium azide (19) (Scheme 10) [58].
Mechanistically, the reaction proceeded through iron-mediated [3 + 2] cycloaddition, copper-
catalyzed SNAr, reduction, cyclization, oxidation, and denitrogenation sequences. A variety of
aromatic and heteroaromatic aldehydes bearing different substituents like ERGs (Me, OMe, OEt)
and EWGs (Cl, Br, NO2) were employed smoothly with ortho-halogenated benzonitriles under
optimized conditions to provide corresponding products in moderate to good yields (42–84%).
In addition, this approach was successfully applied for the synthesis of 1-(2-methoxyphenyl)-3-
(2-(pyridin-3-yl)quinazolin-4-yl)urea (IV) under optimal conditions, which is a potent human
adenosine A3 receptor antagonist.
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In 2016, Shinde et al. demonstrated an FeF3-catalyzed three-component approach for the
synthesis of functionalized tetrahydroindazolo[3,2-b]quinazolines (23) using 1H-indazole-3-amines
(21), aldehydes (18), and cyclic and acyclic 1,3-diketones (22) under sonication in solvent-free
conditions (Scheme 11) [59]. The developed method showed a broad range of substrate scopes and
successfully delivered the respective products in excellent yields. There are many advantageous
features of this methodology as highlighted by the authors, such as a shorter reaction time, a low
cost, an easy work-up procedure, and the bypass of using solvent and column chromatography.
Moreover, FeF3 displayed high catalytic activity and it can be readily recovered and reused further
without a significant loss in the yields of the respective products.
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In 2017, Gopalaiah and co-workers realized the FeBr2-catalyzed cascade synthesis of
C-2 substituted quinazolines from 2-aminobenzyl alcohols (4) with benzylamines (12) un-
der aerobic oxidative conditions (Scheme 12) [60]. The developed method tolerated a wide
range of substrates and functional groups to produce the respective 2-arylated/heteroarylated
quinazolines in good to excellent yields. Disappointingly, aliphatic amines were found to
be nonreactive to this transformation under the optimal reaction conditions. The present
method was scaled up to a 20 mmol scale, yielding 2-phenylquinazoline in an 86% yield
without a significant loss in reaction efficacy. Notably, 7-chloro-2-phenylquinazoline, an
IGF-IR (Insulin-like Growth Factor-I Receptor) enzyme inhibitor, was also synthesized
using the developed reaction conditions.
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In 2018, Chen and co-workers demonstrated the synthesis of quinazolines from
2-alkylamino N-H ketimines (26) through FeCl2-catalyzed sp3 C-H oxidation and in-
tramolecular C-N bond formation using TBHP as the terminal oxidant (Scheme 13) [61]. A
variety of 2-alkylamino N-H ketimines (26) were successfully obtained from the 2-alkylamino
benzonitriles (24) with the addition of Grignard or organolithium reagents (25). The developed
protocol smoothly furnished the respective C-2 alkylated/arylated/-heteroarylated quinazolines
in good to excellent yields. Moreover, using the developed method, a muscle relaxer drug, i.e.,
quazodine (4-ethyl-6,7-dime-thoxy quinazoline), was synthesized in a 72% yield. The developed
approach worked well for the scaled-up synthesis of quinazoline.
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In 2019, Gopalaiah and his research group developed a method for the FeBr2-catalyzed
synthesis of quinazolines from 2-aminobenzylamines (1) and amines (12) in chlorobenzene
as a solvent at 100 ◦C under aerobic conditions (Scheme 14) [62]. Various benzylamines,
heteroarylmethanamines, and alkylamines reacted smoothly with electronically variable
2-aminobenzylamines under optimized conditions, yielding the respective products in
good to excellent yields. The reaction of phenyl glycine as a benzylamine surrogate
successfully delivered the desired quinazoline product in a 57% yield. Mechanistically,
this oxidative condensation pathway proceeded through imine generation through the
self-coupling of benzylamine, trans-imination, and intramolecular C-N coupling, followed
by aromatization.
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5. Cobalt-Catalyzed Protocols

Cobalt-catalyzed C–H activation and C-N bond formation have received major ad-
vancements in the past couple of decades [63,64]. Cobalt is one of the most promising
first-row transition metals for catalysis. Cobalt is a low-cost and less toxic metal with
variable oxidation states and high chemoselectivity. Therefore, it has a wide range of
applications in the chemical synthesis of natural products, pharmaceuticals, and other
organic molecules.

In 2016, Glorius and team achieved the Cp*Co(III)-catalyzed [4 + 2] cycloaddition reac-
tion of imines (27) with dioxazolone (28) using AgSbF6 as an oxidant and sodium acetate as
a base in DCE (Scheme 15) [65]. The mechanism of the reaction involved cobalt-catalyzed
tandem direct C-H amidation followed by intramolecular cyclization. Diversely substituted
arylimidates reacted smoothly with dioxazolones bearing various functional groups at
different positions of the aryl ring under standard reaction conditions to provide the corre-
sponding products in good to excellent yields (48–99%). Moreover, the developed protocol
has been successfully demonstrated for the synthesis of biologically active compounds
such as Bacillus cereus, antimetabolite drug raltitrexed, and ICI 198583. Notably, the cobalt
complex (Cp*Co(III)) displayed significantly higher activity than Cp*Ir(III) and Cp*Rh(III)
complexes. This might be possible due to the strong Lewis acidity and the high sensitivity
to steric hindrance of Cp*Co(III) catalyst.
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In 2016, Li and co-workers established Co(III)-catalyzed C-H bond activation ap-
proaches for the synthesis of two different types of quinazolines from N-sulfinylimines
(29) and benzimidates (27) using dioxazolones (28) as a nitrile surrogate in DCE solvent
(Scheme 16) [66]. A broad range of N-sulfinylimine and benzimidate substrates deco-
rated with EDGs and EWGs treated with aryl-/alkyl-dioxazolones under different re-
action conditions and two different series of desired products (4-arylquinazolines and
4-alkoxyquinazolines) were synthesized in good to excellent yields. It is noteworthy that
alkyl dioxazolones have shown relatively poor reactivity with N-sulfinylimines as com-
pared to the aryldioxazolones. On the other hand, the reactivity of alkyl dioxazolones was
equally efficacious with benzimidates. The 4-ethoxy-quinazoline was further transformed
into the corresponding quinazolinone under acidic hydrolysis.
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In 2016, Ahmadi et al. described a cobalt-catalyzed isocyanide insertion cyclization
reaction for the synthesis of benzoimidazoquinazoline amines (32) via the reaction of
isocyanides (31) and benzo[d]-imidazol-anilines using (30) K2S2O8 as an oxidant and
sodium acetate as a base in DMF (Scheme 17) [67]. Various substituted isocyanides and
benzo[d]-imidazol-anilines participated well under optimized conditions and delivered
the desired products in moderate to excellent yields (62–90%). In addition, the developed
methodology has been successfully applied to the synthesis of tetrazoloquinazolin-5-amine
and quinazolin-4(3H)-one under similar reaction conditions.
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In 2022, Hao et al. described the dehydrogenative synthesis of quinazoline via the
ligand-free cobalt-catalyzed annulation of 2-aminoaryl alcohols (4) with nitriles (5) un-
der mild reaction conditions. The authors examined the effects of various substituents
on benzonitrile and found that aryl nitrile containing methyl and methoxy underwent
smoother dehydrogenative annulation than aryl nitrile containing NO2 groups. More-
over, heteroaromatic and aliphatic nitriles were less reactive for annulations reactions.
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2-aminoaryl alcohols bearing ERGs and EWGs were well tolerated under standard reaction
conditions and provided the target products in a good yield (48–77%) (Scheme 18) [68].
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6. Copper-Catalyzed Protocols

Copper-catalyzed C-H activation reactions have emerged as the most convenient and efficient
method for the construction of complex heterocycles from the simple starting material [69]. Over
the past few years, copper salts have shown their significant importance in organic transformation
because of their low toxicity and inexpensive nature. Recently, the development of novel method-
ologies through copper-catalyzed C-N coupling reactions have received considerable attention
due to their important physiological and biological activities. In particular, copper-catalyzed
methodologies relating to the synthesis of quinazoline have been widely explored by researchers.

In 2014, Farhang’s group reported an efficient one-pot tandem cyclization between
2-amino benzophenones (33), aryl aldehydes (18), and NH4OAc (34) using magnetically
separable and reusable CuFe2O4 nanoparticles in aqueous media (Scheme 19) [70]. The
CuFe2O4 nanoparticles were prepared via the thermal decomposition of Cu(NO3)2 and
Fe(NO3)3 in water in the presence of sodium hydroxide. Substituted 2-aminobenzophenones
and various aromatic aldehydes reacted efficiently under optimized conditions and af-
forded the desired products in excellent yields (90–97%). In addition, the catalytic activity
of CuFe2O4 nanoparticles was evaluated in aqueous media, displaying its applicability as a
green, reusable and promising catalyst in organic synthesis.
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In 2015, Wang and team achieved direct access to functionalized quinazolines through
the reaction of 2-aminoarylketones (33), methylarenes (35) and NH4OAc (34) via copper-
catalyzed dual oxidative benzylic C-H aminations of methylarenes using TBHP as an
oxidant (Scheme 20) [71]. The developed approach was successfully employed for the
synthesis of quinazolines bearing ERG and EDG functional groups in good to excellent
yields (52–92%). Mechanistically, the reaction proceeded through the oxidative amination
of the benzylic C-H bond of methyl arenes with ammonia and 2-aminoarylketones followed
by intramolecular cyclization. Moreover, the kinetic isotope effect (KIE) described that the
C-H bond cleavage is the rate-determining step in this methodology.
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In 2016, Ma’s group reported a CuCl-catalyzed three-component oxidative amination
reaction from ortho-carbonyl anilines (33), with NH4OAc (34) as a nitrogen source and
DMSO (36) as a carbon source, in acetic acid under an oxygen atmosphere for quinazoline
synthesis (Scheme 21) [72]. The scope of this methodology was explored by varying
different functional groups like ERGs and EWGs on the aryl ring of ortho-carbonyl anilines
to provide desired products in moderate to excellent yields (33–95%). Furthermore, authors
also explored different carbon sources such as DMSO, DMF, DMA, N-methylacetamide,
TMEDA, DMEDA, N-methyl-2-pyrrolidone with ortho-carbonyl anilines under standard
reaction conditions, but among them, DMSO was found to be a more appropriate carbon
synthon for this method. Moreover, the DMSO-d6 experiment was conducted to prove
that the carbon atom in the product derived from DMSO. The radical trapping experiment
was performed by using TEMPO, which revealed that the reaction proceeded through a
radical pathway.
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In 2016, Liu and colleagues demonstrated Cu(OAc)2-catalyzed aerobic oxidative
decarboxylative amination of aryl acetic acids (37) with 2-aminobenzoketones (33) and
ammonium acetate under an oxygen atmosphere in NMP at 120 ◦C (Scheme 22) [73].
Different functional group decorated 2-amino-benzoketones including aromatic, hetero-
aromatic, and aliphatic substituents on aryl ring treated well with aryl acetic acid under
standard reaction conditions and provided the corresponding products in 10–97% yields.
Radical trapping experiments were conducted by using TEMPO, which revealed that the
reaction might proceed via a radical pathway. There are some advantageous features of
this approach that make it an efficient method, such as molecular oxygen being as the sole
oxidant, its operational simplicity, having H2O and CO2 as wastes, and multiple C-N bond
formation via C-H and C-C bond cleavage.
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In 2017, Sastry et al. described an excellent Cu(OAc)2-catalyzed method between
2-amino benzaldehyde/-ketone (33) and phenacylazides (38) for functionalized quinazo-
lines (9) using triethylamine as base in acetonitrile at room temperature (Scheme 23) [74].
2-Aminobenzaldehyde/ketone bearing ERGs (Me, OMe) and EWG (Cl) reacted smoothly
with various substituted phenacylazides under optimized conditions and delivered the
respective quinazolines in 60–85% yields. The mechanism of the reaction proceeded
through involvement of phenacylazides for the generation of imine precursors for tran-
simination with ortho-carbonyl anilines followed by condensation leading to respective
aroyl-substituted quinazoline derivatives.
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In 2019, Liang et al. explored a CuCl2-catalyzed one-pot three-component aerobic
oxidative cyclization approach for the synthesis of quinazolines via the amination of
C(sp3)-H bonds of methylazaarenes (35) in the presence of ammonium acetate (34) and
TFA in DMF at 120 ◦C under an oxygen atmosphere (Scheme 24) [75]. Various ERGs
and EWGs at different positions of the aryl ring of 2-aminophenylketone (33) reacted
smoothly with methylazaarenes under standard reaction conditions and delivered the
corresponding products in moderate to very good yields. Moreover, methylazaarens
containing multiple heteroatoms such as 2-methylpyrazine, 4-methylpyrimidine, 2-methyl-
thiazole, and 2-methylbenzothiazole also worked well, affording the corresponding azaaryl-
substituted quinazolines in 34–69% yields.
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In 2010, Morrow’s group developed a CuI-catalyzed Ullmann condensation for the synthesis
of highly functionalized quinazolines from the reaction of ortho-iodobenzaldehydes (39) with
amidine hydrochlorides (40) using Cs2CO3 as the base in methanol at 60 ◦C. The substituted
2-iodobenzaldehye reacted smoothly with various functional group-containing benzamidine
hydrochlorides such as methoxy, fluoro, trifluoromethyl, and heterobenzamidine hydrochlorides
to produce the respective quinazolines in 53–94% yields (Scheme 25a) [76]. Dramatically, authors
observed lower yields when ortho-bromobenzaldehyde was used as the substrate. To further
improve the reaction yields, the reaction temperature was increased from 60 ◦C to 100 ◦C.
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In 2017, Bhanage and his colleagues improved the reaction conditions by using facile
and green ultrasound-assisted Cu2O nanocubes at room temperature. The authors demon-
strated the synthesis of quinazolines from 2-bromobenzaldehydes (39) with amidines
(40) under ligand-free conditions by using Cu2O nanocubes as a heterogeneous nanocat-
alyst. Various substituted 2-bromobenzaldehydes reacted smoothly with aromatic and
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aliphatic amidines under stabilized reaction conditions and delivered the respective prod-
ucts in very good to excellent yields (81–96%). The developed protocol has some ad-
vantageous features which make it a good approach for the synthesis of functionalized
quinazolines, such as a shorter reaction time, a green solvent, catalyst recyclability, and
high stability (Scheme 25b) [77].

