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Abstract: Micron-scale zero-valent iron (ZVI)-based material has been applied for hexavalent
chromium (Cr(VI)) decontamination in wastewater treatment and groundwater remediation, but
the passivation problem has limited its field application. In this study, we combined aluminum
chloride solution with ZVI (pcZVI-AlCl3) to enhance Cr(VI) removal behavior under aerobic con-
ditions. The optimal pre-corrosion conditions were found to be 2.5 g/L ZVI, 0.5 mM AlCl3, and a
4 h preconditioning period. Different kinds of techniques were applied to detect the properties of
preconditioned ZVI and corrosion products. The 57Fe Mössbauer spectra showed that proportions
of ZVI, Fe3O4, and FeOOH in pcZVI-AlCl3 were 49.22%, 34.03%, and 16.76%, respectively. The
formation of Al(OH)3 in the corrosion products improved its pHpzc (point of zero charge) for Cr(VI)
adsorption. Continuous-flow experiments showed its great potential for Cr(VI) removal in field
applications. The ZVI and corrosion products showed a synergistic effect in enhancing electron
transfer for Cr(VI) removal. The mechanisms underlying Cr(VI) removal by pcZVI-AlCl3 included
adsorption, reduction, and precipitation, and the contribution of adsorption was less. This work
provides a new strategy for ZVI pre-corrosion to improve its longevity and enhance Cr(VI) removal.

Keywords: adsorption; reduction; Cr(VI) removal; pre-corrosion; zero-valent iron

1. Introduction

Chromium (Cr) has been used in the textile, dyeing, plating, and leather industries
and generates wastewater containing Cr species that can have toxic effects on human
beings, such as lung cancer. Generally, Cr exists in both water and soil in the form of
toxic hexavalent chromium (Cr(VI)) and less toxic trivalent chromium (Cr(III)). In addition,
Cr(VI) is more mobile in the water environment [1–3]. To ensure health goals, the U.S.
Environmental Protection Agency requested a concentration below 0.1 mg/L for Cr(VI) in
drinking water [4], and this requirement is 0.05 mg/L in the national standard GB 5749-2022
of China [5].

In the past decades, some techniques have been applied in Cr(VI) decontamination in
wastewater treatment and groundwater remediation, including adsorption [6], membrane
process [7], photocatalytic reduction [8], electrochemical methods [9,10], and biological
treatment [11]. Compared with these methods, the zero-valent iron-based technologies
have garnered lots of attention because of their low cost, environmental friendliness, easy
operation, and efficient performance [12,13]. However, a major challenge with ZVI is
the passivation problem, where generated iron hydroxides cover its surface, significantly
reducing its reactivity and longevity under different conditions [14]. This limitation has
hindered the widespread application of ZVI in the field.
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To enhance the utilization efficiency and sustained performance of ZVI, numer-
ous countermeasures have been devised by researchers. These include sulfidation of
ZVI [15], ligand-modified ZVI [16], ZVI–Fe3O4 composites [12], iron–carbon compos-
ites [17], iron/aluminum bimetals [18], ZVI@Fe2O3 [19], and ZVI@Mg(OH)2 [20]. The
modifications to the Fe0 surface primarily aim to enhance its durability and contaminant
removal capacity through three key strategies: (1) establishing a core-shell structure to
mitigate the passivation reaction, (2) constructing a galvanic cell to boost electrochemical
corrosion, and (3) strengthening the electron transfer of ZVI. Despite these efforts, it re-
mains challenging to further improve ZVI’s longevity and reactivity through a cost-effective
pretreatment approach for reducing chromate (Cr(VI)) content in wastewater treatment
and environmental remediation applications.

Recently, the pre-corrosion of micron-scale ZVI with strong oxidants such as H2O2 or
NaClO has been found to enhance its corrosion extent and successfully promote the removal
of oxyanions (e.g., selenate and phosphate) through adsorption and reduction [21,22].
Alternatively, dissolved oxygen (DO) is a cost-effective oxidant for ZVI preconditioning [23].
Furthermore, studies have shown that the pre-corrosion time and the presence of salts like
NaCl in the solution significantly influence the morphology and composition of corrosion
products, thereby affecting arsenate, selenate, and phosphate removal performance [24,25].
Additionally, chloride (Cl−) can trigger pitting corrosion in the solution to enhance the
contaminant removal [26].

