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Abstract: A Fe-Co dual-metal co-doped N containing the carbon composite (FeCo-HNC) was pre-
pared by adjusting the ratio of iron to cobalt as well as the pyrolysis temperature with the assistance
of functionalized silica template. Fe1Co-HNC, which was formed with 1D carbon nanotubes and
2D carbon nanosheets including a rich mesoporous structure, exhibited outstanding oxygen reduc-
tion reaction (ORR) and oxygen evolution reaction (OER) catalytic activities. The ORR half-wave
potential is 0.86 V (vs. reversible hydrogen electrode, RHE), and the OER overpotential is 0.76 V at
10 mA cm−2 with the Fe1Co-HNC catalyst. It also displayed superior performance in zinc–air batter-
ies. This method provides a promising strategy for the fabrication of efficient transition metal-based
carbon catalysts.

Keywords: bifunctional N-doped carbon; mesoporous structure; oxygen reduction reaction; oxygen
evolution reaction; zinc–air battery

1. Introduction

The immoderate utilization of fossil fuels can cause the serious environmental deterio-
ration problems such as global warming. It is imperative to accelerate the application of
new energy resources and the development of clean energy technologies [1,2]. Currently,
metal–air batteries and fuel batteries are the most effective means of reducing energy short-
age [3–5]. Nevertheless, they require efficient bifunctional catalysts for both the oxygen
reduction reaction (ORR) at the cathode and the oxygen evolution reaction (OER) at the
anode [6,7]. There are mainly Pt, Ru, and Ir catalysts in the current market. Unfortunately,
they usually do not possess the bifunctional catalytic activity for both ORR and OER at
the same time. In addition, the high cost and poor stability limit the development and
application of batteries on the large scale [8,9]. Therefore, it is crucial to develop efficient,
low-cost, and durable bifunctional catalysts for ORR and OER at the same time [10,11].

Since cobalt phthalocyanine exhibits some ORR electrocatalytic activity [12], various
catalysts composed of transition metals incorporated into nitrogen-doped carbon matrices
(M-N-Cs, especially Fe-N-C and Co-N-C) have been studied extensively [13–16]. How-
ever, most of the monometallic M-N-Cs displayed an unsatisfactory performance as the
bifunctional catalysts for ORR and OER [17,18]. Thus, there is a great challenge to develop
efficient bifunctional ORR/OER electrocatalysts. A reasonable solution would be engineer-
ing the N-doped carbon matrix with bimetallic sites so that the performance can be tuned
accordingly [19–21]. In addition, numerous studies have shown that the catalyst structure
has a significant impact on its performance. For example, the modified zeolitic imidazolate
frameworks (SiO2@Fe-ZIF-8/ZIF-67) was designed to prepare the atomically dispersed Fe
and Co doping 3D nitrogen-doped carbon nanosheets (CNSs), which exhibited excellent
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electrochemical performance with a ORR/OER potential gap (the potential difference (∆E)
of half-wave potential (E1/2, V vs. reversible hydrogen electrode (RHE)) for ORR and po-
tential at the current density of 10 mA cm−2 (Ej=10, V vs. iR-corrected RHE) for OER, which
is an important indicator for evaluating the bifunctional catalyst of 0.80 V [22,23]. Recently,
ZnCo bimetallic sites were incorporated in hierarchical N-doped carbon via a one-step
pyrolysis method, and displayed excellent ORR catalytic activities [24]. By integrating 1D
carbon nanotubes (CNTs) and 2D CNSs, the problem of agglomerating and stacking 2D
materials can be solved, and the surface area and chemical stability were improved [24–26].
The integrated 1D@2D layered structure has enhanced surface area, better operational
stability, and higher conductivity [27].