In 2012, Ju et al. explained a CuCl-catalyzed one-pot multi-component approach for
the synthesis of quinazolines (3) via the reaction of ortho-bromoaromaticketones (39) with
aldehydes (18) or alcohols (2) using ammonia water (41) as the nitrogen source and air
or DTBP as an oxidant (Scheme 26) [78]. A variety of aldehydes containing EDGs and
EWGs reacted well with ortho-bromoaromatic ketones to produce the desired quinazoline
derivatives in poor to good yields (17–74%). In addition, 2-acetyl-3-bromothiophene also
worked well under the stabilized conditions to afford the respective product in 43% yield.
Unfortunately, aliphatic aldehydes and 4-nitrobenzaldehyde displayed low reactivity and
selectivity toward quinazolines synthesis. Further, the authors improved the reaction
condition to avoid aldol condensation in the case of aliphatic aldehydes and conducted
an oxidation process of primary alcohols to aldehydes using DTBP as an oxidant. The
developed protocol worked well with aromatic as well as aliphatic alcohol to produce the
respective quinazolines in 17–81% yields. Mechanistically, the reaction proceeded through
amination and condensation, followed by the oxidation process.
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In 2011, Yu and colleagues described a one-pot reaction of 2-aminobenzylamines (1) with aryl
aldehydes (18) for the synthesis of quinazolines by employing CuCl/DABCO/4-HO-TEMPO as
the catalysts and oxygen as an oxidant in CH3CN at 80 ◦C (Scheme 27a) [79]. Various substituted
aldehydes (aromatic, heteroaromatic and aliphatic) were treated with a range of substituted
2-aminobenzylamines under standard reaction conditions, providing the substituted quinazolines
(3) in moderate to excellent yields (40–98%). However, the authors observed lower yields in
the case of aliphatic aldehyde and cinnamaldehyde than for aromatic aldehydes. Moreover,
heterocyclic aldehydes such as 3-picolylaldehyde and 2-furyl aldehyde also worked well under
optimized conditions. The intermolecular kinetic isotopic effects were also analyzed to establish
the mechanistic pathway. This was the first method for the synthesis of quinazolines through
oxidative dehydrogenation by using the CuCl/DABCO/4-HO-TEMPO catalytic system.

Recently, in 2021, Liu et al. demonstrated a one-pot three component annulation
approach for the synthesis of quinazoline derivatives through the reactions of diversely
substituted benzaldehyde (18), benzyl amine (42) and anilines (12) (Scheme 27b) [80]. In
addition, these authors described the electronic effect of various substituents on the benzene
ring and observed that electron-donating substituents were well tolerated in comparison
to substrates containing electron-withdrawing groups. Furthermore, the authors also
described that F- and NO2-containing aniline failed to provide the desired product under
optimal conditions.

In 2010, Fu and co-workers reported a CuI-catalyzed tandem approach for the syn-
thesis of quinazoline derivatives from readily available (2-bromophenyl)-methylamine
(42) and amide (6) derivatives using K2CO3 as a base and 2-propanol as the solvent under
air at 110 ◦C. (Scheme 28) [81]. The scope of the reaction was explored by using a range
of electron-rich (Me, OMe) and electron-deficient (F, NO2) substituents on amide with (2-
bromophenyl)-methylamines, and all the derivatives reacted well to provide the respective
products in 37–87% yields. Moreover, (2-bromophenyl)methylamines containing EDGs
showed lower reactivity than ERGs. However, aliphatic amides could not produce the
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respective products under optimized conditions. Mechanistically, the reaction proceeded
through copper-catalyzed sequential Ullmann-type coupling followed by intramolecular
nucleophilic addition and aromatization under aerobic conditions.
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In 2013, Cheng’s group described the CuBr-catalyzed one-pot tandem approach for the
synthesis of substituted quinazolines from the reaction of 1-(2-halophenyl)methanamines
(42) and amidines (40) using K2CO3 as a base in DMSO under a nitrogen atmosphere
(Scheme 29a) [82]. Mechanistically, the reaction proceeded via sequential intermolecular
N-arylation and intramolecular nucleophilic substitution followed by aerobic oxidation.
Different functional groups decorating 1-(2-halophenyl)methanamines reacted efficiently
with guanidine hydrochloride under standard reaction conditions to provide substituted
quinazolines in moderate to excellent yields (40–99%). Notably, aromatic amidines con-
taining electron-withdrawing groups displayed lower reactivity than those containing
electron-donating groups.

Later on, Omar et al. developed a CuI-catalyzed tandem reaction for the synthesis
of functionalized quinazolines through the reaction of 1-(2-bromophenyl)-methanamines
and amidines using K3PO4 as the base, pivalic acid as the additive, and oxygen as the
oxidant in 1,2-DCB at 110 ◦C (Scheme 29b) [83]. Various substituted benzamidine salts,
including aromatic, heteroaromatic, and aliphatic, reacted well with different functional
groups containing 1-(2-bromo-phenyl)methanamine under optimized conditions to deliver
the respective products in 43–90% yields. Furthermore, authors successfully extended
their work for the synthesis of quinazolines by using ethyl benzimidate hydrochloride
as the starting material in place of benzamidine salts under optimized conditions, and
corresponding products were observed in good yields (55–65%).



Molecules 2024, 29, 2353 16 of 54

Molecules 2024, 29, x FOR PEER REVIEW 16 of 53 
 

 

hydrochloride as the starting material in place of benzamidine salts under optimized con-
ditions, and corresponding products were observed in good yields (55–65%). 

 
Scheme 29. (a) Synthesis of quinazolines from (2-halophenyl)methylamines and amidines; (b) CuI-
catalyzed tandem reaction for the synthesis of functionalized quinazolines. 

In 2013, Lv et al. developed an efficient Cu(OTf)2-catalyzed one-pot reaction between 
amidines (40) and DMSO (36) through the direct oxidative amination of N-H bonds with 
methyl C(sp3)-H bonds followed by intramolecular C-C bond formation (Scheme 30) [84]. 
The generality of the intermolecular annulation reaction was examined by varying differ-
ent functional groups, including EWGs and EDGs, on the aromatic ring of nitrile moieties, 
producing the respective quinazolines in good to excellent yields (52–93%). However, cy-
clic amidine substrates failed to produce the target product under stabilized reaction con-
ditions. Moreover, different carbon sources such as N,N-dimethylacetamide (DMA), N-
methyl-2-pyrrolidone (NMP) and tetramethylethane-1,2-diamine (TMEDA) were also 
found to be effective for the annulation reaction. Notably, N,N-diethyl-formamide (DEF) 
and N,N-diethylacetamide (DEA) did not provide the target product under similar reac-
tion conditions. The kinetic deuterium isotope effect was also analyzed to establish the 
reaction mechanism. 

 
Scheme 30. Synthesis of quinazolines from amidines and DMSO. 

The CuBr-catalyzed synthesis of 2-phenyl-4-[(triiso-propylsilyl)methyl]quinazolines 
(44) via the reaction of N-phenylbenzamidines (40) with 5-nitro-1-[(triisopropylsi-
lyl)ethynyl]-1,2-benziodoxol-3(1H)-one (43) in benzene at 80 °C (Scheme 31) has also been 
presented [85]. This reaction was adequately explored with a broad range of substituted 
N-phenylbenz-amidines containing EWGs and EDGs with 5-nitro-1-[(triisopropylsilyl)-
ethynyl]-1,2-benziodoxol-3(1H)-one under optimized conditions to afford the correspond-
ing products in moderate to good yields (46–77%). In addition, desilylaion of 2-phenyl-4-
(triisopropylsilyl)methyl-quinazoline was carried out in the presence of TBAF in THF-
AcOH (20:1) at room temperature, which led to the production of quinazoline in 76% yield 
via the removal of the TIPS group. 
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catalyzed tandem reaction for the synthesis of functionalized quinazolines.

In 2013, Lv et al. developed an efficient Cu(OTf)2-catalyzed one-pot reaction between
amidines (40) and DMSO (36) through the direct oxidative amination of N-H bonds with
methyl C(sp3)-H bonds followed by intramolecular C-C bond formation (Scheme 30) [84].
The generality of the intermolecular annulation reaction was examined by varying different
functional groups, including EWGs and EDGs, on the aromatic ring of nitrile moieties,
producing the respective quinazolines in good to excellent yields (52–93%). However,
cyclic amidine substrates failed to produce the target product under stabilized reaction
conditions. Moreover, different carbon sources such as N,N-dimethylacetamide (DMA),
N-methyl-2-pyrrolidone (NMP) and tetramethylethane-1,2-diamine (TMEDA) were also
found to be effective for the annulation reaction. Notably, N,N-diethyl-formamide (DEF)
and N,N-diethylacetamide (DEA) did not provide the target product under similar reac-
tion conditions. The kinetic deuterium isotope effect was also analyzed to establish the
reaction mechanism.
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Scheme 30. Synthesis of quinazolines from amidines and DMSO.

The CuBr-catalyzed synthesis of 2-phenyl-4-[(triiso-propylsilyl)methyl]quinazolines (44)
via the reaction of N-phenylbenzamidines (40) with 5-nitro-1-[(triisopropylsilyl)ethynyl]-1,2-
benziodoxol-3(1H)-one (43) in benzene at 80 ◦C (Scheme 31) has also been presented [85]. This
reaction was adequately explored with a broad range of substituted N-phenylbenz-amidines
containing EWGs and EDGs with 5-nitro-1-[(triisopropylsilyl)-ethynyl]-1,2-benziodoxol-3(1H)-one
under optimized conditions to afford the corresponding products in moderate to good yields
(46–77%). In addition, desilylaion of 2-phenyl-4-(triisopropylsilyl)methyl-quinazoline was carried
out in the presence of TBAF in THF-AcOH (20:1) at room temperature, which led to the production
of quinazoline in 76% yield via the removal of the TIPS group.
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Scheme 31. CuBr-catalyzed synthesis of quinazoline from N-phenylbenzamidines.