While the impact of anions on pre-corrosion micron-scale zero-valent iron and the
subsequent contaminant removal has been extensively studied [25], there is limited knowl-
edge about the potential role of multivalent cations, such as Al3+. These cations could
potentially incorporate into the formation of corrosion products and promote Cr(VI) re-
moval. Notably, trivalent aluminum species (e.g., Al2O3, AlOOH, and Al(OH)3) with a high
pHpzc (point of zero charge) are favorable adsorbents for oxyanions, including chromate
(Cr(VI)) [27,28]. Given these findings, it is anticipated that the combination of Al3+ and Cl−

in a solution will prevent ZVI passivation by changing the local pH. Thus, pre-corroded
ZVI by AlCl3 solution could potentially exhibit improved longevity and enhanced Cr(VI)
sequestration capabilities.

Therefore, the aims of this study were: (1) to search for an adequate AlCl3 dose applied
to ZVI to obtain a maximum Cr(VI) removal, (2) to elucidate the individual role of Al3+

and Cl− to iron corrosion, (3) to assess the longevity of the pre-corroded ZVI, and (4) to
explore the Cr(VI) removal performance and underlying mechanisms of pcZVI-AlCl3. This
research is expected to facilitate our understanding of ZVI pretreatment with AlCl3 solution
towards Cr(VI) removal in field applications. The meanings of the symbols used in the
research are presented in Table 1.

Table 1. The meanings of the symbols.

Symbols Meanings

ZVI (Fe0) Zero-valent iron
pcZVI-AlCl3 ZVI pretreated with AlCl3 solution
pcZVI-NaCl ZVI pretreated with NaCl solution
pcZVI-H2O ZVI pretreated with DI water

Cr(IV) Hexavalent chromium
Cr(III) Trivalent chromium
Fe(T) Total iron
DO Dissolved oxygen

pHpzc pH point of zero charge

SEM-EDS Scanning electron microscopy with X-ray energy
dispersive spectrometer

XRD X-ray diffraction spectrometer
XPS X-ray photoelectron spectroscopy
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2. Results and Discussion
2.1. ZVI Pre-Corrosion Optimization and Characterization
2.1.1. ZVI Preconditioning Process Optimization via Batch Experiments

The effect of ZVI dosage on pre-corrosion for Cr(VI) decontamination was first ex-
plored, as shown in Figure S2a. The Cr(VI) removal efficiency increased from 19.70% to
approximately 100%, with ZVI dosage increasing from 0.5 g/L to 2.5 g/L. Thus, 2.5 g/L of
ZVI was used in the following optimization procedures.

The effect of ZVI pre-corrosion time is presented in Figure S2b. Herein, the pre-
corrosion time affects the ZVI corrosion extent, as well as the composition of the corrosion
products, which probably strengthens or impedes Cr(VI) removal. The removal efficiency
increased from 58.34% to 97.3% when the pretreated time increased from 1 to 4 h. With
the pretreated time further raised from 4 to 12 h, the Cr(VI) removal efficiency exhib-
ited a slightly declining trend. Therefore, the pre-corrosion time of 4 h was applied in
further experiments.

The effect of initial AlCl3 concentration on ZVI pre-corrosion for Cr(VI) removal is
exhibited in Figure S2c. The AlCl3 dose affected the ZVI pre-corrosion by generating an
acidic environment, and the Cr(VI) removal efficiencies under all conditions were above
90%. The AlCl3 concentration of 0.5 mM was selected for further experiments due to the
relatively high removal efficiency (>97%) and relatively low dosage.

The dissolved oxygen served as the oxidant in ZVI pre-corrosion, and Figure S2d
presents its effect on Cr(VI) removal. Unexpectedly, the Cr(VI) removal efficiencies were
quite stable (ranging from 89.19% to 93.87%) when the initial DO concentration varied
from 0.5 to 10 mg/L. This result suggests that DO concentration had less influence on ZVI
pre-corrosion towards Cr(VI) removal.

2.1.2. Corrosion Product Characterization

The SEM image of the pretreated ZVI is shown in Figure 1a, and the size of these
particles was around or lower than 100 µm. Additionally, the elemental mapping results
indicated the Fe, Al, and O elements existed on the surface of ZVI after pre-corrosion.