Herein, the Fe-Co bimetal co-doped N containing the carbon composite (FexCo-HNC-
T) was prepared with modified silicon nanospheres as sacrificial template. Through using
Fe@ZIF-8/ZIF-67, 1D CNTs with diameter of ~40 nm was generated on the surface of silicon
nanospheres, and 2D CNSs with high specific surface area was obtained after etching of
the silicon nanosphere templates. The main goal is to provide an efficient method for the
development of non-precious metal electrocatalysts and to expand the application of zinc–
air batteries in the near future. In the final structure, nitrogen-doped carbon was arranged
in a hierarchical manner with abundant mesoporous 1D nanotubes and 2D nanosheets with
Fe1Co-HNC-1000 showing excellent ORR/OER bifunctional catalytic activity. When the
prepared composite was applied as the cathodic catalyst in the zinc–air battery, it exhibited
an excellent open circuit voltage (1.660 V), high power density (94.9 mW cm−2), and good
cycling stability (67 h). Compared to previous catalysts for zinc-air battery cathodes, it
displayed the improved performances in rechargeable zinc-air batteries [28]. These results
indicate that Fe1Co-HNC-1000 is an ideal bifunctional electrocatalyst for future zinc-air
batteries, and provide an important guidance for further understanding and designing
bifunctional catalysts.

2. Results and Discussion
2.1. Structural Characterization

Scheme 1 shows the synthesis process of the FexCo-HNC-T composite which was
formed by 1D CNTs and 2D CNSs. In the first step, reversed-phase microemulsion was
selected to prepare the silica nanosphere template with particle size of ~80 nm, as shown
in Figure S1a. Afterward, the positively charged PDDA which can be transferred to the
surface of the SiO2 nanospheres through electrostatic interaction was added, and the
resulting positive charge surface can be obtained (P-SiO2). Next, the negatively charged
PSS was chosen to modify the P-SiO2 nanospheres to get a negative charge surface (PP-SiO2,
Figure S1b). Positively charged substances, such as metal ions, can be absorbed on the PP-
SiO2 surface conveniently. Therefore, the electrostatic adsorption capacity of the resulting
PP-SiO2 nanospheres can be enhanced. PP-SiO2 was dispersed in methanol uniformly,
followed by the addition of Zn, Co, and Fe salts, and mixed thoroughly with stirring. In
the presence of ammonia, metal ions can form corresponding metal hydroxides (MOH)
by hydrolysis under alkaline condition. These metal hydroxides can adhere to the surface
of the PP-SiO2 nanospheres, the corresponding solution color changed from purple to
brown. Subsequently, a methanol solution containing 2-methylimidazole ligand was added,
resulting in the successful synthesis of Fe/Co/Zn-ZIF-8/ZIF-67@PP-SiO2. In contrast, the
prepared Fe/Co/Zn-ZIF-8/ZIF-67 exhibits an uneven polyhedral structure in the absence
of ammonia (Figure S1c). Therefore, Fe/Co/Zn-ZIF-8/ZIF-67 was able to grow uniformly
on the surface of SiO2 nanospheres in the presence of ammonia. In addition, the product
size was smaller than 50 nm in the presence of ammonia (Figure S1d), indicating that the
growth of ZIF-8/ZIF-67 was limited under the given conditions. Figure 1a displays that
there are lots of 1D CNTs on the silica nanosphere template. However, the 1D CNTs was
agglomerated in the sample generated with the unmodified SiO2 template (Figure S2a). The
prepared Fe/Co/Zn-ZIF-8/ZIF-67@PP-SiO2 were then annealed in nitrogen atmosphere
and acid-washed to remove the silica template. The final FexCo-HNC was obtained with
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rich 1D CNTs and 2D CNSs structure. Interestingly, compared with Co-HNC, FexCo-HNC
exhibits a uniform CNT structure which can be attributed to the introduction of Fe as the
efficient catalyst for the growth of CNTs (Figure S2b,c). Such a structure should be good for
improving the structural stability and electronic conductivity.

Molecules 2024, 28, x FOR PEER REVIEW  3  of  14 
 

 

was agglomerated  in  the sample generated with  the unmodified SiO2  template  (Figure 

S2a). The prepared Fe/Co/Zn-ZIF-8/ZIF-67@PP-SiO2 were  then annealed  in nitrogen at-

mosphere and acid-washed to remove the silica template. The final FexCo-HNC was ob-

tained with rich 1D CNTs and 2D CNSs structure. Interestingly, compared with Co-HNC, 

FexCo-HNC exhibits a uniform CNT structure which can be attributed to the introduction 

of Fe as the efficient catalyst for the growth of CNTs (Figure S2b,c). Such a structure should 

be good for improving the structural stability and electronic conductivity. 