In 2014, Wang and team developed a CuO nanoparticle-catalyzed aerobic oxidative
coupling reaction of N-arylamidines (40) and aromatic alcohols (2) or aldehydes (18) for
the synthesis of quinazoline derivatives using 1,10-phen as a ligand in toluene at 110 ◦C
(Scheme 32) [86]. N-arylamidines containing both EDGs and EWGs showed good to excel-
lent yields and no significant substitution effect was observed under optimized reaction
conditions. A variety of aromatic aldehydes bearing several functional groups such as
methyl, methoxy, chloro, nitro and cyano were well tolerated and furnished the respective
quinazolines in good yields. Moreover, this methodology worked equally well with het-
eroaromatic aldehydes under similar reaction conditions. Unfortunately, this reaction did
not work effectively with aliphatic aldehydes. Furthermore, the authors extended their
work for the synthesis of quinazoline derivatives by using benzyl alcohol as a starting
material. There were some advantageous features of this approach that make it attractive
for the synthesis of quinazolines, such as it being base- and oxidant-free, as well as the
good recyclability of the catalyst without a significant loss of catalytic activity.
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In 2017, a CuBr-catalyzed one-pot tandem strategy was described by Yang et al. for the
synthesis of 4-aminoquinazoline (3) derivatives using readily available 2-iodobenzimidamide or
2-bromobenzimid-amides (40), aldehydes (18), and NaN3 (19) in DMF at 70 ◦C (Scheme 33) [87].
Different aldehydes, including aliphatic, aromatic, and heteroaromatic, reacted well with various
substituted benzimidamides under standard reaction conditions to furnish the corresponding
4-amino quinazoline in 50–90% yields. Mechanistically, the reaction involved a consecutive
process, a copper-catalyzed SNAr substitution, reduction, cyclization, and oxidation followed
by tautomerization.
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In 2012, Beifuss and team achieved a Cu2O-catalyzed one-pot tandem approach for the
synthesis of aryl substituted quinazolines from readily available ortho-halobenzylbromides
and benzamidines using DMEDA as an additive and Cs2CO3 as a base in the green solvent



Molecules 2024, 29, 2353 18 of 54

at 100 ◦C (Scheme 34) [88]. Various substituted ortho-halobenzylbromides (45) reacted
efficiently with benzamidines (40) bearing Me and Cl functional groups on the aryl ring and
afforded the corresponding substituted quinazolines in good to excellent yields ranging
from 57 to 85%.
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In 2014, Fan et al. described Cu(OAc)2-catalyzed one-pot tandem reactions between
2-bromobenzyl bromides (45), aldehydes (18), and aqueous ammonia (41) using DMAP as
an additive and DMSO as a solvent at 80 ◦C (Scheme 35) [89]. Mechanistically, the reaction
proceeded through Cu(II)-catalyzed amination, condensation, and intramolecular nucleophilic
cyclization, followed by aromatization. A variety of aromatic aldehydes bearing various
functional groups, including bromo, chloro, fluoro, nitro, cyano, and trifluoromethyl, were well
tolerated by 2-bromobenzyl bromides bearing either electron-donating or electron-withdrawing
substituents under optimized reaction conditions. However, the reaction did not work with
acetaldehyde and phenylacetaldehyde under similar reaction conditions.
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In 2013, Chen et al. described a CuCl-catalyzed tandem reaction between (2-aminophenyl)
methanols (4), aldehydes (18), and ammonium chloride (46) in the presence of cerium
nitrate hexahydrate, KOH, and TEMPO at 80 ◦C (Scheme 36) [90]. The developed proto-
col proceeded smoothly and tolerated a variety of functional groups on the aryl ring of
aldehyde, including methoxy, fluoro, chloro, bromo, nitro, formacyl, and trifluoromethyl.
In addition, the aldehydes bearing EWGs (F, Cl, Br) produced a higher yield than EDG
(Me, OR)-bearing analogs. The authors also scaled up the present synthetic route at the
20 mmol scale and provided 2-phenylquinazoline in an 86% yield. Mechanistically, the
reaction involved the oxidation of 2-aminobenzylalcohols to 2-aminobenzaldehydes un-
der a CuCl/2,2′-bipyridine(bpy)/TEMPO catalytic system. Subsequently, the reaction of
2-aminobenzaldehyde with aldehydes and NH4Cl provided the cyclized product dihydro-
quinazoline, which upon aromatization provided the quinazoline derivatives in good to
excellent yields (55–97%).
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In 2013, Xia and colleagues demonstrated a CuCl-catalyzed one-pot tandem multi-
component approach for the synthesis of quinazolines from (2-aminophenyl)methanols (4),
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aldehydes, and ceric ammonium nitrate (CAN) (47) by using CsOH as a base in acetonitrile
at 30–60 ◦C (Scheme 37) [91]. A diverse range of aldehydes including aromatic and hetero-
aromatic were well tolerated by different functional groups containing (2-aminophenyl)-
methanols, including methyl, fluoro, chloro, and nitro under standard reaction conditions
and afforded the corresponding functionalized quinazolines in good to excellent yields
(66–93%). Moreover, the authors also explained that the (2-aminophenyl)methanols bearing
an electron-donating substituent produced a slightly higher yield than those bearing an
electron-withdrawing substituent.
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In 2013, Li and colleagues reported a one-pot approach for the regioselective synthesis
of substituted quinazolines through [2 + 2 + 2] cascade annulation of diaryliodonium salts
(48) with nitriles (5) using Cu(OTf)2 as a catalyst in DMSO at 130 ◦C (Scheme 38) [45]. A
range of aromatic and aliphatic nitriles, including 1-naphthyl and 2-thienyl nitriles, reacted
smoothly with diaryliodonium salts and afforded the respective 2,4-diaryl quinazolines
in 52–90% yields. However, ethyl cyanoformate (NCCO2Et) and diethyl cyanphosphate
(NCPO(OEt)2) failed to provide the desired product, presumably because of their electron
deficiency. Moreover, the authors extended their approach to the synthesis of quinazolines
by using two different nitriles through one-pot sequential addition of nitriles, providing
the respective quinazoline derivatives in 55–72% yields.
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In 2014, Wen and team achieved Cu(OTf)2-catalyzed tandem assembly for the syn-
thesis of quinazolin-4(3H)-imine (49) through the reaction of ortho-cyanoanilines (24) and
diaryliodonium salts (48) in DCE at 110 ◦C (Scheme 39) [92]. The reaction was satisfactorily
explored with a broad range of substituted ortho–cyanoanilines with diaryliodonium salt
containing a range of functional groups such as methyl, methoxy, fluoro, chloro, bromo,
trifluoromethyl on the aryl ring, and all the substrates reacted smoothly and produced
the corresponding quinazolines in moderate to excellent yields (51–95%). In addition, the
authors also tested the unsymmetric diaryliodonium salt p-CF3Ph-I+-Mes for the synthesis
of quinazoline. Notably, the mesityl group was transferred and the mesityl-containing
quinazoline was produced as a major product.

In 2014, a unique one-pot strategy to access o-methoxy-protected quinazolines was
introduced by Ahmed’s group via the copper-benzotriazole (Cu-BtH)-catalyzed intramolec-
ular electrophilic cyclization of N-arylimines through the reaction of 2-aminobenzonitriles
(24) and aldehydes (18) in the presence of methanol (2) (Scheme 40) [93]. The reaction was
adequately explored with a broad range of substituted 2-aminobenzonitriles and aldehydes,
containing EWGs and ERGs, and all the substrate reacted smoothly and produced the
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respective products in good to excellent yields (41–88%). However, aryl and heteroaryl
aldehydes provided improved reaction yields as compared to aliphatic aldehydes. Further,
the authors extended the approach and synthesized o-ethoxy-protected quinazolines by
using ethanol as a solvent under dry conditions in the presence of molecular sieves.
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In 2015, Yao’s group demonstrated a CuCN-catalyzed one-pot approach for the syn-
thesis of 2-aryl quinazolines and tetracyclic isoindolo[1,2-a]-quinazoline using K2CO3 as a
base in DMSO at 135 ◦C (Scheme 41) [94]. Mechanistically, the reaction proceeded through
CuCN-catalyzed cyanation followed by the rearrangement of ortho-substituted 2-halo-
N-arylbenzamides (50). Moreover, changing the reaction solvent such as 1,4-dioxane led
to the formation of tetracyclic isoindolo[1,2-a]quinazoline as a major product. Further,
base-catalyzed cleavage of tetracyclic isoindolo[1,2-a]quinazolines derivatives produced
the respective 2-arylquinazolines as a major product. A variety of quinazolines deriva-
tives like 2-phenylquinazolin-4-amine, 4-methyl-2-phenylquin-azoline, and long-chain
2-phenyl-4-styrylquinazoline were observed under optimized reaction conditions with
54–79% yields.
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In 2015, Neuville’s group developed CuCl2-promoted one-pot three-component rapid
assembly for the synthesis of 2-aminoquinazolines from the reaction of easily available
cyanamides (51), arylboronic acids (52), and amines (12) using K2CO3 as a base and
2,2′-bipyridine as ligand under O2 atmosphere (1 atm) at 100 ◦C (Scheme 42) [95]. In this
approach, copper promotes the formation of three bonds, including two C-N bonds and
one bond through a C-H functionalization event. In 2019, the same group explored their
work for the synthesis of functionalized quinazolin-4(H)-imines (14) from cyanamides (51),
2-cyanoarylboronic acids (52), and amines (12) using Cu(OAc)2 as a catalyst and Na2CO3 as
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a base in toluene at 50 ◦C [96]. Different functional groups containing 2-cyanoboronic acid
and cynamides reacted efficiently and provided the functionalized quinazolin-4(H)-imines
in 13–95% yields. Moreover, the authors explored the utility of the reaction and synthesized
benzimidazo[1,2-c]quinazolines through a copper-catalyzed C-H amination process.
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In 2016, Wu and the team described a CuI-catalyzed tandem multi-component strat-
egy for the synthesis of quinazoline derivatives from 2-bromobenzaldehyde (53), ben-
zylamine (42), and sodium azide (19) in DMSO at 80 ◦C. Mechanistically, the reaction
involved sequential copper-catalyzed SNAr, oxidation/cyclization, and a denitrogenation
process (Scheme 43) [97]. A series of aldehydes including aromatic and heteroaromatic
reacted smoothly with benzylamines bearing EDGs (Me, OMe, OH) and EWGs (F, Cl,
Br) under optimized conditions to provide functionalized quinazoline in 38–82% yields.
Notably, naphthalen-1-ylmethanamine, pyridin-3-ylmethanamine also worked well under
optimized conditions and furnished the corresponding products in 42% and 75% yields,
respectively. Additionally, three C-N bonds were constructed in a one pot tandem fashion
under mild reaction conditions.
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In 2018, Jiang and team developed a Cu(OAc)2-catalyzed one-pot reaction of
2-(phenylethynyl)aniline (54) and benzonitriles (5) for the synthesis of quinazolines by
using molecular oxygen as a sole oxidant and t-BuOK as a base at 120 ◦C in DMSO
(Scheme 44) [98]. Interestingly, the author observed different products when the solvent
switched from DMSO to toluene. The reaction showcased a wide range of substituent toler-
ance with various benzonitriles and 2-ethynylanilines, providing a gallery of quinazolines
in moderate to excellent yields (41–88%). The reaction proceeded through the effective
cleavage of the C-C triple bond and C-C and C-N bond formation in a one-pot opera-
tion. In addition, the synthesized compounds displayed aggregation-induced emission
effects, good fluorescence quantum yield, and lifetime decay, which enhanced the value of
quinazoline analogs in material science for future aspects.
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Scheme 44. Synthesis of quinazolines from 2-(phenyl-ethynyl)aniline and benzonitriles.

In 2011, a one-pot cascade method to access fused quinazolines (32) was described
by Fu’s group using 2-(2-halophenyl)-1H-benzo[d]imidazole (55) with amidines or guani-
dines (40) through CuI-catalyzed Ullmann-type C-N coupling followed by intramolecular
nucleophilic attack of NH on amidines or guanidine carbon. The various functional
groups decorating benzimidazoles and amidine or guanidine substrates worked effec-
tively under the stabilized conditions to furnish the corresponding fused quinazolines
in moderate to excellent yields (46–95%) (Scheme 45a) [99]. Moreover, the authors also
described the ortho-substituent effect of halogen on benzimidazole moieties. Substituted
2-(2-bromophenyl)benzoimidazoles reacted well at room temperature, while in the case of
2-(2-chlorophenyl)benzoimidazole, the temperature was increased up to 100 ◦C due to the
lower reactivity of aryl chloride for C-N coupling reactions.
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As a continuation of their research, in 2012, Fu’s group demonstrated another Cu-
catalyzed regioselective approach for the synthesis of 1H-indolo[1,2-c]quinazolines from
the reaction of 2-(2-halophenyl)indoles and amidines using K2CO3 as a base in DMSO
under a nitrogen atmosphere (Scheme 45b) [100]. Various 2-(2-halophenyl)indoles reacted
smoothly with electronically variable amidines under optimized conditions, yielding the
respective products in good to excellent yields (58–93%). However, aliphatic amidines
showed slightly higher yields than aromatic ones. Interestingly, more highly regioselective
products were observed through N-1 cyclization over C-3 cyclization of indoles.