Figure 1b exhibits the XRD patterns of raw ZVI and corrosion products after pre-
corrosion. The two typical peaks of ZVI at 44.6◦ and 65.1◦ were in accordance with iron
(JCPDS No. 06-0696). For the corrosion products, the main peaks at 18.3◦, 30.1◦, 35.5◦,
43.1◦, 53.6◦, 57.1◦, 62.8◦, and 74.2◦ were consistent with Fe3O4 (JCPDS No. 19-0629). The
diffraction peak at 21.1◦ was ascribed to Al(OH)3 (JCPDS No. 38-0376). Therefore, the
corrosion products on the ZVI surface were a mixture of iron oxides and Al(OH)3.

The Raman spectrum of the above corrosion products is shown in Figure 1c. The
bands at 217 cm−1 and 279 cm−1 were in agreement with magnetite (Fe3O4) [29]. The
bands at 389 cm−1 and 688 cm−1 were in accordance with goethite (α-FeOOH), and the
band at 493 cm−1 was due to the akaganeite (β-FeOOH) [30]. The bands at 595 cm−1 and
707 cm−1 originated from wustite (FeO) and Al(OH)3, respectively [31,32]. These results
were similar to XRD characterization, and the FeOOH and FeO species were not found in
XRD patterns due to their low concentrations or amorphous properties.

To further investigate the iron species and proportions in the corrosion, the 57Fe
Mössbauer spectra were performed, as shown in Figure 1d and Table S1. The solid phase
of iron species in pcZCI mainly contained ZVI, Fe3O4, and FeOOH, and their content was
49.22%, 34.03%, and 16.76%, respectively. After thorough analysis, it was determined that
the corrosion products predominantly comprised iron oxides and Al(OH)3, with Fe3O4
emerging as the primary constituent.
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Figure 1. SEM image and elemental mappings (a) and 57Fe Mössbauer spectra (d) of micron-scale ZVI
particles after AlCl3 solution pretreatment, and XRD patterns (b) and Raman spectra (c) of separated
corrosion products.

2.2. The Role of Al3+ and Cl− in ZVI Pre-Corrosion
2.2.1. Cr(VI) Removal by ZVI Pretreatment with Different Solutions

To elucidate the individual contributions of different components in the AlCl3 solution
to ZVI pre-corrosion, a comparison was made between the Cr(VI) removal efficiency and
reaction rate of various pretreated ZVI samples. Figure 2a reveals that the Cr(VI) removal
process in the four systems is categorized into two stages based on pH change and Cr(VI)
removal kinetics: an initial rapid Cr(VI) capture within the first 30 min (Stage I), followed by
a gradual increase in removal efficiency until equilibrium (Stage II). In addition, the order
of Cr(VI) removal capacity is as follows: pcZVI-AlCl3 > pcZVI-NaCl > pcZVI-H2O > raw
ZVI. The significant increase in pcZVI-AlCl3 (97.10%) and raw ZVI (7.02%) highlighted
the effectiveness of ZVI pre-corrosion in enhancing Cr(VI) removal capacity. In addition,
ZVI pretreated with NaCl solution exhibited superior Cr(VI) removal performance and
produced more corrosion products than those pretreated with DI water, implying the
crucial role of Cl− in accelerating iron corrosion through pitting corrosion. Meanwhile, a
lower Cr(VI) removal efficiency of pcZVI-NaCl compared with pcZVI-AlCl3 suggests that
Al3+ generated an acidic condition for ZVI pre-corrosion and also played a significant role
in enhancing Cr(VI) removal.

The pH variations during the Cr(VI) removal process by the four kinds of pretreated
ZVI were also monitored, as shown in Figure 2b. The solution pH increased sharply in stage
I and exhibited a gradual rise in stage II. The pH variation of the four systems also followed
the sequence of pcZVI-AlCl3 > pcZVI-NaCl > pcZVI-H2O > raw ZVI. These results were
in accordance with Cr(VI) removal performance in Figure 2a, and the reaction between
pretreated ZVI and Cr(VI), O2, or protons mainly led to the pH increase [33].
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Figure 2. The comparison of Cr(VI) removal by raw ZVI particles and after AlCl3 solution, NaCl
solution, and DI water pretreatment. (a) Cr(VI) removal efficiency variation with time, (b) pH
variations during the reaction, (c) the Cr(VI) removal rate constant k under different conditions, and
(d) column experiments. Pretreatment conditions: AlCl3 = 0.5 mM, NaCl = 1.5 mM, preconditioning
time = 4 h, ZVI = 2.5 g/L. Test conditions: Cr(VI) = 10 mg/L, initial pH = 5.0 ± 0.1, T = 25 ◦C. Column
experiment: flow rate = 1 mL/min, EBCT = 4 min.