 

Scheme 1. Illustration for synthesis of FexCo-HNC-T. 

Based on the SEM image (Figure 1a), 1D CNTs was generated around the silica tem-

plate. The unetched  silica  template presented  circular  shadows  (Figure 1b). After acid 

etching of the sample, bamboo-like CNTs can be observed clearly (Figure 1c). At the same 

time, CNSs was formed after removing PP-SiO2 templates, led to 1D@2D heterostructure 

of the prepared composites (Figure 1d,e). The formation of 1D@2D heterostructure should 

be ascribed to the presence of specific PP-SiO2 template. In addition, it was found that the 

sample prepared at 900 °C (Fe1Co-HNC-900) generated more CNTs than that prepared at 

1000 °C (Fe1Co-HNC-1000). However, Fe1Co-HNC-1000 displayed more CNSs than that 

of Fe1Co-HNC-900. The unique 1D@2D heterostructure had a greater number of active 

sites, which should be more conducive to catalytic reaction. In addition, the mapping anal-

ysis of Fe1Co-HNC-1000 was performed. The result demonstrated the prepared composite 

was composed of C, N, O, Fe, and Co, indicating that the Fe-Co bimetallic doped N-con-

tained carbon composite was prepared successfully. 

Scheme 1. Illustration for synthesis of FexCo-HNC-T.

Based on the SEM image (Figure 1a), 1D CNTs was generated around the silica
template. The unetched silica template presented circular shadows (Figure 1b). After acid
etching of the sample, bamboo-like CNTs can be observed clearly (Figure 1c). At the same
time, CNSs was formed after removing PP-SiO2 templates, led to 1D@2D heterostructure
of the prepared composites (Figure 1d,e). The formation of 1D@2D heterostructure should
be ascribed to the presence of specific PP-SiO2 template. In addition, it was found that the
sample prepared at 900 ◦C (Fe1Co-HNC-900) generated more CNTs than that prepared at
1000 ◦C (Fe1Co-HNC-1000). However, Fe1Co-HNC-1000 displayed more CNSs than that of
Fe1Co-HNC-900. The unique 1D@2D heterostructure had a greater number of active sites,
which should be more conducive to catalytic reaction. In addition, the mapping analysis of
Fe1Co-HNC-1000 was performed. The result demonstrated the prepared composite was
composed of C, N, O, Fe, and Co, indicating that the Fe-Co bimetallic doped N-contained
carbon composite was prepared successfully.