In 2012, Sang et al. reported a Cu(OAc)2-catalyzed sequential Ullmann-type N-arylation
and aerobic oxidative C-H amination between 2-(2-halophenyl)-1H-benzo[d]imidazole/indoles
(55) and arylmethanamines (42) for the synthesis of fused quinazolines using K2CO3 as a base in
DMSO at 110 ◦C (Scheme 46) [101]. The scope of this methodology was examined under optimized
conditions, and aromatic/heteroaromatic methanamines reacted smoothly with 2-(2-halo-phenyl)-
1H-benzimidazoles/indoles and produced the corresponding quinazoline derivatives (32) in
40–84% yields. Naphthyl-substituted methanamines were also tolerated well under stabilized
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reaction conditions. In particular, aryl iodides showed higher reactivity than arylbromide for
Ullmann-type N-arylation.
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In 2013, Fu et al. demonstrated a CuI-catalyzed aerobic oxidative approach for the
synthesis of indolo[1,2-c]quinazolines from the reaction of 2-(2-bromophenyl)-1H-indole
(55) with α-amino acid (56) using K2CO3 as base in DMF under oxygen atmosphere
(Scheme 47) [102]. Different α-amino acids such as aliphatic, aromatic, and heteroaromatic
were compatible with 2-(2-bromophenyl)-1H-indole under standard reaction conditions and
delivered the diversely substituted indolo[1,2-c]quinazolines with moderate to excellent
yields (44–93%). Notably, the developed protocol also worked well with pipecolinic acid
under stabilized conditions and afforded the corresponding product in 64% yields. In
addition, the authors also successfully applied a developed protocol for the synthesis
of benzo[4,5]imidazo[1,2-c]quinazolines and pyrazolo[1,5-c]quinazolines under similar
reaction conditions. Mechanistically, the reactions involved Cu-catalyzed N-arylation and
aerobic oxidative dehydrogenation followed by intramolecular cyclization.
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In 2014, Nandwana et al. described a Pd/Cu co-catalyzed one-pot sequential approach
for the synthesis of novel azole-fused quinazolines (32) from the reaction of 2-(2-bromophenyl)-
1H-imidazole/-benzimidazoles (55) and different azole derivatives (57) such as 1H-imidazole,
1H-benzimidazole, and 1H-1,2,4-triazole. The mechanism of this reaction involved a copper-
catalyzed Ullmann type C-N coupling reaction followed by a Pd(OAc)2/Cu(OAc)2 catalyzed
cross-dehydrogenative coupling reaction (Scheme 48a) [103]. The developed protocol worked
well under optimized conditions and delivered the corresponding N-fused tetra-, penta- and
hexa-cyclic frameworks in good to excellent yields (52–81%).
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Further, in 2019, the same authors improved the reaction conditions and targeted
fused quinazolines were achieved under copper-catalyzed conditions. The synthesized
compounds were tested for their in vitro antibacterial activity against three Gram-negative
(Escherichia coli, Pseudomonas putida, Salmonella typhi) and two Gram-positive (Bacillus
subtilis, Staphylococcus aureus) bacteria. Among all tested compounds, three compounds
exhibited promising MIC values (4–8 µg/mL). The synthesized compounds were also
evaluated for their in vitro antifungal activity and showed pronounced antifungal activity
(MIC values 8–16 µg/mL) against both strains (Scheme 48b) [104]. Furthermore, the syn-
thesized compounds were also evaluated for their hemolytic activity, showing a negligible
toxicity profile toward human blood cells.

In 2015, a copper-catalyzed one-pot multi-component reaction demonstrated by Kumar’s
group by using 2-(2-halophenyl)benzimidazoles (55), aldehydes (18), and sodium azide (19) with
L-proline as a ligand and CS2CO3 as a base in DMSO at 80 ◦C (Scheme 49a) [105]. This reaction
involved three consecutive C-N bond formations: the azidation of arylhalide with sodium
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azide, then the in situ conversion of aryl azide to arylamine through reduction, followed by
condensation and oxidative cyclization, providing the respective benzimidazo[1,2-c]quinazoline
in good to excellent yields (60–94%). The generality of the reactions was examined by varying
different aromatic aldehydes, and EDGs on the phenyl ring provided better yields than ERGs.
Interestingly, 1-naphthaldehyde also worked smoothly under optimized conditions and pro-
duced the corresponding product with a 94% yield. Moreover, a radical trapping experiment
was conducted by using 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), which revealed the
radical mechanism for the proposed reactions.

Molecules 2024, 29, x FOR PEER REVIEW 25 of 53 
 

 

benzaldehyde surrogate and sodium azide as a nitrogen source by using green solvent 
(PEG 400) (Scheme 49b) [106]. 

 
Scheme 49. (a) Synthesis of benzimidazo[1,2-c]quinazolines from (2-halophenyl)benzimidazoles 
and aldehydes; (b) One-pot three-component strategy for the synthesis of imidazo[1,2-
c]quinazolines and benzimidozo[1,2-c]quinazolines. 

In 2015, Fan and colleagues described copper-catalyzed one-pot cascade reactions of 
2-(2-bromo-aryl)-1H indoles (55), aldehydes (18), and aqueous ammonia (41) for the syn-
thesis of indolo[1,2-c]quinazoline using K2CO3 as a base and L-proline as a ligand in 
DMSO under a nitrogen atmosphere (Scheme 50) [107]. Diversely substituted aldehydes 
with ERGs (Me, OMe) and EWGs (CF3, F, Cl, Br) reacted well with 2-(2-bromoaryl)-1H 
indoles under optimized conditions to provide the desired products in moderate to good 
yields. Notably, 1-naphthaldehyde and thiophene-2-carbaldehyde, cinnamaldehyde, and 
butyraldehyde were also well tolerated under stabilized reaction conditions. Interestingly, 
when the reaction was performed under acidic conditions, 11H-indolo[3,2-c]quinolines 
was observed as a product through C-C coupling reactions. 

 
Scheme 50. Synthesis of quinazolines from 2-(2-bromo-aryl)-1H indoles and aldehydes. 

In 2016, we developed a CuI-catalyzed one-pot tandem approach between 2-(2-bro-
mophenyl)-1H-imidazoles (55) and formamide (6) for the synthesis of imidazo[1,2-
c]quinazolines (Scheme 51) [108]. Mechanistically, the reaction proceeded through cop-
per-catalyzed Ullmann-type C-N coupling and intramolecular nucleophilic addition fol-
lowed by dehydrative cyclization. The generality of the tandem reaction was investigated 
by varying different functional groups like Me, OMe, and F on the aryl ring of 2-(2-bro-
mophenyl)-1H-imidazoles, which reacted efficiently with formamide under optimized 
conditions to produce respective quinazolines in 31–70% yields. The developed protocol 
also worked well at the gram scale with a 71% yield. Moreover, authors also accomplished 
the tandem reaction with acetamide and benzamide under optimized conditions. Unfor-
tunately, under these reaction conditions, only C-N coupled products were observed; this 
might be due to the low electrophilicity of the amidecarbonyl group in acetamide and 
benzamide as compared to formamide. Interestingly, targeted products were observed in 
57% and 43%, respectively, under BF3.OEt2 in DMF at 150 °C. 
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benzimidozo[1,2-c]quinazolines.

Recently, Nandwana et al. described a one-pot three-component strategy for the synthesis
of imidazo[1,2-c]quinazolines and benzimidozo[1,2-c]quinazolines from 2-(2-bromophenyl) -1H-
imid-azoles/benzimidazoles from benzyl alcohol or benzylamine as a benzaldehyde surrogate
and sodium azide as a nitrogen source by using green solvent (PEG 400) (Scheme 49b) [106].

In 2015, Fan and colleagues described copper-catalyzed one-pot cascade reactions
of 2-(2-bromo-aryl)-1H indoles (55), aldehydes (18), and aqueous ammonia (41) for the
synthesis of indolo[1,2-c]quinazoline using K2CO3 as a base and L-proline as a ligand in
DMSO under a nitrogen atmosphere (Scheme 50) [107]. Diversely substituted aldehydes
with ERGs (Me, OMe) and EWGs (CF3, F, Cl, Br) reacted well with 2-(2-bromoaryl)-1H
indoles under optimized conditions to provide the desired products in moderate to good
yields. Notably, 1-naphthaldehyde and thiophene-2-carbaldehyde, cinnamaldehyde, and
butyraldehyde were also well tolerated under stabilized reaction conditions. Interestingly,
when the reaction was performed under acidic conditions, 11H-indolo[3,2-c]quinolines was
observed as a product through C-C coupling reactions.
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In 2016, we developed a CuI-catalyzed one-pot tandem approach between 2-(2-
bromophenyl)-1H-imidazoles (55) and formamide (6) for the synthesis of imidazo[1,2-
c]quinazolines (Scheme 51) [108]. Mechanistically, the reaction proceeded through copper-
catalyzed Ullmann-type C-N coupling and intramolecular nucleophilic addition followed
by dehydrative cyclization. The generality of the tandem reaction was investigated by vary-
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ing different functional groups like Me, OMe, and F on the aryl ring of 2-(2-bromophenyl)-
1H-imidazoles, which reacted efficiently with formamide under optimized conditions to
produce respective quinazolines in 31–70% yields. The developed protocol also worked
well at the gram scale with a 71% yield. Moreover, authors also accomplished the tandem
reaction with acetamide and benzamide under optimized conditions. Unfortunately, under
these reaction conditions, only C-N coupled products were observed; this might be due
to the low electrophilicity of the amidecarbonyl group in acetamide and benzamide as
compared to formamide. Interestingly, targeted products were observed in 57% and 43%,
respectively, under BF3.OEt2 in DMF at 150 ◦C.
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In 2017, Kumar and the team reported an efficient one-pot tandem approach for the
synthesis of quinazolines from the reaction of 2-phenyl imidazole/benzimidazole (55),
NaN3 (19) as a nitrogen source and DMA (58) as a carbon source using TBHP as the
oxidant and P-TsOH as an additive at 130 ◦C (Scheme 52) [109].The developed proto-
col reacted well with 4,5-diaryl-2-(2-bromoaryl)-1H-imidazoles/-2-(2-bromophenyl)-1H-
benzo[d]imidazoles with different substituents such fluoro, chloro, methyl and methoxy
on aryl rings of imidazole/benzimidazole to produce respective quinazolines in moderate
to good yields (53–82%). The radical scavenger experiment was also performed by using
TEMPO, suggesting that the reaction mechanism does not involve a free radical pathway.
Mechanistically, the reaction involved sequential azidation through SNAr, and reduction,
followed by oxidative amination of C(sp3)-H bonds of N,N-dimethylacetamide. The present
method was scaled up to a gram scale, yielding the 2,3-diphenylimidazo[1,2-c]quinazoline
in 80% yield without a significant loss in reaction efficacy. Furthermore, the authors applied
this methodology to the synthesis of quinazolinone and quinoline derivatives. Interest-
ingly, all of the derivatives worked well under similar reaction conditions and afforded the
respective products in 37–71% yields.
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In 2017, Nandwana et al. described a CuI-catalyzed tandem reaction of 2-(2-bromoaryl)
imidazoles/2-(2-bromoaryl)benzimidazoles (55), alkynes (59), and sodium azide (19) for
the synthesis of imidazo[1,2-c][1,2,3]triazolo[1,5-a]quinazolines in DMA (Scheme 53) [110].
Various substituted 2-phenylimidazole/benzimidazole derivatives reacted efficiently with
aliphatic and aromatic alkynes under stabilized reaction conditions to provide correspond-
ing fused quinazolines in moderate to good yields (50–85%). However, imidazole bearing NO2
functional groups failed to provide the target product under the optimized reaction conditions.
Mechanistically, the tandem approach involved copper-catalyzed azide-alkyne cycloaddition
(CuAAC) and intramolecular cross dehydrogenative C-N bonding followed by the Ullmann type
C-N coupling reaction. In addition, 1-phenyl-indolo[1,2-c][1,2,3]triazolo[1,5-a]quinazoline was
also synthesized from the reaction of 2-(2-bromophenyl)-1H-indole with phenylacetylene and
NaN3 under similar reaction conditions.
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In 2017, Cho and team demonstrated a simple and efficient CuI-catalyzed method for the
synthesis of benzo[4,5]imidazo[1,2-c]quinazolin-6-amines/benzo-[4,5]imidazo[1,2-c]pyrimidin-1-
amines (32) under microwave irradiation through the reaction of 2-(2-bromophenyl)benzimidazoles/
2-(2-bromovinyl)benz-imidazoles (55) with cyanamide (51) in the presence of K3PO4 as
a base in DMF at 100–130 ◦C for 1 h (Scheme 54) [111]. Diversely substituted imidazole
and benzimidazole reactged well with cyanamide under optimized conditions to provide
the respective products in 28–85% yields. Furthermore, the developed protocol extended
to the reaction of 2-(2-bromophenyl)indoles and cyanamide under optimized conditions
to produce the corresponding indolo[1,2-c]quinazolin-6-amines in good yields (50–73%).
Mechanistically, the reaction proceeded through copper-catalyzed intermolecular Ullmann
type C-N coupling and C-N formative cyclization followed by tautomerization.
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In 2018, Guo et al. described a CuI-catalyzed intramolecular cyclization reaction of
2-(2-amidoaryl)-1H-indoles (30) for the synthesis of indolo[1,2-c]quinazolines (32) deriva-
tives in 1,4-dioxane at 120 ◦C (Scheme 55) [112]. Various indole substrates with an aromatic
and aliphatic substituent on the amide unit and EDGs and EWGs attached to the 2-phenyl
ring of indoles reacted well under optimized reaction conditions to produce the respective
products in 40–72% yields. The mechanism of the reaction involved the nucleophilic addi-
tion of indole nitrogen to amidic carbonyl followed by dehydration. In addition, by tuning
the reaction parameters such as solvents from 1,4-dioxane to DMF, the authors observed
3H-indol-3-one as a major product.