Figure 2c shows the reaction rate (from the first-order kinetic model fitting in Figure S4)
comparison of the above preconditioned ZVI. It was clear that the Cr(VI) removal rate in
the two stages followed the sequence of pcZVI-AlCl3 > pcZVI-NaCl > pcZVI-H2O > raw
ZVI. Additionally, the Cr(VI) removal rate of pcZVI-AlCl3 (0.04744 min−1) in stage I was
38.5 times that of raw ZVI (0.0012 min−1), indicating corrosion products on the ZVI surface
remarkably enhanced the Cr(VI) removal capability.

2.2.2. Column Experiment Comparison and Longevity Evaluation

In this study, the effluent concentration limit of 0.1 mg/L was established with an
inflow of 10 mg/L Cr(VI). As illustrated in Figure 2d, the treatment capacity of the four sys-
tems followed the order: pcZVI-AlCl3 > pcZVI-NaCl > pcZVI-H2O > raw ZVI. These results
demonstrated that pre-corrosion of ZVI not only enhanced its longevity in continuous-
flow processes but also improved the capacity toward Cr(VI) sequestration. Notably, the
effluent from the pcZVI-AlCl3 system remained below the 0.1 mg/L threshold throughout
the 1400 bed volumes. These results suggest that the pcZVI-AlCl3 system had significant
potential for field applications involving Cr(VI) removal.

2.2.3. SEM-EDS, XRD, and Zeta Potential Analysis

Figure 3 provides a morphological comparison of various pretreated ZVI samples,
revealing distinct surface characteristics. The raw ZVI exhibited a relatively smooth surface.
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In contrast, the surface of pcZVI-AlCl3 was covered with spherical particles ranging from 50
to 200 nm in diameter. On the other hand, the pcZVI-NaCl surface displayed both flake-like
and spherical particles, indicating a different composition of corrosion products compared
to pcZVI-AlCl3. The surface of pcZVI-H2O appeared partially corroded with thin and
irregular pieces. Notably, minimal corrosion products can be peeled off from pcZVI-H2O
via sonication for collection and, therefore, were not compared with pcZVI-AlCl3 and
pcZVI-NaCl in the subsequent XRD and Zeta potential analyses. Overall, the flower-like
structure in pcZVI-AlCl3, pcZVI-NaCl, and pcZVI-H2O resulted from ZVI pre-oxidation
and contributed to a faster Cr(VI) removal rate compared with raw ZVI.
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Figure 3. SEM images of raw ZVI particles before (a) and after pretreatment by AlCl3 solution (b),
NaCl solution (c), and DI water (d).

Figure 4a shows the XRD pattern comparison between corrosion products in pcZVI-
AlCl3 and pcZVI-NaCl. Similar to pcZVI-AlCl3 (see Section 2.1.2), the typical peaks repre-
senting Fe3O4 also appeared in pcZVI-NaCl, while the diffraction peaks of Al(OH)3 were
not found. Additionally, the new peaks at 44.8◦, 71.2◦, and 75.2◦ were in line with (131),
(132), and (331) planes of goethite (JCDPS No. 29-0713). This result was consistent with
SEM characterization, indicating the acidic condition in the AlCl3 solution significantly
influenced the morphology and composition of ZVI corrosion products, ultimately affecting
its Cr(VI) removal performance and longevity.

Figure 4b shows the Zeta potential comparison (in a pH range of 3–10) between
corrosion products in pcZVI-AlCl3 and pcZVI-NaCl. The pHpzc of corrosion products
in pcZVI-AlCl3 (8.3) was higher than that in pcZVI-NaCl (6.3), which probably resulted
from the formation of Al(OH)3 [34]. A high value of pHpzc on the surface of pcZVI-AlCl3
contributed to capturing negatively charged chromate via electrostatic attraction, which
was beneficial for further reaction towards Cr(VI) sequestration.
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Figure 4. XRD patterns (a) and Zeta potential (b) of separated corrosion products in pcZVI-AlCl3 and
pcZVI-NaCl.