The crystalline structures of the prepared composites were then characterized using
the XRD analysis. It is evident from Figure S3 that Co-HNC-900, Fe1Co-HNC-900, and
Fe1Co-HNC-1000 all exhibit a distinct diffraction peak at about 26◦, which can be attributed
to (002) of graphitic carbon [29]. Fe1Co-HNC-900 and Fe1Co-HNC-1000 also demonstrate a
diffraction peak at about 44.6◦, which can be attributed to the Fe(110) crystal plane [30],
indicating that Fe was successfully doped in the nitrogen-containing carbon composite.
However, there is no obvious peak which can be ascribed to Co crystal using XRD as
the low content of Co in the prepared composite (as given in Table S1). Hence, XPS was
selected to further investigate the elemental composition and chemical state in the target
catalyst. The results verified that the product consisted of C, N, O, Fe, and Co in Figure
S4 and Table S2, proving the successful doping of Fe and Co. According to Figure 2a, the
high-resolution C 1s XPS segment of Fe1Co-HNC-1000 can be divided into four sub-peaks
at 288.5, 286.4, 285.2 and 284.7 eV, corresponding to O-C=O, C=O, C-O/C-N and C=C
groups, respectively [31]. These abundant carbon–oxygen species are often considered as
more active site-related defects that can promote ORR in alkaline environments [32]. The
N 1s spectra of Fe1Co-HNC-1000 can be divided into four peaks in XPS, corresponding to
pyridinic-N (398.5 eV), M-Nx (399. 7 eV, M = Fe, Co, and Zn), pyrrolic-N (400.5 eV), and
graphitic-N (401.6 eV), as shown in Figure 2b. It was believed that the high contents of
pyridinic-N and pyrrolic-N can provide high ORR activities [33,34]. Figure 2c,d display
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the XPS spectra of Co 2p and Fe 2p of Fe1Co-HNC-1000. The regional Co 2p spectrum
in Figure 2c reveals a high energy band at 795.7 eV (Co 2p1/2) and a low energy band at
780.3 eV (Co 2p3/2), being in accordance with the report of Co3O4 [35]. And the energy
bands at 722.1, 720.0, 709.8, and 707.5 eV are corresponding to Fe3O4 [20]. In addition,
Figure S3 also exhibits the XRD patterns of Co-HNC-900, Fe1Co-HNC-900, and Fe1Co-
HNC-1000. The peak at approximately 44.6◦ can be attributed to the (200) plane of Fe3O4
(Powder Diffraction File (PDF) # 28-0491) or the (400) plane of Co3O4 (PDF # 42-1467) [36,37].
Therefore, we can conclude that there is an oxidation state of Fe and/or Co in the prepared
composite. Furthermore, the metal contents were also analyzed using MP-AES. According
to Table S1, it is clear that Zn was attenuated as the increase in the pyrolysis temperature,
and it was no longer detectable when the pyrolysis temperature was 1000 ◦C. Interestingly,
when the temperature was constant, the added amount of Fe had little effect on the final
loading amount of Co. At the same time, the M-Nx content increased from 10.4% (Co-HNC-
900) to 15.32% (Fe1Co-HNC-900) with the addition of Fe (Figure 2e). It was believed that
M-Nx are active sites which are responsible for the excellent electrocatalytic properties [38].
In addition, graphitic-N increased from 11.4% to 15.91%, whereas pyrrolic-N decreased
from 16% to 5.45% as the temperature increased from 900 ◦C to 1000 ◦C (Figure 2e). The
change should be attributed to that the unstable pyrrolic-N was converted to graphitic-N
at high temperature, while graphitic-N can accelerate electron transfer and increase the
limiting current density, thus favoring the enhancement of ORR activity [39]. Overall, the
pyridinic-N content of Fe1Co-HNC-1000 is slightly higher than that of Fe1Co-HNC-900. It
is believed that the metals Fe and Co are coordinated with pyridinic-N to form the active
sites [40].
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Figure 2. High-resolution XPS spectra of Fe1Co-HNC-1000 (a) C 1s, (b) N 1s, (c) Co 2p, and (d) Fe 2p.
(e) Chemical states of N elements in Fe1Co-HNCs prepared at different temperatures according to
the N1s narrow-scan spectrum.

The porous structure was investigated using the N2 adsorption–desorption method.
The adsorption–desorption curves of the prepared composites all exhibited type IV isotherm
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curves which were consistent with the H4 hysteresis loop based on the N2 adsorption–
desorption isotherms (Figure 3a,b and Table S3). The result exhibited that Fe1Co-HNC-1000
presents a high specific surface area of 662.33 m2 g−1 and an enormous total pore volume
of 0.75 cm3 g−1. Compared with unetched-Fe1Co-HNC-1000 (151.07 m2 g−1), the specific
surface area of Fe1Co-HNC-1000 was increased significantly. At the same time, as the
temperature increased from 800 ◦C to 1000 ◦C, the average mesoporous diameter increased
from 16.50 nm to 18.70 nm. The result indicated that higher temperature is more conducive
to the formation of large mesopores. However, the average mesoporous diameter of the
unetched-Fe1Co-HNC-1000 is only 14.88 nm, demonstrating that the effective removal
of the silica template resulted in a larger mesoporous diameter and specific surface area.
It was believed that the mesoporous structure can provide abundant active sites, which
will facilitate mass transfer/electron transfer, thereby improving catalytic efficiency [41,42].
Based on Raman spectroscopy, defects and graphitization degree were estimated. The
characteristic peaks are located at ≈1352 and ≈1602 cm−1 [43], respectively, corresponding
to the D-band of defects and the G-band of sp2 graphitic carbon. According to Figure 3c,
the ratio of defects increased with the increase in annealing temperature, which can be
attributed to the Zn volatilization in the ZIF skeleton as the temperature increase. The
sample prepared at 1000 ◦C has the largest ID/IG (1.38), implying that there are abundant
defects in Fe1Co-HNC-1000 which can contribute to the adsorption of reactants during the
catalytic reaction.
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Figure 3. (a,b) N2 adsorption–desorption isotherms of Fe1Co-HNC-1000 (unetched) and Fe1Co-HNC-
1000. (c) Raman spectra of Fe1Co-HNC were prepared at different temperatures.