In 2018, Chon and team achieved another CuI-catalyzed one-pot assembly for the syn-
thesis of benzo[4,5]imidazo[1,2-c]quinazolines under microwave irradiation or usual heat-
ing from 2-(2-bromoaryl)benzimidazoles/(2-bromovinyl)-benzimid-azoles and primary
amides (6) (Scheme 56) [113]. Variously substituted amides, including aliphatic, aromatic,
and heteroaromatic, participated well with 2-(2-bromoaryl)-benzimidazoles/(2-bromo-
vinyl)-benzimidazoles under stabilized reaction conditions to provide the desired products
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in moderate to good yields. In addition, when benzo[4,5]-imidazo[1,2-c]quinazolines with
a methoxy group on the benzimidazole moiety were treated with aqueous ceric ammonium
nitrate (CAN) in aqueous acetonitrile at room temperature, all of the derivatives converted
into quinazoline- and pyrimidine-fused benzimidazolequinones with 70–89% yields.
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In 2018, Chen et al. described a CuCl2-catalyzed double C-N coupling reaction for
the synthesis of azole-fused pyrimido[1,2-c]quinazolines and imidazo-[1,2-c]quinazolines
(32) in the presence of 1,10-phen as a ligand and K3PO4 as a base in DMF at 110 ◦C under
an oxygen atmosphere. The developed protocol proceeded through copper-catalyzed
Ullmann-type C-N coupling followed by C-H functionalization (Scheme 57) [114]. The
scope of the reaction was examined by varying different azoles (57) such as benzimidazoles,
pyrazoles, and 1,2,4-triazoles which were compatible under optimized conditions and
afforded the target products in moderate to excellent yields (37–96%).
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In 2020, Cho and team explored CuI-catalyzed trinuclear N-fused hybrid scaffolds by
using 2-(2-bromoaryl)indoles (55) and 2-aminoazoles (57) as the starting material under mi-
crowave irradiation in DMF at 150 ◦C (Scheme 58) [115]. 2-(2-Bromoaryl)indole derivatives
bearing straight, branched alkyl chains and different functional groups such as Me, OMe,
and F on the indole moiety worked well with 2-aminoazoles under stabilized reaction
conditions to provide the respective fused quinazolines (32) in 42–74% yields. Notably,
2-(2-bromophenyl)indoles bearing the chloro functional group failed to produce target
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products under optimized conditions and provided the dechlorinated trinuclear N-fused
hybrid scaffold. Mechanistically, the reaction involved copper-catalyzed C(sp2)-N coupling
followed by intramolecular cyclo condensation.
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In 2013, Gou and his colleagues developed an efficient method for the synthesis of
pyrazolo[1,5-c]quinazolines and 5,6-dihydropyrazolo[1,5-c]quinazolines via a copper-catalyzed
one-pot tandem reaction of 5-(2-bromoaryl)-1H-pyrazoles with aldehydes (18) and ketones (22)
in aqueous ammonia under aerobic condition (Scheme 59) [116]. A diverse range of aldehydes
including aryl, alkyl, alkenyl, and hetero-aryl reacted smoothly and afforded the corresponding
functionalized quinazolines in moderate to good yields (35–88%). Moreover, ketone derivatives
also reacted well and provided the respective product in 32–69% yields. In addition, the authors
also explored the reaction in a four-component manner by using 1-(2-bromophenyl)-1,3-diones, hy-
drazine hydrate, carbonyl compounds, and aqueous ammonia under copper-catalyzed conditions
and observed the corresponding products in 36–74% yields.
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In 2012, Fu and co-workers described a CuI-catalyzed one-pot sequential approach for
the construction of pyrazolo[1,5-c]quinazolines (62) from readily available 1-(2-halophenyl)-
3-alkylprop-2-yn-1-ones (60), hydrazine hydrochlorides (61), and amidine hydrochlorides
(40) in DMSO under a nitrogen atmosphere (Scheme 60) [117]. The scope of this methodol-
ogy was explored by varying different substituents on 1-(2-halophenyl)-3-alkylprop-2-yn-
1-ones, which reacted smoothly with aliphatic/aromatic/heteroaromatic amidines under
standard reaction conditions and produced the respective products in 60–94% yields. Mech-
anistically, the reaction involved base-mediated pyrazole formation then copper-catalyzed
N-arylation followed by intramolecular nucleophilic reactions.

In 2013, Kiruthika et al. demonstrated a CuI-catalyzed one-pot protocol for the rapid synthesis
of tetrahydroindolo[1,2-a]quinazolines through the reaction of gem-dibromovinylanilides (63)
with N-tosyl-o-bromobenzamides (64) using 1,10-phen as a ligand and Cs2CO3 as a base in
THF at 80 ◦C (Scheme 61) [118]. Different N-tosyl-o-bromobenzamides reacted smoothly with
gem-dibromovinylanilides under optimized conditions and delivered the respective products
with 77–81% yields. Moreover, the tosyl group was removed under basic conditions and the
corresponding indolo[1,2-a]quinazolines were observed in 87–92% of yields.
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bromobenz-amides.

In 2014, a CuCl-catalyzed one-pot tandem approach has described by Fan group for
the synthesis of pyrazolo[1,5-a]quinazolines (62) from 2-bromo-benzaldehydes/ketones
(39) and 5-aminopyrazoles (57) using ethylenediamine as ligand and K2CO3 a base in DMF
at 110 ◦C. (Scheme 62) [119]. Various functional groups bearing 2-bromobenzaldehydes
such as methyl, methoxy, trifluoromethyl, and halides on aryl ring were well tolerated
with diversely substituted (Me, CN, Ph, cyclopropane, thiophene) 5-aminopyrazoles under
optimized reaction conditions and produced the corresponding fused quinazolines in
41–83% yields. Notably, 2-bromonicotinaldehyde was also found a suitable substrate for
this transformation, providing pyrazolo[1,5-a]pyrido[3,2-e]pyrimidine in 79% yield. In
addition, 2-bromophenyl methyl ketones and 2-bromophenyl phenyl ketones were also
participated well with 5-aminopyrazoles under the same reaction conditions to afford
corresponding products in 43–69% yields. Mechanistically, the reaction proceeded through
imine formation followed by a copper-catalyzed intramolecular C-N coupling reaction.
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In 2014, Lv and colleagues reported an efficient approach for the assembly of azole-
fused quinazolines (67) through the Cu-catalyzed domino addition/double cyclization
process using 1,10-phen as a ligand and t-BuOLi as a base in DMF (Scheme 63) [120].
Mechanistically, the reaction involved nucleophilic addition, intramolecular C-N coupling,
and intramolecular sp2 C-H arylation of azole with bis-(o-haloaryl)-carbodiimide (66). The
bis-(o-iodo-phenyl)carbodiimides bearing electron-donating groups (p-Me) and electron-
withdrawing groups (p-F) on the aryl rings both reacted smoothly with a variety of azoles
(57) such as imidazole, benzimidazoles, pyrazole, and indoles under stabilized reaction
conditions, delivering the corresponding desired products in 54–87% yields. However,
benzimidazole derivatives showed higher reactivity than other azoles. In addition, indole
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derivatives also reacted well under similar reaction conditions to produce the corresponding
benzo[4,5]imidazo[1,2-a]indolo-[1,2-c]-quinazolines in 62–70% yields via addition and
coupling followed by the direct C2-arylation process.
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In 2014, Wang group demonstrated a CuI-catalyzed tandem approach for the gener-
ation of benzimidazo[1,2-a]quinazolines (67) from the reaction of N-(2-benzimidazolyl)-2-
aminobenzamide (68) with 2-halobenzaldehyde (53) using L-proline as a ligand and Cs2CO3 as
a base in 1,4-dioxane at 100 ◦C (Scheme 64) [121]. N-(2-Benzimidazolyl)-2-amino-benzamides
and 2-halobenzaldehydes decorated with EWGs and ERGs worked efficiently under opti-
mized conditions to afford the corresponding products in 66–82% yields along with substituted
2-aminobenzoic acid. Moreover, the reaction also reacted smoothly with 3-bromothiophene-
2-carbaldehyde and produced the benzo[4,5]-imidazo[1,2-a]thieno[2,3-e]pyrimidine in 82%
yield. Mechanistically, the reaction proceeded through sequential copper-catalyzed Ullmann
N-arylation followed by two C-N bond cleavage reactions.
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In 2015, Jia et al. developed a CuI-catalyzed tandem multi-component approach
for the synthesis of triazolo[1,5-c]quinazolines (62) from the reaction of (E)-1-bromo-2-(2-
nitrovinyl)benzenes (69), aldehydes (18), and sodium azide (19) in the presence of L-proline
in DMSO at 100 ◦C. Various functional group-containing aromatic aldehydes like ERGs and
EWGs demonstrated good compatibility with (E)-1-bromo-2-(2-nitrovinyl)benzenes under
standard reaction conditions and produced the target products with moderate to excellent
yields (54–85%). The tandem approach involved consecutive [3 + 2] cycloaddition, copper-
catalyzed SNAr, reduction, cyclization, and oxidation sequences. Notably, sodium azide
acted as a dual nitrogen source for the construction of fused quinazolines (Scheme 65) [122].
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In 2015, Pang et al. developed a Cu-catalyzed one-pot sequential approach for the
synthesis of functionalized benzimidazo[1,2-c]quinazolines (32) from the reaction of o-
cyanoanilines (24) and diaryliodonium salts (48) using K2CO3 as a base (Scheme 66) [123].
The developed method was completed in two steps—initially, the Cu(OTf)2-catalyzed syn-
thesis of bromo-substituted quinazolin-4(3H)-imines from readily available o-cyanoanilines
and di-(o-bromophenyl)iodonium salt in DCE at 110 ◦C was performed, and then CuI-
catalyzed N-arylation delivered the respective fused quinazolines in 93–96% yields.
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In 2020, a CuI-catalyzed tandem reaction between o-alkenyl aromatic isocyanides and
diazo compounds was demonstrated by the Wang group using DBU as a base in DMF at room
temperature (Scheme 67) [124]. A series of isocyanides bearing either electron-donating or
electron-withdrawing group at the different positions of the phenyl ring reacted smoothly with
diazo compounds and were converted to the corresponding pyrazolo-[1,5-c]quinazolines in
27–84% yields. The mechanism of the reaction involved tandem (3 + 2) cyclization, elimination,
intramolecular aza-addition sequence in a one-pot manner. The developed approach worked
well for the scaled-up synthesis of pyrazolo[1,5-c]-quinazolines. The broad substrate scopes,
synthetic simplicity, and excellent functional group compatibility are the attractive aspects of
this method.
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7. Nickel-Catalyzed Protocols

Nickel catalysts are highly reactive organometallic species which are less expensive
than other members of the group and are used in a variety of organic reactions including
cross-dehydrogenative reactions [125], tandem reactions, and cyclization reactions [126].
Furthermore, nickel catalysts have recently been used in the formation of C-C and C-N
bonds via hydrogen auto-transfer (HA) and acceptorless dehydrogenative coupling (ADC)
reactions [127].

In 2017, Shinde et al. developed a nickel-catalyzed aerobic oxidative isocyanide insertion
reaction for the synthesis of quinazolines through a sequential double-annulation cascade ap-
proach. Mechanistically, the tandem strategy involved the opening of isatoic anhydride (72)
and annulation to benzimidazoles (30) followed by nickel-catalyzed intramolecular isocyanide
(31) insertion reactions (Scheme 68) [128]. Various functional group-decorated isatoic anhy-
drides, ortho-diaminobenzenes (73) and isocyanides reacted smoothly under standard reaction
conditions to provide the corresponding products in 30–75% yields. The developed protocol
successfully applied for the synthesis of naphthalene-fused quinazolines. In addition, the
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synthesized compounds were also tested for their photophyscial properties. The fluorescence
study revealed that electron-withdrawing groups on benzimidazole and a tert-butyl substituent
on the amine increased the fluorescence properties of the quinazolines. The salient features
of this method were dioxygen as a sole oxidant, base- and ligand-free reaction conditions, the
formation of four new C-N bonds in one pot, a short reaction time, and a high bond-forming
index (BFI).
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zamides/amidines reacted well with 2-bromo-benzylamines/2-bromobenzyl bromides un-
der optimized sets of reaction conditions to deliver the desired 2-substituted quinazolines 
in moderate to good yields. The pyridyl amides and cyclopropyl-substituted amidines 
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Scheme 68. Nickel-catalyzed tandem strategy for the synthesis of quinazolines.