2.3. The Contribution of Corrosion Products in pcZVI-AlCl3
2.3.1. The Comparison of Cr(VI) Removal in Different Systems

To differentiate the contribution of core ZVI and corrosion products in Cr(VI) removal
by pcZVI-AlCl3, they were individually separated via sonication for the following com-
parison, as exhibited in Figure 5a. The Cr(VI) removal efficiency of pcZVI-AlCl3 was
remarkably higher than the sum of using bare raw ZVI and corrosion products alone,
suggesting a synergistic effect between these components.
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The removal efficiencies of separated core ZVI and corrosion products after a 180 min
reaction were 91.08% and 4.69%, respectively. This result implied that reduction and
precipitation were the main pathways of Cr(VI) sequestration by pcZVI-AlCl3, and the
role of adsorption was less. Compared with raw ZVI, the Cr(VI) removal efficiency of
separated core ZVI from pcZVI-AlCl3 was significantly improved by 12 times. This was
due to the passivation layer on raw ZVI being destroyed via pre-corrosion. Figure S5 shows
the surface of the separated core ZVI was still partially covered by some corrosion products,
which probably promoted electron transfer for Cr(VI) removal.

2.3.2. Tafel Analysis

Figure 5b shows the open-circuit potential comparison via Tafel scans between raw
ZVI and pcZVI-AlCl3 in the Cr(VI) solution. The potential of pcZVI-AlCl3 (−0.55 V) was
lower than ZVI (−0.49 V), suggesting a lower corrosion resistance of pcZVI-AlCl3. This
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resulted from the semi-conductive Fe3O4 on the ZVI surface, which facilitated sustainable
electron transfer for Cr(VI) reduction.

2.4. Effect of Solution Chemistry on Cr(VI) Removal
2.4.1. Effect of Initial pH

Figure 6a illustrates the efficacy of pcZVI-AlCl3 in removing Cr(VI) across a pH
spectrum of 3–9. Notably, at pH 3, the removal efficiency for Cr(VI) approached 100%,
surpassing that of other pH conditions, and gradually declined with increasing pH. The
solution pH experienced an initial rise within the first 30 min and stabilized thereafter,
likely attributed to ZVI corrosion, as depicted in Figure 6b. This process yielded Fe(II) and
Fe(III) in the form of iron oxides, which passivated the ZVI. These findings align with prior
research and conform to the two-stage reaction process detailed in Section 2.2.1 [33,35].
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and total iron (c) and Cr(III) (d) concentration variations during the reaction process. Pretreatment
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pH = 3–9, Cr(VI) = 10 mg/L, T = 25 ◦C.

In Figure 6c, variations in Fe(T) concentration are depicted. At pH 3, ZVI corrosion
ensued vigorously, generating substantial Fe(II) due to the presence of high levels of H+,
while total iron concentration approached zero at pH 5–9, indicative of iron hydroxide
formation. The release of Fe(II) facilitated Cr(VI) reduction, resulting in a sharp rise
followed by a decline in Cr(III) concentration under pH 3, as demonstrated in Figure 6d.
Consequently, the precipitation of Fe(III)-Cr(III) or Cr(III) hydroxides on the pcZVI-AlCl3
surface hindered further reaction between ZVI and Cr(VI). The corresponding reactions are
outlined below:

Fe0 + CrO4
2− + H+ → Fe3+ + Cr3+ + 4H2O (1)

3Fe2+ + CrO2−
4 + 8H+ → 3Fe3+ + Cr3+ + 4H2O (2)
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xCr3+ + (1 − x)Fe3+ + 3H2O → CrxFe1−x(OH)3 + 3H+ (3)

2.4.2. Matrix Effects

The impact of Cl−, NO3
−, SO4

2−, HCO3
−, Ca2+, and Mg2+ on Cr(VI) removal by

pcZVI-AlCl3 was explored, as demonstrated in Figure S6. The presence of Ca2+ and Mg2+

slightly improved the Cr(VI) removal efficiency, presumably due to coprecipitation in an
alkaline environment. This finding indicated that pcZVI-AlCl3 can effectively remove
Cr(VI), even in conditions of high water hardness. On the other hand, the Cr(VI) removal
was not significantly disturbed by Cl−. However, NO3

−, SO4
2−, and HCO3

− exhibited
suppressive effects. Although NO3

− competed with Cr(VI) for electrons, it had the least
inhibitory effect. SO4

2− affected Cr(VI) removal due to its anionic structure similar to that
of adsorbed species. HCO3

− showed a severe inhibitory effect, presumably resulting from
FeCO3 precipitation, similar to the behavior observed for ZVI [36]. The inhibitory effect of
HCO3

− and SO4
2− could also be ascribed to the complexation of the corrosion products of

pcZVI-AlCl3, leading to a less positively charged surface [37].