2.2. Electrochemical Characterization

The effect of the added amount of Fe on the ORR catalytic activity was checked at first.
The linear sweep voltammetry (LSV) measurement was chosen to assess the electrocatalytic
activity in oxygen-saturated 0.10 M KOH. The results indicated that the ORR half-wave
potential (E1/2) of the monometallic Co doped Co-HNC-1000 was low (E1/2 = 0.78 V,
Figure S5). As Fe was added, the ORR E1/2 shifted positively. When the Fe/Co ratio
was 1:1, Fe1Co-HNC-900 demonstrated the highest E1/2 (0.85 V), indicating the effective
synergistic effect between Fe and Co. Then, Fe1Co-HNC-1000 which was prepared at
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1000 ◦C and the Fe:Co ratio of 1.0 exhibited the best ORR activity than those of other
samples (Figure 4a and Table S4). The half-wave potential of Fe1Co-HNC-1000 is 0.86 V
which is 10 mV more positive than that of Fe1Co-HNC-900. Moreover, the excellent ORR
activity of Fe1Co-HNC-1000 is further reflected by the Tafel slope (Figure 4b), which is the
smallest among all samples (103.7 mV dec−1), including the commercial Pt/C (127.9 mV
dec−1). The result indicated that Fe1Co-HNC-1000 possessed a fast electron transfer rate
for ORR. It can be ascribed to the unique 1D@2D structure, high content of pyridinic-N
and graphitic-N, rich mesopores, plenty of defects, and the synergistic effect of Fe and
Co [22,44,45].
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To explore the ORR kinetics of Fe1Co-HNC-1000, LSV curves were obtained at different
rotational speeds from 400 to 2025 rpm (Figure 4c), where JL (JL is the limiting current den-
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sity) increased with increasing speed and fitted well with the first-order kinetic equations.
From the Koutecky–Levich (K-L) plot in Figure 4d, it can be seen that the average electron
transfer number (n) is about 4.06, reflecting the high efficiency of the direct reduction in
oxygen to water on Fe1Co-HNC-1000. The hypothesis was further confirmed by rotating
ring-disk electrode measurements (Figure S6), where the yield of H2O2 was 11% with an
average n of 3.9, which were comparable with those of the commercial Pt/C.

The stability and methanol resistance of Fe1Co-HNC-1000 were analyzed and com-
pared with those of commercial Pt/C. After 5000 CV cycles, the Fe1Co-HNC-1000 RRDE
curve remained identical to the initial one (Figure 4e). In contrast, the RRDE curve of
Pt/C exhibited an obvious negative shift after 5000 CV cycles, with E1/2 and JL becoming
significantly smaller (Figure 4f). Additionally, Fe1Co-HNC-1000 was subjected to extensive
testing at 0.52 V for 30,000 s. The current density remained at 99.8% of the original one,
which was much higher than the commercial Pt/C (85%), confirming that Fe1Co-HNC-1000
had excellent stability (Figure S7). The CV curves of Fe1Co-HNC-1000 for methanol were
depicted in Figure S8a. There was no change before and after the addition of methanol
for Fe1Co-HNC-1000, whereas Pt/C exhibited a significant methanol oxidation peak in
the presence of 1.0 M methanol (Figure S8b). The result indicated that the active sites of
Fe1Co-HNC-1000 have excellent tolerance to methanol, which is much superior to Pt/C. All
of these results demonstrated that the Fe1Co-HNC-1000 catalyst is exceptionally durable
and selective.