In 2018, Paul and co-workers demonstrated a nickel-catalyzed acceptorless dehy-
drogenative coupling reaction for the synthesis of quinazolines from the reaction of
2-aminobenzylamines (1) with benzyl alcohols (2) and 2-aminobenzylalcohols (4) with
benzonitriles (5) in xylene (Scheme 69) [129]. The developed protocol showed a broad
range of functional group compatibility on all substrates including ERGs and EWGs to
produce the corresponding fused quinazoline products in 25–86% yields. Moreover, to
confirm the hydrogen evolution during the quinazoline synthesis, dehydrogenation reac-
tions were performed in the presence of hydrogen acceptors like 4-methoxy-benzaldehyde
and the Pd/C-catalyzed hydrogenation reaction of styrene. Notably, the quantification of
liberated hydrogen gas was carried out using a gas burette. The broad substrate scope,
the Earth-abundant and easy-to-prepare nickel catalyst, and the environmentally benign
methodology are the advantageous features of this approach.
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quinazolines.

In 2019, Paul and co-workers reported the nickel(II)-catalyzed synthesis of quinazo-
lines via the cross-coupling reactions of either benzamide (6) and 2-bromobenzylamine
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(74) or amidine (40) and 2-bromobenzyl bromide (45) in DMF as a solvent under reaction
conditions with low variability (Scheme 70) [130]. A wide range of benzamides/amidines
reacted well with 2-bromo-benzylamines/2-bromobenzyl bromides under optimized sets
of reaction conditions to deliver the desired 2-substituted quinazolines in moderate to
good yields. The pyridyl amides and cyclopropyl-substituted amidines could produce the
desired products in relatively low yields (23–38%). The authors mentioned that the singlet
diradical Ni(II) catalysts used for this transformation are air-stable, easy to prepare, and
cheap as compared to the commonly used palladium-based catalysts.
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In 2011, Wang et al. developed a Pd(OAc)2-catalyzed intramolecular aryl C(sp2)-H 
amidination method for the synthesis of 4-amino-2-aryl(alkyl)quinazolines (20) from the 
reaction of N-arylamidines (40) and isonitriles (31) using Cs2CO3 as a base in toluene under 
an oxygen atmosphere (Scheme 72) [134]. Different functional groups decorating N-ar-
ylamidines like EDGs and EWGs worked efficiently with aliphatic and aromatic isonitrile 
under optimized conditions to produce the functionalized quinazoline in moderate to ex-
cellent yields (42–97%). Notably, in this approach, sterically hindered groups such as tert-
butylamino and 2,6-dimethylphenylamino were introduced at the C-4 position of the 
quinazoline ring, which is an important scaffold in medicinal chemistry. 
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In 2019, a similar research group further explored the synthesis of quinazolines from
the reaction of 2-aminobenzyl alcohols (4) and nitriles (5) using the previously employed
Ni(II) catalyst in toluene at 90 ◦C (Scheme 71a) [131]. Various aryl/heteroaryl/alkyl
nitriles reacted smoothly with 2-aminobenzyl alcohols and yielded the desired quinazo-
lines in moderate to good yields under optimized reaction conditions. Notably, alkyl
nitrile, i.e., valeronitrile, produced a relatively lower yield (25%) of the desired product
under the same reaction conditions. The reaction proceeded through the formation of
2-aminobenzaldehyde from 2-aminobenzyl alcohol and amides from nitriles. The in situ-
generated 2-aminobenzaldehyde and amides underwent base-assisted condensation to
produce the corresponding products. Very recently, these authors improved the strategy
for quinazoline synthesis through nickel-catalyzed annulations of benzyl amine (42) and
nitrile (5) via C-H activation reactions (Scheme 71b) [132].
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8. Palladium-Catalyzed Protocols

Palladium-catalyzed cross-coupling reactions have received significant attention in
recent years for the development of new methods for heterocycles by means of C-N bond
formation. Palladium catalysts are desirable for the synthesis of highly functionalized
molecules, medicinally important intermediates, and agro-products due to their wide range
of selectivities, simple, efficient, and economical protocols and mild reaction conditions.
Therefore, researchers also used palladium as an active catalyst in academia and the phar-
maceutical industry for the synthesis of medicinally important quinazoline scaffolds [133].
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In 2011, Wang et al. developed a Pd(OAc)2-catalyzed intramolecular aryl C(sp2)-H
amidination method for the synthesis of 4-amino-2-aryl(alkyl)quinazolines (20) from the
reaction of N-arylamidines (40) and isonitriles (31) using Cs2CO3 as a base in toluene
under an oxygen atmosphere (Scheme 72) [134]. Different functional groups decorating N-
arylamidines like EDGs and EWGs worked efficiently with aliphatic and aromatic isonitrile
under optimized conditions to produce the functionalized quinazoline in moderate to
excellent yields (42–97%). Notably, in this approach, sterically hindered groups such as
tert-butylamino and 2,6-dimethylphenylamino were introduced at the C-4 position of the
quinazoline ring, which is an important scaffold in medicinal chemistry.
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In 2011, Orru and colleagues demonstrated a Pd(OAc)2-catalyzed intramolecular imi-
doylative cross-coupling reaction in DMF to synthesize 4-aminoquinazolines (20) from
readily available N-(2-bromoaryl)amidines (40) and isocyanide (31) (Scheme 73) [135].
Diversely substituted amidines reacted well with various aliphatic isocyanides under stan-
dard reaction conditions and provided the 4-aminoquinazoline derivatives in moderate
to excellent yields (20–95%). However, the developed method did not work with aro-
matic isocyanides. Furthermore, several synthesized compounds have pharmaceutically
important biological activities, such as potent topoisomerase I inhibitors and phosphodi-
esterase inhibitors, making the developed protocol very useful for future applications in
medicinal chemistry.
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Scheme 73. Palladium-catalyzed synthesis of quinazolines from N-(2-bromoaryl)amidines and
isocyanide.

In 2012, Buchwald and team explored Pd2dba3-catalyzed one-pot sequential approach
for the synthesis of quinazoline derivatives by reacting amidines (40) with arylhalides
(75) using Cs2CO3 as base and DDQ as an oxidant (Scheme 74) [136]. Mechanistically,
the reaction proceeded through palladium-catalyzed N-arylation, base-promoted imine
formation followed by electro-cyclization and oxidation. The developed method tolerated a
wide range of electron-rich functional groups on arylhalide to provide the desired products
in moderate yields. Moreover, heterocyclic amidines and aldehydes also worked well under
similar reaction conditions. Unfortunately, EWGs bearing arylhalides failed to produce the
desired products.
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In 2014, a Pd-catalyzed one-pot hydrogen transfer strategy was described by Deng’s group for
the synthesis of 2,4-disubstituted quinazolines through the reaction of E-1-(2′-nitrophenyl)ethanone
o-alkyloximes (76) with benzyl alcohols (2)/benzyl amines (42) using dppf as a ligand under
an argon atmosphere (Scheme 75) [137]. A variety of benzyl alcohols/benzyl amines bearing
ERGs and EWGs groups on the aromatic ring were employed with (E)-2-nitrobenzaldehyde
o-alkyloxime to provide the corresponding quinazoline products in good yields. Heterobenzylic
alcohols, i.e., pyridin-3-ylmethanol and furan-2-ylmethanol, also reacted smoothly. Unfortunately,
cyclohexanol and 1-butanol could not deliver the corresponding products under similar reaction
conditions. Notably, in this approach, the nitro group was reduced in situ by hydrogen generated
from the alcohol dehydrogenation step. In addition, the authors also described a one-pot three-
component reaction for the synthesis of quinazolines via the reaction of 1-(2-nitrophenyl)ethanone
(77), urea (78) and benzyl alcohols (2) under standard reaction conditions, providing the respective
products in 21–90% yields.
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In 2014, Wu’s group described a novel and efficient Pd(OAc)2-catalyzed carbonylative
coupling reaction of 2-aminobenzylamine (1) with aryl bromides (75) using DBU as the base
in DMSO (Scheme 76) [138]. Aryl bromides decorated with various functional groups, such
as ERGs (methoxy, dimethylamino, and tert-butyl) and EWGs (cyano, trifluoromethyl), were
transformed into the corresponding products under optimal reaction conditions. Notably,
naphthyl, biphenyl, aryl ketone, and heteroaryl bromides also successfully produced the
quinazoline products under similar reaction conditions. Mechanistically, the reaction
involved a palladium-catalyzed aminocarbonylation condensation-oxidation sequence in a
one-pot one-step manner. Furthermore, DMSO plays important roles as both a solvent and
an oxidant in this approach.

Molecules 2024, 29, x FOR PEER REVIEW 37 of 53 
 

 

 
Scheme 76. Palladium-catalyzed synthesis of quinazolines from 2-aminobenzylamine and aryl bro-
mides. 

In 2014, Ruijter and colleagues described Pd(II)-catalyzed aerobic oxidative coupling 
of (2-amino-phenyl)azoles (30) with isocyanides (31) for the synthesis of medicinally im-
portant azole-fused quinazolines by using air as an oxidant in MeTHF as a solvent 
(Scheme 77) [139]. A wide range of triazole derivatives reacted smoothly with isocyanides 
to provide an annulated product in moderate to excellent yields. Moreover, several het-
ero-aromatic groups on triazole were also applied successfully for the annulation reaction 
after the minor tuning of the catalyst loading and reaction time. The developed protocol 
also worked well for the synthesis of 5-aminotetrazolo[1,5-c]-quinazoline and benzimid-
azoquinazoline under similar reaction conditions. 

 
Scheme 77. Pd-catalyzed synthesis of quinazolines from (2 aminophenyl)azoles with isocyanides. 

In 2015, Wang and his team developed an annulation process for the synthesis of 
quinazolines from N-allyl-amidines (40) under microwave irradiation by using palladium 
as an active catalyst in xylene at 170 °C (Scheme 78) [140]. The scope of this methodology 
was explored by using a range of aryl amidines to afford the respective product in good 
to excellent yields (73–94%). 

 
Scheme 78. Palladium-catalyzed synthesis of quinazolines from N-allylamidines. 

In 2018, Chen group proposed a palladium-catalyzed one-pot, three-component tan-
dem method for the synthesis of quinazolines by using readily available 2-aminobenzo-
nitriles (24), aldehydes (18), and aryl boronic acids (52) in DMF (Scheme 79a) [141]. A va-
riety of functional groups decorating 2-aminobenzonitriles, aldehydes, and aryl boronic 
acids were compatible under optimized reaction conditions and delivered substituted 
quinazolines in good to excellent yields (42–91%).  

Subsequently, in the same year, these authors developed another approach for pro-
ducing quinazoline derivatives through the reaction of 2-(quinazolinone-3(4H)-yl)benzo-
nitriles (80) and aryl boronic acids (52) in toluene (Scheme 79b) [142]. Mechanistically, the 
reaction proceeded through sequential nucleophilic addition and intramolecular cycliza-
tion followed by ring-opening. Interestingly, in this approach, the authors synthesized a 
new class of 2-(4-arylquinazolin-2-yl) aniline derivatives which were difficult to synthe-
size in previous methods. The developed protocol was also applicable at the gram scale, 
leading to the production of quinazolines in 87% yields. The synthetic utility of this 
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In 2014, Ruijter and colleagues described Pd(II)-catalyzed aerobic oxidative coupling of
(2-amino-phenyl)azoles (30) with isocyanides (31) for the synthesis of medicinally important
azole-fused quinazolines by using air as an oxidant in MeTHF as a solvent (Scheme 77) [139].
A wide range of triazole derivatives reacted smoothly with isocyanides to provide an
annulated product in moderate to excellent yields. Moreover, several hetero-aromatic
groups on triazole were also applied successfully for the annulation reaction after the minor
tuning of the catalyst loading and reaction time. The developed protocol also worked
well for the synthesis of 5-aminotetrazolo[1,5-c]-quinazoline and benzimidazoquinazoline
under similar reaction conditions.
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In 2015, Wang and his team developed an annulation process for the synthesis of
quinazolines from N-allyl-amidines (40) under microwave irradiation by using palladium
as an active catalyst in xylene at 170 ◦C (Scheme 78) [140]. The scope of this methodology
was explored by using a range of aryl amidines to afford the respective product in good to
excellent yields (73–94%).
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In 2018, Chen group proposed a palladium-catalyzed one-pot, three-component tandem
method for the synthesis of quinazolines by using readily available 2-aminobenzonitriles (24),
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aldehydes (18), and aryl boronic acids (52) in DMF (Scheme 79a) [141]. A variety of functional
groups decorating 2-aminobenzonitriles, aldehydes, and aryl boronic acids were compatible
under optimized reaction conditions and delivered substituted quinazolines in good to excellent
yields (42–91%).
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tive coupling reaction of 2-phenyl-1H-benzo[d]imidazole (55) with 1H-benzo[d]imidazole 
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Scheme 79. (a) Pd-catalyzed synthesis of quinazolines from 2-aminobenzonitriles, aldehydes,
and aryl boronic acids; (b) Synthesis of quinazolines from 2-(quinazolinone-3(4H)-yl)benzonitriles
and aryl boronic acids; (c) Synthesis of 2,4-disubstituted quinazolines from aryl boronic acids
and N-(2-cyanoaryl)-benzamides; (d) Pd-catalyzed tandem addition/cyclization of 2-(benzylidene-
amino)benzonitriles with arylboronic acids.