2.5. Mechanisms
2.5.1. SEM-EDS and XRD

Figure S7 shows the SEM images and EDS of pcZVI-AlCl3 after Cr(VI) removal. The
morphology was close to that prior to the reaction, and the Cr element appeared, indicating
the immobilization of Cr by pcZVI-AlCl3. Figure 7a exhibits the XRD patterns of corrosion
products in pcZVI-AlCl3, compared before and after the reaction. A new peak at 33.3◦ was
observed in the corrosion products following Cr(VI) removal, which was probably ascribed
to the (130) plane of goethite (JCPDS No. 29-0713). This finding indicates that some Fe3O4
had been transformed into FeOOH through oxidation. However, no peaks corresponding
to Cr(III) precipitates were detected in the corrosion products after the reaction, which
could be due to the amorphous structure of these precipitates.
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2.5.2. Zeta Potential

Figure 7b shows the Zeta potential of corrosion products before and after Cr(VI)
removal by pcZVI-AlCl3. The pHpzc of corrosion products decreased from 8.3 to 7.5 after
Cr(VI) removal. This decrease in pHpzc was likely attributed to the adsorption of Cr(VI)
on the corrosion products via ligand exchange [34,38], which supported that adsorption
contributed to negatively charged Cr(VI) species removal by pcZVI-AlCl3.

2.5.3. XPS

Figure 8a displays the wide-scan XPS spectra within the energy range of 0 to 1200 eV.
The peaks observed at 73.65 eV, 283.81 eV, 531.12 eV, and 711.11 eV correspond to Al 2p,



Molecules 2024, 29, 2350 10 of 15

C 1s, O 1s, and Fe 2p, respectively. Notably, after Cr(VI) removal, a new peak emerged at
577.14 eV, which is in line with Cr. These results confirmed the successful immobilization
of Cr on corrosion products and were consistent with the findings obtained from the
EDS characterization.
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Figure 8b shows the Cr 2p XPS spectra of corrosion products after the reaction. The
peaks at 589.58 eV and 579.00 eV correspond to Cr(VI) 2p1/2 and Cr(VI) 2p3/2, respectively.
These peaks confirmed the presence of adsorbed negative Cr(VI) species on the surface
of the corrosion products. [33]. Additionally, the peaks at 586.98 eV and 577.04 eV were
attributed to Cr(III) 2p1/2 and Cr(III) 2p3/2, respectively. This result indicated that Cr(VI)
was reduced to Cr(III) during the process [35]. In addition, Table S2 reveals that the
proportion of Cr(III) is 81.53%, while Cr(VI) accounts for 18.47%. This result indicates
that both adsorption and reduction contributed significantly to the overall Cr(VI) removal
process [39]. Furthermore, the precipitation of Cr(III) species participated in the removal
of Cr(VI).

Figure 9a,c show the Fe 2p XPS spectra of corrosion products before and after Cr(VI)
removal. These spectra reveal that both Fe(II) and Fe(III) species existed in the corrosion
products. A detailed analysis of the binding energies and proportions of the corresponding
Fe(II) 2p1/2, Fe(II) 2p3/2, Fe(III) 2p1/2, and Fe(III) 2p3/2 peaks is provided in Table S3.
Notably, the content of Fe(II) in the corrosion products declined from 65.27% to 58.57%
after Cr(VI) removal. This decrease suggests that partial Fe(II) species were oxidized to
Fe(III) during the Cr(VI) removal process [40].

Figure 9b,d compare the O 1s spectra of corrosion products before and after Cr(VI)
removal. The peaks at 531.40 eV, 530.00 eV, and 532. 60 eV fitted well with OH−, O2−, and
H2O species, respectively. As depicted in Table S4, the proportion of OH− decreased and
O2− increased after Cr(VI) removal. This trend resulted from the adsorption of negatively
charged Cr(VI) species on the corrosion products, as well as the precipitation of Cr(III)
species. The adsorption of Cr(VI) likely displaced some OH− groups (ligand exchange),
leading to a decrease in their relative proportion. Concurrently, the Cr(III) precipitates
may result in the Cr(III)-related hydroxides, thereby increasing the proportion of O2−

species [41]. These findings provided further evidence for Cr(VI) removal by pcZVI-AlCl3
and the associated changes in the surface chemistry of the corrosion products.