In addition, the electrochemically active surface area (ECSA) has a notable effect on
the ORR [46], which can be assessed by the double-layer capacitance (Cdl) in CV curves
(Figure S9). Specifically, Fe1Co-HNC-1000 had the highest Cdl value of 43.36 mF cm−2,
which implied a dramatic increase in ECSA of the 1D@2D Fe1Co-HNC-1000. It was hypoth-
esized that Fe1Co-HNC-1000 exhibited a significantly increased charge transfer capability
compared with its bimetallic counterpart prepared at lower temperatures, mainly due to the
rich defects, mesoporous structure, and the unique 1D@2D structure. Notably, the Cdl value
of the bimetallic catalyst was much higher than that of Co-HNC-900 (6.58 mF cm−2), which
also highlighted the synergistic effect of Fe1Co-HNC-1000, creating more active sites. In
addition, the electrochemical impedance spectra were selected to explain this phenomenon
based on the interfacial charge transfer of the prepared catalysts, which can be calculated
from the Nyquist diagram (Figure S10) [47]. The result displayed that Fe1Co-HNC-1000
had a smaller charge transfer resistance (Rct), which can produce faster ORR kinetics.

The OER performance of different catalysts was tested and displayed in Figure 5.
The overpotential of Fe1Co-HNC-1000 in 1.0 M KOH was 399 mV at the current density
of 10 mA cm−2, which was slightly higher than that of RuO2 in 1.0 M KOH (388 mV).
The difference between E1/2 of Fe1Co-HNC-1000 and its OER at J = 10 mA cm−2 was
calculated to be 0.76 V, which is slightly lower than that of Pt/C + RuO2 (0.79 V). The
result indicated the excellent bifunctional catalytic activity of Fe1Co-HNC-1000 (Table
S5). In addition, the OER Tafel slope of Fe1Co-HNC-1000 (72.45 mV dec−1) was smaller
than that of RuO2 (130.01 mV dec−1) according to the Tafel fitting curve as shown in
Figure 5b. The result demonstrated that the kinetics of OER on Fe1Co-HNC-1000 is faster.
Also, the OER Tafel slope of Fe1Co-HNC-1000 was lower than that of Fe1Co-HNC-900
(94.73 mV dec−1), indicating that Fe1Co-HNC-1000 has a faster mass transfer rate. The
result is consistent with the BET results that the average mesopore diameter of Fe1Co-HNC-
1000 is large, thus speeding up the diffusion rate. The high OER Tafel slope of Co-HNC-900
(164.38 mV dec−1) further indicates that there is a synergistic coupling formed between
Fe and Co, and the existence of metal oxides should play the key role in improving OER
catalytic activities [48,49].
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Figure 5. (a) RRDE polarization curves of different electrocatalysts at 1600 rpm. (b) Tafel slope plots.
Scan rate is 5 mV/s.

In order to evaluate the effectiveness of Fe1Co-HNC-1000, it was employed as the air
cathodic catalyst in an assembled zinc–air battery (Figure S11a). The open-circuit voltage
of the battery was then measured using a multimeter (Figure S11b), yielding a value of
1.660 V for the Fe1Co-HNC-1000-modified cathode. In contrast, a zinc–air battery with
Pt/C + RuO2 as the cathodic catalyst only produced an open-circuit voltage of 1.415 V.
In addition, two zinc–air batteries with Fe1Co-HNC-1000 as the cathodic catalyst were
successfully connected in series to light a small LED (Figure S11c). The power densities of
the zinc–air batteries were also tested at different current densities, and the results showed
that the zinc–air batteries with Fe1Co-HNC-1000 as the cathodic catalyst achieved the
highest power density of 94.9 mW cm−2 at 159.8 mA cm−2, while the Pt/C + RuO2 catalyst
achieved the highest power density of 80.3 mW cm−2 at 118.8 mA cm−2 (Figure S11d). This
indicated that the Zn–air batteries with Fe1Co-HNC-1000 as the cathodic catalyst had higher
electrochemical performance and power density than those of the Pt/C + RuO2 modified
electrode. In order to verify its durability, a charge–discharge cycle test was carried out on
zinc–air batteries assembled with Fe1Co-HNC-1000 or Pt/C + RuO2 as the cathodic catalyst
(Figure S11e). The results indicated that Fe1Co-HNC-1000 outperformed Pt/C + RuO2
in terms of power density and durability, thus confirming the superior performance of
Fe1Co-HNC-1000 in zinc–air batteries.