Subsequently, in the same year, these authors developed another approach for produc-
ing quinazoline derivatives through the reaction of 2-(quinazolinone-3(4H)-yl)benzonitriles
(80) and aryl boronic acids (52) in toluene (Scheme 79b) [142]. Mechanistically, the reaction
proceeded through sequential nucleophilic addition and intramolecular cyclization fol-
lowed by ring-opening. Interestingly, in this approach, the authors synthesized a new class
of 2-(4-arylquinazolin-2-yl) aniline derivatives which were difficult to synthesize in previ-
ous methods. The developed protocol was also applicable at the gram scale, leading to the
production of quinazolines in 87% yields. The synthetic utility of this method was explored
for different kind of reactions, such as acylation, sulfonylation, and the Buchwald–Hartwig
coupling reaction.
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In a continuation of their work, Chen’s group explored the synthesis of 2,4-disubstituted
quinazolines from the reaction of aryl boronic acids (52) with N-(2-cyanoaryl)-benzamides (81)
in THF (Scheme 79c) [143]. A variety of functional groups bearing aryl boronic acids reacted
smoothly with N-(2-cyanoaryl)benzamides to furnish the respective quinazolines in moderate
to excellent yields. Moreover, naphthalen-1-ylboronicacid, naphthalen-2-ylboronic acid, and
biphenyl-4-ylboronic acid also reacted well under optimized reaction conditions. However,
methyl boronic acid and (E)-styryl boronic acid could not produce the corresponding products
under similar reaction conditions. Mechanistically, the reaction involved nucleophilic addition
and imine formation, followed by intramolecular nucleophilic addition and dehydration, leading
to the formation of quinazolines.

In 2019, Chen’s group described another Pd-catalyzed tandem addition/cyclization
of 2-(benzylidene-amino)benzonitriles (82) with arylboronic acids (52) for the synthesis of
quinazoline derivatives. The mechanism of the reaction involved sequential nucleophilic
addition followed by an intramolecular cyclization, leading to the desired products in
17–85% yields (Scheme 79d) [144].

In 2019, Wang and team demonstrated a simple and straightforward method for the
synthesis of azole-fused quinazolines (32) via a palladium-catalyzed cross-dehydrogenative
coupling reaction of 2-phenyl-1H-benzo[d]imidazole (55) with 1H-benzo[d]imidazole (57)
using Cu(OAc)2 as the oxidant in DMF (Scheme 80) [145]. Different functional group-
containing 2-phenylbenz-imidazole worked well with imidazole/benzimidazole under
stabilized reaction condition and delivered the respective fused quinazolines in moderate
to excellent yields (42–86%). Moreover, electron-releasing groups like methyl or methoxy
on the 2-aryl benzimidazole moiety produced a higher yield than electron-withdrawing
groups. Notably, in the case of the NO2 functional group, the authors did not observe the
target product, which might be due to the reduced electron density on the ring, which
disfavors the formation of the palladium chelate.
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In 2019, Sawant and team explored a Pd(OAc)2-catalyzed one-pot three-component
regio-selective strategy for the synthesis of functionalized quinazoline-3-oxides (84) via the
reaction of 2-azido-benzaldehydes (18), isocyanides (31) and hydroxylamine hydrochloride
(83) in toluene at room temperature (Scheme 81) [146]. A range of azidobenzaldehydes
and isocyanides reacted well with hydroxylamine hydrochloride under stabilized reaction
conditions and delivered the respective quinazolines in good to excellent yields (71–92%).
Mechanistically, the reaction proceeded through azide-isocyanide denitrogenative coupling
and condensation with hydroxylamine followed by 6-exo-dig cyclization of hydrazones.

Molecules 2024, 29, x FOR PEER REVIEW 39 of 53 
 

 

to excellent yields (42–86%). Moreover, electron-releasing groups like methyl or methoxy 
on the 2-aryl benzimidazole moiety produced a higher yield than electron-withdrawing 
groups. Notably, in the case of the NO2 functional group, the authors did not observe the 
target product, which might be due to the reduced electron density on the ring, which 
disfavors the formation of the palladium chelate. 

 
Scheme 80. Palladium-catalyzed synthesis of quinazolines from 2-phenyl benzimidazole. 

In 2019, Sawant and team explored a Pd(OAc)2-catalyzed one-pot three-component 
regio-selective strategy for the synthesis of functionalized quinazoline-3-oxides (84) via 
the reaction of 2-azido-benzaldehydes (18), isocyanides (31) and hydroxylamine hydro-
chloride (83) in toluene at room temperature (Scheme 81) [146]. A range of azidobenzal-
dehydes and isocyanides reacted well with hydroxylamine hydrochloride under stabi-
lized reaction conditions and delivered the respective quinazolines in good to excellent 
yields (71–92%). Mechanistically, the reaction proceeded through azide-isocyanide deni-
trogenative coupling and condensation with hydroxylamine followed by 6-exo-dig cy-
clization of hydrazones. 

 
Scheme 81. Pd(OAc)2-catalyzed synthesis of quinazolines from 2-azidobenzaldehydes. 

In 2019, Demakova et al. described a Pd-catalyzed efficient cascade approach for the 
synthesis of 4-aminoquinazolines (20) by reacting o-benzyl benzamide oximes (40) with 2-
iodobenzonitrile (5) using xantphos as the ligand and Cs2CO3 as the base in dioxane at 100 
°C under an argon atmosphere (Scheme 82) [147]. The developed cascade approach in-
volved Pd-catalyzed Buchwald–Hartwig amination and nucleophilic addition followed 
by protonation and tautomerization, leading to the 4-aminoquinazoline in 13–28% yields. 
Notably, the developed protocol showed some limitations, such as a smaller substrate 
scope, a lower yield, and purification difficulties. 

 
Scheme 82. Palladium-catalyzed synthesis of quinazolines from o-benzyl benzamide oximes. 

9. Gold-Catalyzed Protocols 
Gold-catalyzed C-H activation, C-H functionalization and cross-coupling reactions 

have emerged as a potential tool for the development of new methods for heterocyclic 
compounds. In comparison to other transition metals such as Pt, Pd and Rh, gold has some 
advantages such as a variable oxidation state (+1 and +3), less toxicity, and the ability to 
carry out reactions in catalytic amounts without the use of external ligands [148]. 

Scheme 81. Pd(OAc)2-catalyzed synthesis of quinazolines from 2-azidobenzaldehydes.



Molecules 2024, 29, 2353 40 of 54

In 2019, Demakova et al. described a Pd-catalyzed efficient cascade approach for the
synthesis of 4-aminoquinazolines (20) by reacting o-benzyl benzamide oximes (40) with
2-iodobenzonitrile (5) using xantphos as the ligand and Cs2CO3 as the base in dioxane at
100 ◦C under an argon atmosphere (Scheme 82) [147]. The developed cascade approach
involved Pd-catalyzed Buchwald–Hartwig amination and nucleophilic addition followed
by protonation and tautomerization, leading to the 4-aminoquinazoline in 13–28% yields.
Notably, the developed protocol showed some limitations, such as a smaller substrate
scope, a lower yield, and purification difficulties.
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9. Gold-Catalyzed Protocols

Gold-catalyzed C-H activation, C-H functionalization and cross-coupling reactions
have emerged as a potential tool for the development of new methods for heterocyclic
compounds. In comparison to other transition metals such as Pt, Pd and Rh, gold has some
advantages such as a variable oxidation state (+1 and +3), less toxicity, and the ability to
carry out reactions in catalytic amounts without the use of external ligands [148].

In 2015, Wang and co-workers reported the Au/TiO2-catalyzed synthesis of 2,4-disubstituted
quinazolines from o-nitroacetophenones/o-nitrobenzophenones/o-nitrobenzaldehyde (77) and
alcohols (2) using aqueous ammonia (41) as a nitrogen source via a hydrogen transfer strategy
(Scheme 83) [149]. Under optimized conditions, a broad range of benzyl alcohols and aliphatic
alcohols underwent the reaction and afforded the corresponding 2,4-disubstituted quinazolines in
good to high yields. The steric factor plays a prominent role in product formation. The developed
protocol showed good tolerance to the air and moisture and retained the catalytic efficacy of the
heterogeneous catalytic system, i.e., gold nanoparticles, which could be reused readily. Moreover,
this transformation did not require any additional additive, including an oxidant or reductant.
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Scheme 83. Synthesis of 2,4-disubstituted quinazolines from o-nitroacetophenones.

In 2015, Zhan and his group reported a Au(I)-catalyzed method for the synthesis
of 5,6-dihydropyrazolo[1,5-c]quinazolines (62) via the chemoselective bicyclization of N-
propargylic sulfonylhydrazones (85) in DMSO at room temperature (Scheme 84) [150]. A
variety of N-propargylic sulfonylhydrazones bearing different functional groups smoothly
delivered the corresponding products in good to excellent yields. The developed transfor-
mation involved the cyclization of the hydrazone nitrogen instead of the usually favored
aniline nitrogen onto the alkyne. The synthetic utility of the present method was explored
by synthesizing a potential Eg5/Kinesin spindle protein inhibitor in an 84% yield.
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10. Ruthenium-Catalyzed Protocols

In recent years, ruthenium-catalyzed C-H activation and annulation reactions have
been widely used for the discovery of novel organic chemistry approaches. Ruthenium
catalysts are less expensive, stable in both air and water, compatible with oxidants, and
work under mild reaction conditions. As a result, ruthenium catalysts have also played an
important role in quinazoline synthesis via C-N bond formation reactions [151].

In 2014, Jiang and co-workers reported a ruthenium-catalyzed dehydrogenative
method for the synthesis of 2-arylquinazolines from the reaction of 2-amino-arylmethanols
(4) and benzonitriles (5) by employing Ru3(CO)12, xantphos and a t-BuOK catalytic sys-
tem (Scheme 85) [152]. The developed protocol was examined with different substituted
2-aminoaryl-alcohols and benzonitriles under optimized conditions to afford the respective
products in 18–76% yields. The method was found to have several advantages such as
operational simplicity, broad substrate scope, high atom efficiency, and the use of environ-
mentally benign halogenated reagents.
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In 2019, Wan et al. demonstrated the synthesis of quinazolines via the dehydrogenative
coupling reaction of o-amino-benzyl alcohols (4) and (hetero)aryl or alkyl nitriles (5) in the
presence of NNN pincer Ru(II)-catalyst (Scheme 86) [153]. The optimized set of conditions
successfully produced a variety of C-2 substituted quinazolines in moderate to good yields.
Mechanistically, the reaction involved various cascade events such as alcohol oxidation
and nitrile hydration followed by cyclo-condensation to yield the respective products. It is
noteworthy that both the Ru catalyst and KOtBu are essential to this transformation.
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In 2018, Gogoi and co-workers reported an unprecedented strategy for the synthe-
sis of 2,4-disubstituted quinazolines from 2-phenyl-dihydrophthalazinediones (86) with
alkynes (59) by applying ruthenium as a catalyst and 1,3-bis(diphenyl-phosphino)propane
(DPPP) as a ligand in tert-amyl alcohol at 90 ◦C (Scheme 87) [154]. The reaction pathway
comprised a few important steps such as Ru-catalyzed C-H bond activation followed by
an annulation reaction through alkyne cleavage. A variety of 2,4-disubstituted quinazo-
lines were successfully synthesized in good to excellent yields under optimized reaction
conditions. Notably, the dialkyl-substituted alkynes, terminal alkynes, silyl- and bromo-
group-substituted alkynes were not found to be good substrates for this reaction, whereas
diaryl-, arylalkyl- and arylester-substituted unsymmetrical alkynes worked well under
optimized conditions.
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thesis of 2-aroylated quinazolines in DCE solvent (Scheme 89) [158]. A wide range of 4-
aryl triazoles reacted smoothly with C-3 methylated 2,1-benzisoxazole bearing several 
EDGs and EWGs under optimized conditions to provide the desired products in moderate 
to good yields. The orientation of the substituents on the aryl ring of triazole exerted a 
notable impact, as the o-substituted substrates provided relatively lower yields of the de-
sired products as compared to the m- and p-substituted substrates. Notably, C-3 unsub-
stituted or 3-phenyl-2,1-benzisoxazoles could not produce the respective products under 
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In 2019, Yi and his research group explored the ligand-induced ruthenium-catalyzed
synthesis of 2-substituted quinazolines from the coupling reaction of 2-aminophenyl ke-
tones (33) with amines (42) (Scheme 88) [155]. The in situ-generated ruthenium hydride
complex with a catechol ligand was found to exhibit uniquely high catalytic activity and
selectivity in forming the quinazolines. The optimized protocol smoothly delivered the
respective C-2 substituted quinazolines in moderate to good yields with the elimination
of only H2O and H2 gas as side products. In this process, a variety of benzylamines and
alkylamines participated well in the reaction. The developed protocol was successfully
extended for the deaminative synthesis of quinazolinones using 2-aminophenyl ketones
and benzyl/alkylamides.
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11. Rhodium-Catalyzed Protocols

Rhodium-catalyzed C-C and C-N bond formation has been rapidly developed in
recent years and has become an alternative tool to traditional coupling reactions using
organometallic reagents [156,157]. Researchers have successfully synthesized quinazoline
analogs using a rhodium catalyst.