Overall, the Cr(VI) removal by the pcZVI-AlCl3 process included several steps. The
adsorption occurred in the initial stage via electrostatic attraction and ligand exchange, and
this process was enhanced by the Al(OH)3 in the corrosion products with a high pHpzc of
8.3. The semi-conductive Fe3O4 on the ZVI surface constructed a core-shell-like galvanic
cell to enhance electron transfer from ZVI to the surface of pcZVI-AlCl3 for Cr(VI) reduction.
The aqueous Fe(II), surface-bound Fe(II), and structural Fe(II) could reduce Cr(VI) to Cr(III),
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and these processes are highly dependent on pH. The released Fe(II) was oxidized to Fe(III)
and participated in the coprecipitation with Cr(III).
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3. Materials and Methods
3.1. Chemicals and Materials

The detailed chemicals used in this study are shown in Text S1 of Supplementary Data.

3.2. Preparation and Optimization of pcZVI-AlCl3

To achieve the pre-corrosion of micron-scale ZVI, 50 mL centrifuge tubes were pre-
pared by filling them with raw ZVI powder and 40 mL of AlCl3 solution. These tubes were
then rotated at a speed of 30 rpm for a specified duration to allow the reaction to proceed.
Once the pretreatment was complete, the suspension and pretreated ZVI were separated
using a magnet. The mixed material was subsequently washed with DI water until the
conductivity of the effluent stabilized, followed by placement in a vacuum environment.

To obtain the pretreated ZVI for maximum Cr(VI) removal, various parameters influ-
encing the pre-corrosion process were examined. Firstly, dosages of ZVI ranging from 0.5
to 2.5 g/L were tested to determine the optimal amount. Secondly, pre-corrosion time was
varied from 1 to 12 h to establish the most favorable corrosion extent. Lastly, the impact of
initial Al3+ concentrations (0.1 to 1 mM) and dissolved oxygen (DO) levels (0.5 to 10 mg/L)
were assessed. To control initial DO concentrations, the solution was bubbled with nitrogen
for several minutes, and the experiment was conducted in an anaerobic chamber.
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3.3. Batch Experiments

In the subsequent experiments, the optimized pcZVI-AlCl3 was utilized. All the
experiments were conducted at least in duplicate, and an average was used. Unless
otherwise stated, the experimental solutions contained 10 mg/L Cr(VI) (pH = 5 ± 0.1). Forty
milliliters of the Cr solution was dispensed into a series of centrifuge tubes containing pre-
corroded ZVI. These tubes were then rotated at 30 rpm at 25 ◦C. At predefined time intervals,
a set of tubes was removed for immediate pH measurement. The filtrate was tested for
Cr(VI), Cr(III), and total iron (Fe(T)) concentrations after filtration with 0.45 µm PVDF
membranes and syringes. To assess the initial pH effects, experiments were conducted
with solutions ranging from pH 3 to 9. Additionally, matrix effects were examined by
introducing Cl−, SO4

2−, NO3
−, HCO3

−, Ca2+, and Mg2+ in concentrations ranging from 0
to 10 mM.

To elucidate the specific contribution of different components in the AlCl3 solution to
ZVI corrosion, ZVI pretreated with DI water and with NaCl solution were established as
comparative controls for Cr(VI) removal. These pretreated ZVIs were designated as pcZVI-
AlCl3, pcZVI-NaCl, and pcZVI-H2O, respectively. Additionally, raw ZVI was employed for
Cr(VI) removal under identical conditions to serve as a control test. To further investigate
the individual influence of constituents in pcZVI-AlCl3 on Cr(VI) removal, the corrosion
products and ZVI core were separated via sonication and tested separately for their Cr(VI)
removal capabilities.

3.4. Characterization of Preconditioned ZVI and Corrosion Products

The optimized pre-corroded ZVI was evaporated at 35 ◦C in a vacuum oven (DZF-
6030A, Yiheng, China) to ensure stability and consistency before being characterized. To
separate the corrosion products from the surface of pre-corroded ZVI, sonication (SB-
5200DT, SCIENTZ, Ningbo, China) was performed for 15 min. This was followed by
centrifugation (TG16-WS, Xiangyi, Xiangtan, China) at 8000 rpm for 10 min to effectively
separate the corrosion products. Both the pre-corroded ZVI and the separated corrosion
products were then dried under the same vacuum conditions. All samples were stored
in self-sealing plastic bags to ensure purity and prevent oxidation before characterization.
The detailed characterization of pretreated ZVI and corrosion products are presented in
Text S2 of Supplementary Data, including SEM-EDS, XRD, Raman, and 57Fe Mössbauer
spectra, Zeta potential, and XPS. It should be noted that the pre-corroded ZVI particles
were used for SEM and 57Fe Mössbauer spectra detection, while the separated corrosion
products via sonication were used for XRD, Raman, Zeta potential, and XPS analysis.