3. Experimental Section
3.1. Chemicals

2-methylimidazole (2-MIM) (98%), Fe(NO3)3·9H2O (99%), Co(NO3)2·6H2O (99%), HF
(40%), n-hexanol (99%), and cyclohexane (99%) were supplied from Shanghai Aladdin Bio-
chemical Technology Co., Ltd. (Shanghai, China). Triton X-100 (99%) and Nafion (5 wt%)
were obtained by Sigma-Aldrich (St. Louis, USA). Commercially available Pt/C (20 wt%)
was bought from Johnson Matthey Company (Shanghai, China). And RuO2 (99.9%), ethyl
orthosilicate, 3-aminopropyltriethoxysilane (99%), NH3·H2O, polydiallyldimethylammo-
nium chloride (PDDA, 99%), and sodium polystyrene sulfonate (PSS, 99%) were purchased
from Shanghai McLean Biochemical Technology Co, Ltd. (Shanghai, China). All chemical
reagents were used directly without further treatment.

3.2. Synthesis of Catalysts
3.2.1. Preparation of Silica Nanospheres

The preparation of silica nanospheres was based on a modified typical reversed-
phase microemulsion method [50]. The water/oil microemulsion was obtained by adding
15.4 mL of cyclohexane, 0.68 mL of pure water, 3.80 mL of Triton X-100, and 3.20 mL of
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hexanol to a 50 mL beaker and stirring uniformly for 30 min at room temperature. To the
water/oil microemulsion system, 1.05 mL of ethyl orthosilicate was added and stirred
for 5 h. Next, 0.35 mL of 3-aminopropyltriethoxysilane was added, and then 0.20 mL of
NH3·H2O was added after stirring for 60 min at room temperature, to initiate the hydrolysis
of ethyl orthosilicate and 3-aminopropyltriethoxysilane. After stirring for 18 h at room
temperature, ethanol was added to destabilize the microemulsion system. Finally, the
product was washed three times with ethanol, collected using centrifugation, and dried in
a vacuum-drying oven.

3.2.2. Preparation of Polyelectrolyte-Modified Silica Nanospheres (PP-SiO2)

The PDDA-modified silica nanospheres (P-SiO2) were obtained by adding 3.00 g of
silica nanospheres to 200 mL of 1.0 wt% PDDA solution, stirring for 1 h at room temperature,
washing with purified water and centrifuging three times, and drying overnight in a
vacuum-drying oven. Similarly, the obtained P-SiO2 was treated with 200 mL of 1.0 wt%
PSS solution, and PDDA-PSS-modified silica nanospheres (PP-SiO2) were obtained after
washing with pure water, centrifugation, and drying, respectively [51].

3.2.3. Preparation of FexCo-HNC-T

Preparation of solution I: PP-SiO2 (1.000 g), Zn(NO3)2·6H2O (1.119 g), and the molar
ratio of Fe(NO3)3·9H2O to Co(NO3)2·6H2O was x/y (x is the mass of Fe(NO3)3·9H2O, y is
the mass of Co(NO3)2·6H2O, and x/y = 0, 0.8, 1.0, or 1.2) to 40 mL of methanol and mixed
thoroughly. Solution II was prepared by dissolving 2-methylimidazole (2.420 g) in 40 mL
of methanol with 3.00 mL of NH3·H2O. Solution II was added to solution I drop by drop,
stirred for 3 h, washed three times with methanol, then collected using centrifugation and
placed under vacuum to dry overnight to obtain a brown powder. As a blank control group,
ZIF-8/ZIF-67 was prepared under the same conditions (the molar ratio of doped Fe/Co
was 1.0) in the absence of the functionalized PP-SiO2 template.

The above product was ground with an agate mortar and then placed in a tube
furnace in nitrogen atmosphere for the following pyrolysis procedure: firstly, from room
temperature to 240 ◦C at a heating rate of 2 ◦C min−1 and kept at 240 ◦C for 2 h, then from
240 to T ◦C (T = 800, 900, or 1000 °C) at a heating rate of 2 ◦C min−1, and kept for 2 h. After
cooling to room temperature, the silica template was etched with 10 wt % HF to obtain
FexCo-HNC-T.