In 2016, Tang and co-workers accomplished an unprecedented Rh(II)-catalyzed trans-
annulation of N-sulfonyl-1,2,3-triazoles (88) with 2,1-benzisoxazoles (87) for the synthesis of
2-aroylated quinazolines in DCE solvent (Scheme 89) [158]. A wide range of 4-aryl triazoles
reacted smoothly with C-3 methylated 2,1-benzisoxazole bearing several EDGs and EWGs
under optimized conditions to provide the desired products in moderate to good yields. The
orientation of the substituents on the aryl ring of triazole exerted a notable impact, as the
o-substituted substrates provided relatively lower yields of the desired products as compared to
the m- and p-substituted substrates. Notably, C-3 unsubstituted or 3-phenyl-2,1-benzisoxazoles
could not produce the respective products under the developed reaction conditions.
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In 2016, Wang et al. described a Rh(III)-catalyzed double C-N bond formation sequence
for the synthesis of substituted quinazolines through intermolecular C-H functionalization of
benzimidates (27) and dioxazolones (28) in DCE (Scheme 90) [159]. Dioxazolone bearing differ-
ent EDGs and EWGs at different positions of the phenyl ring reacted smoothly with various
aryl/heteroarylimidates under standard reaction condition to produce the range of quinazoline
derivatives in good to excellent yields (66–96%). Notably, alkyl or heteroaryl substituted dioxa-
zolone derivatives reacted well with arylimidates under similar reaction conditions to afford the
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corresponding products in 73–87% yields. In addition, dioxazolone played an important role as
an internal oxidant to maintain the catalytic cycle of the reactions.
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In 2016, Li and his team developed an efficient tandem approach between ketoximes (27)
and dioxazolones (28) for the synthesis of quinazoline N-oxides (84) through Rh(III)-catalyzed
C-H activation/amidation followed by Zn(II)-catalyzed cyclization/condensation reactions
(Scheme 91) [160]. Diversely substituted dioxazolones, including aromatic, heteroaromatic, and
aliphatic substituents, reacted smoothly with oximes bearing electron-donating and withdraw-
ing groups on the aryl ring to provide the desired products in moderate to excellent yields.
Moreover, other oxime derivatives such as 1-tetralone, propiophenone, and butyrophenone
were also successfully participated under similar reaction conditions to afford the corresponding
products in good yields. Unfortunately, benzothiophene failed to produce the desired product.
The synthetic utility of the developed protocol was demonstrated by the deoxygenation of
quinazoline N-oxides under Zn, NH4Cl, and water reaction conditions.
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In 2016, Jiao and colleagues demonstrated a Rh/Cu co-catalyzed C-H bond activation
and annulation approach for the synthesis of quinazolines derivatives through the reaction
of imidates (27) with alkyl azides (7) in chlorobenzene (Scheme 92) [161]. The developed
method showed a broad substrate scope and functional group tolerance on both starting
materials to provide the respective products in moderate to excellent yields (38–90%). No-
tably, the simple nonyl azide containing a long carbon chain also worked well under similar
reaction conditions and delivered the desired quinazoline in a 38% yield. This method
has shown some advantageous features such as good functional group compatibility, high
atom efficiency, O2 as the terminal oxidant, and azides as a nitrogen source. In addition,
this approach provides N2 and H2O as environmentally benign byproducts.
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In 2018, Cheng and team described rhodium-catalyzed annulation reaction between 2-
arylimidazoles (55) and dioxazolones (28) for the synthesis of imidazo[1,2-c]quinazolines (32) in
DCE (Scheme 93) [162]. A broad range of 2-arylimidazoles bearing both EDGs and EWGs reacted
smoothly with dioxazolone derivatives and successfully delivered the respective fused quina-
zolines in good to excellent yields (49–95%). However, 2-methylimidazole, 2-ethylimidazole,
2-(piperidin-4-yl)-1H-benzo[d]imidazole, and 2- benzyl-1H-benzimidazole failed to produce
the respective products under optimized reaction conditions. Mechanistically, the reaction
proceeded through ortho-C-H bond amidation followed by intermolecular cyclization. The
practicability of this procedure was applicable at a 2 mmol scale, leading to the production
of the quinazolines in a 71% yield. The reaction mechanism indicates that intermediate I is
formed by the chelation-assisted cleavage of ortho C–H bond in the presence of Rh(III) and
Ag(I). The intermediate I on the reaction with 1,4,2-dioxazol-5-one provides rhodium carbene
species II, along with the extrusion of CO2. The migratory insertion of rhodium carbene species
II takes place to afford intermediate III. Finally, intermediate III is converted to IV along with
Rh(III) species, fulfilling the catalytic cycle. Intermediate IV produced quinazoline through
intramolecular cyclization via the dehydration reaction.
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In 2018, Cui and his group reported the synthesis of substituted benzo[4,5]imidazo[1,2-c]
quinazolines (32) through the reaction of N-protected-2-phenylbenzoimidazole (55) and
dioxazolones (28) catalyzed by either Rh(III) or Ir(III) catalytic systems (Scheme 94) [163].
The developed protocol showed a broad range of functional group compatibility on both
substrates to produce the respective fused quinazoline products in good to excellent
yields with only the elimination of CO2 as a green by-product. The o-methylbenzene-



Molecules 2024, 29, 2353 46 of 54

or naphthalene-substituted dioxazolones showed dramatically decreased reactivity, pre-
sumably due to the steric hindrance. Notably, the alkyl and benzyl-substituted dioxa-
zolones worked well and produced the desired products in 56–87% yields. The reaction
of 2-phenyl-1-tosyl-1H-indole with dioxazolone did not produce the respective product
under the standard conditions, suggesting that imine was the directing group rather than
the quaternary amine.
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In 2019, Wang et al. reported a Rh(III)-catalyzed C-H amidation and intra-molecular
cyclization strategy for the synthesis of indolo[1,2-c]quinazolines using 2-arylindole (55) and
dioxazolone (28) substrates in DCE as the solvent (Scheme 95) [164]. The developed method has
shown a broad range of substrate and functional group compatibility to produce the desired
products in good to excellent yields. The authors highlighted the advantageous features of this
method, including the high atom economy, the removal of eco-friendly by-products, i.e., H2O
and CO2, and the avoidance of any pre-functionalized substrates. The authors also demonstrated
the anticancer activity of selected products against PC3, A549, and MCF-7 cancer cell lines.
Amongst these, one compound showed considerable activity (IC50 = 30.7 µM) against A549
(lung cancer) cell as compared to cisplatin (IC50 = 12.2 µM).

Molecules 2024, 29, x FOR PEER REVIEW 46 of 53 
 

 

produce the desired products in good to excellent yields. The authors highlighted the ad-
vantageous features of this method, including the high atom economy, the removal of eco-
friendly by-products, i.e., H2O and CO2, and the avoidance of any pre-functionalized sub-
strates. The authors also demonstrated the anticancer activity of selected products against 
PC3, A549, and MCF-7 cancer cell lines. Amongst these, one compound showed consider-
able activity (IC50 = 30.7 µM) against A549 (lung cancer) cell as compared to cisplatin (IC50 
= 12.2 µM). 

 
Scheme 95. Synthesis of indolo[1,2-c]quinazolines from 2-arylindoles and dioxazolones. 

In 2019, Lai et al. explored the Rh-catalyzed synthesis of 4-aroylated quinazolines 
from the reaction of N-arylamidines (40) and sulfoxonium ylides (89) in the presence of 
CuF2/CsOAc as a combined additive in DCE solvent through C-H bond activation and [5 
+ 1] annulation steps (Scheme 96) [165]. A broad range of amidines and aryl-substituted 
sulfoxonium ylides under the developed reaction conditions could provide the desired 
products in moderate to high yields. However, alkyl-substituted sulfoxonium ylides failed 
to produce the respective products under optimized conditions. Notably, the use of 
NaOAc as an additive in the place of CuF2/CsOAc successfully led to the formation of 3-
aroylated indoles under similar reaction conditions. The selected quinazolines were also 
tested for their anti-tumor activity. However, none of the tested quinazolines have shown 
good anti-tumor activity. 

 
Scheme 96. Synthesis of C-4 aroylated quinazolines. 

In 2020, Wu and co-workers developed a Rh(III)-catalyzed C-H bond activation fol-
lowed by [5 + 1] annulation strategy for the synthesis of 4-ethenyl quinazolines from N-
arylamidines (40) with di-arylated cyclopropenones (90) in DCM under reflux conditions 
(Scheme 97) [166]. A variety of 4-ethenyl quinazolines were successfully synthesized un-
der optimized reaction conditions. Importantly, the dialkyl-cyclopropenones and unsym-
metrical cyclopropenone were found to be inefficient in the developed reaction conditions. 
The authors isolated 2-benzoyl quinazolines products when C-benzyl imidamides were 
treated with cyclopropenones under optimal conditions. This was presumably due to the 
successive oxidation of benzylic carbon. The broad substrate scopes, high atom economy, 
and elimination of water as a sole by-product are the appreciable aspects of this method. 

 
Scheme 97. Synthesis of 2-benzoyl-/4-ethenyl quinazolines. 

Scheme 95. Synthesis of indolo[1,2-c]quinazolines from 2-arylindoles and dioxazolones.

In 2019, Lai et al. explored the Rh-catalyzed synthesis of 4-aroylated quinazolines from the
reaction of N-arylamidines (40) and sulfoxonium ylides (89) in the presence of CuF2/CsOAc
as a combined additive in DCE solvent through C-H bond activation and [5 + 1] annulation
steps (Scheme 96) [165]. A broad range of amidines and aryl-substituted sulfoxonium ylides
under the developed reaction conditions could provide the desired products in moderate to
high yields. However, alkyl-substituted sulfoxonium ylides failed to produce the respective
products under optimized conditions. Notably, the use of NaOAc as an additive in the place of
CuF2/CsOAc successfully led to the formation of 3-aroylated indoles under similar reaction
conditions. The selected quinazolines were also tested for their anti-tumor activity. However,
none of the tested quinazolines have shown good anti-tumor activity.
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In 2020, Wu and co-workers developed a Rh(III)-catalyzed C-H bond activation fol-
lowed by [5 + 1] annulation strategy for the synthesis of 4-ethenyl quinazolines from
N-arylamidines (40) with di-arylated cyclopropenones (90) in DCM under reflux conditions
(Scheme 97) [166]. A variety of 4-ethenyl quinazolines were successfully synthesized under
optimized reaction conditions. Importantly, the dialkyl-cyclopropenones and unsymmet-
rical cyclopropenone were found to be inefficient in the developed reaction conditions.
The authors isolated 2-benzoyl quinazolines products when C-benzyl imidamides were
treated with cyclopropenones under optimal conditions. This was presumably due to the
successive oxidation of benzylic carbon. The broad substrate scopes, high atom economy,
and elimination of water as a sole by-product are the appreciable aspects of this method.
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In 2020, for the first time, Dong and co-workers explored a Rh(III)-catalyzed C-H
bond activation and tandem [4 + 2] annulation approach for the synthesis of quinazolines
through the reaction of N-alkoxyamides (91) (amide precursor) and benzimidate (40) in
DCE as a solvent (Scheme 98) [167]. A broad range of aryl imidates and N-alkoxyamides
(N-methoxyarylamides, N-methoxy-acetamide, N-methoxycinnamamide and N-methoxy-
heteroarylamides) successfully delivered the desired products in good to excellent yields.
The developed approach showed limitations in terms of isopropoxy substituted aryl im-
idates, which could not produce the respective product under optimal conditions. The
authors performed a few synthetic transformations, which included the synthesis of quina-
zolinone via the acidic hydrolysis of the ethoxy group of quinazoline and directing the
group-assisted o-CH-amidation of 2-phenylquinazoline.
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12. Summary and Outlook

In summary, quinazolines and their analogs have taken a leading role in the current
research due to the wide variety of their applications in various disciplines of science like
medicinal chemistry and material science. This review summarizes an overview regarding
the transition metal-assisted synthesis of various quinazolines. Numerous methodologies
such as directing group-assisted C-H activation, C-H bond functionalization, condensation
followed by intramolecular dehydrative/dehydrogenative cyclizations, cascade reactions,
and multi-component processes, etc., have emerged as a powerful tool for the synthesis
of quinazolines. Notably, a few of these methods suffer from some limitations, such as a
high loading of transition-metal catalysts (equimolar amount), a high temperature, and
harsh reaction conditions. Despite the significant development of several fascinating
methods, further studies still need to be developed for the synthesis of a wide variety of
quinazoline derivatives using sustainable and atom-economic reaction processes under
mild and environmentally benign conditions.
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