3.5. Continuous Flow Experiments

To compare the durability of ZVI following various pretreatment methods (AlCl3
solution, NaCl solution, and DI water), the continuous-flow setup was conducted. The
raw ZVI was used as a control for comparison. These experiments aimed to simulate
real-world conditions and assess their longevity in a controlled environment. Figure S1
provides a digital photograph of these column experiments. The inner diameter and height
of the column are 16 mm and 300 mm, respectively. In these experiments, 10 g of raw ZVI
powder was pretreated under optimized conditions and then loaded into the column, filling
approximately 2 cm of the column’s height. The use of quartz sand and fiber filter served
to support the pretreated ZVI and prevent the leakage of corrosion products. The Cr(VI)
solution entered into the system through a peristaltic pump (1 mL/min) in an up-flow
mode. An automatic sampler was used for effluent collection, followed by subsequent
Cr(VI) concentration analysis.

3.6. Analytical Methods

The detailed analytical methods used in this study are presented in Text S3 of Supple-
mentary Data.
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4. Conclusions

In this study, the ZVI pre-corrosion with AlCl3 solution for enhanced Cr(VI) removal
and longevity was systematically explored. The optimal conditions for the preconditioning
process were determined to be 2.5 g/L ZVI, 0.5 mM AlCl3, and a preconditioning time
of 4 h. The components in the corrosion products of optimized pcZVI-AlCl3 mainly
included Fe3O4, FeOOH, FeO, and Al(OH)3, with Fe3O4 being the dominant component.
The formation of Al(OH)3 raised the pHpzc of the corrosion products from 6.3 to 8.3,
facilitating the effective capture of negatively charged Cr(VI) species. Among the various
pretreatment methods tested, the order of Cr(VI) removal capacity and longevity of ZVI
were as follows: pcZVI-AlCl3 > pcZVI-NaCl > pcZVI-H2O > raw ZVI. The pcZVI-AlCl3
system exhibited potential for Cr(VI) removal in field applications, which maintained
the effluent concentration below 0.1 mg/L for more than 1400 BV. The acidic condition
was beneficial to Cr(VI) removal. The results of matrix effects showed that pcZVI-AlCl3
removed Cr(VI) effectively in a high-hardness environment, while NO3

−, SO4
2−, and

HCO3
− showed suppressive effects on Cr(VI) removal. A synergistic effect existed between

corrosion products and ZVI for enhanced electron transfer from core ZVI towards Cr(VI).
The removal mechanisms included adsorption (mainly via electrostatic attraction and
ligand exchange), reduction of Cr(VI) to Cr(III), and precipitation of Fe(III)-Cr(III) or Cr(III)
hydroxide. Adsorption played a lesser role than reduction and precipitation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29102350/s1, Texts S1–S4, Figure S1: The digital photo
of the column experiments in a continuous-flow mode; Figure S2: Effect of ZVI dosage (a), pre-
corrosion time (b), initial AlCl3 concentration (c), and DO concentration (d) on ZVI pretreatment for
Cr(VI) removal; Figure S3: The effect of initial Cr(VI) concentration on Cr(VI) removal efficiency by
raw ZVI and after AlCl3 solution, NaCl solution, and DI water pretreatment.; Figure S4: The first-
order kinetic model fitting of Cr(VI) removal by raw ZVI and after AlCl3 solution, NaCl solution, and
DI water pretreatment; Figure S5: SEM images of the pcZVI-AlCl3 surface with corrosion products
peeled off via sonication; Figure S6: Effect of co-existing cations and anions on Cr(VI) removal by
pcZVI-AlCl3; Figure S7: SEM images (a–c), EDS (d), and Fe, O, Al, and Cr elemental mappings (e)
of pcZVI-AlCl3 after Cr(VI) removal; Table S1: The fitting parameters of 57Fe Mössbauer spectra;
Table S2: Relative contents of Cr 2p in different chemical states of corrosion products in pcZVI after
Cr(VI) removal; Table S3: Relative contents of Fe 2p in different chemical states of corrosion products
in pcZVI before and after Cr(VI) removal; Table S4: Relative contents of O 1s in different chemical
states of corrosion products in pcZVI before and after Cr(VI) removal. References [42,43] are cited in
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