4. Conclusions

In conclusion, we have successfully developed a simple method to prepare a bifunc-
tional catalyst with a Fe and Co bimetal-doped 1D CNTs and 2D CNSs composite. By
precisely controlling the structure and composition of the precursors, it is possible to obtain
electrocatalysts with open mesoporous structures and abundant active sites after pyrolysis.
The catalysts exhibited excellent ORR and OER activities under alkaline conditions. In
addition, the catalyst showed excellent performance in terms of open circuit potential and
charge/discharge cycle life when it was applied to zinc–air batteries. The result offers
the possibility of designing promising bifunctional catalysts to replace noble metal-based
catalysts in the field of energy storage and conversion.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29102349/s1, Figure S1. SEM images of (a) SiO2,
(b) PP-SiO2, (c) Fe/Co/Zn-ZIF-8/ZIF-67 without the addition of ammonia, and (d) Fe/Co/Zn-ZIF-
8/ZIF-67 with the addition of ammonia. Figure S2. SEM images of (a) Fe1Co-HNC-1000 (un-etched,
unmodified SiO2), (b) Co-HNC-900, and (c) Fe1Co@CNFs-900. Figure S3. XRD patterns of Co-
HNC-900, Fe1Co-HNC-900, and Fe1Co-HNC-1000. Figure S4. XPS spectra of Fe1Co-HNC-1000.
Figure S5. RRDE polarization curves of different electrocatalysts at 1600 rpm. Scan rate is 5 mV/s.
Figure S6. H2O2 yield and n of (a) Fe1Co-HNC-1000, and (b) Pt/C. Figure S7. Chronoamperometric
curves of Fe1Co-HNC-1000 and Pt/C at 0.52 V. Figure S8. CV curves of (a) Fe1Co-HNC-1000, and
(b) Pt/C with and without 1.0 M CH3OH at O2-saturated 0.10 M KOH electrolyte. Scan rate is

https://www.mdpi.com/article/10.3390/molecules29102349/s1
https://www.mdpi.com/article/10.3390/molecules29102349/s1
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5 mV/s. Figure S9. (a–g) CV curves of different electrocatalysts in 0.10 M KOH at various scan rate.
(a) FeCo-NC-900, (b) Co-HNC-900, (c) Fe0.8Co-HNC-900, (d) Fe1Co-HNC-900, (e) Fe1.2Co-HNC-900,
(f) Fe0.8Co-HNC-800, and (g) Fe0.8Co-HNC-1000. (h, i) Plots of ∆J vs. scan rate at 1.064 V (vs. RHE)
of different electrocatalysts in 0.10 M KOH. Figure S10. EIS of Fe1Co-HNC-900 and Fe1Co-HNC-1000
in 0.10 M KOH. Frequency range 100 kHz to 0.01 Hz, amplitude 5 mV, potential 0.52 V (vs. RHE).
Figure S11. Electrochemical performance of the Fe1Co-HNC-1000 and commercial Pt/C + RuO2
mixture catalysts in a zinc–air battery. (a) Schematic illustration of the rechargeable liquid-state zinc–
air battery. (b) Open-circuit potential plots (Illustrations: a: Fe1Co-HNC-1000 and b: Pt/C+RuO2
open circuit voltage diagram tested with a multimeter). (c) The photo of a lighted LED powered by
two Fe1Co-HNC-1000-based zinc–air batteries in series. (d) Discharge polarization curves and power
density plots. (e) Galvanostatic charge–discharge cycling curves at 10 mA cm−1. Table S1. Metal atom
contents of each catalyst tested using MP-AES. Table S2. The elemental content of different samples
obtained using XPS. Table S3. Pore parameters of Fe1Co-HNC synthesized at different temperatures.
Table S4. Comparison of the ORR activity with different catalysts. Table S5. Comparison of the
potential gap (∆E) between ORR half-wave potential (ORRE1/2 = 0.86 V) and OER overpotential at
10 mA cm−2 (OEREj = 10 mA) of Fe1Co-HNC-1000 with recently reported analogous Fe/Co-based
electrocatalysts. References [52–55] are cited in the Supplementary Materials.
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