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Abstract: Arguments inspired by algorithmic information theory predict an inverse relation between
the probability and complexity of output patterns in a wide range of input–output maps. This
phenomenon is known as simplicity bias. By viewing the parameters of dynamical systems as inputs,
and the resulting (digitised) trajectories as outputs, we study simplicity bias in the logistic map,
Gauss map, sine map, Bernoulli map, and tent map. We find that the logistic map, Gauss map, and
sine map all exhibit simplicity bias upon sampling of map initial values and parameter values, but
the Bernoulli map and tent map do not. The simplicity bias upper bound on the output pattern
probability is used to make a priori predictions regarding the probability of output patterns. In
some cases, the predictions are surprisingly accurate, given that almost no details of the underlying
dynamical systems are assumed. More generally, we argue that studying probability–complexity
relationships may be a useful tool when studying patterns in dynamical systems.

Keywords: dynamical systems; algorithmic probability; simplicity bias; time series

1. Introduction

In recent years, several studies of simplicity bias have been made in input–output
maps, in which a general inverse relationship between the complexity of outputs and
their respective probabilities has been observed [1,2]. More specifically, using arguments
inspired by algorithmic information theory [3–5] (AIT), and specifically algorithmic probability,
an upper bound on the probability P(x) of observing output pattern x was presented [1],
with the bound depending on the estimated Kolmogorov complexity of x. The upper bound
implies that complex output patterns must have low probabilities, while high-probability
outputs must be simple. Example systems in which simplicity bias has been observed
include RNA structures [1,6], differential equation solutions [1], finite state transducers [2],
time series patterns in natural data [7], and natural protein structures [8], among others.

Which systems will and will not show simplicity bias has yet to be determined,
but the phenomenon is expected to appear in a wide class of input–output maps, under
fairly general conditions. Some of these conditions were suggested in ref. [1], including
(1) that the number of inputs should be much larger than the number of outputs, (2) the
number of outputs should be large, and (3) that the map should be ‘simple’ (technically of
O(1) complexity) to prevent the map itself from dominating over inputs in defining output
patterns. Indeed, if an arbitrarily complex map was permitted, outputs could have arbitrary
complexities and probabilities, and thereby remove any connection between probability
and complexity. Finally (4), because many AIT applications rely on approximations of
Kolmogorov complexity via standard lossless compression algorithms [9,10] (but see [11,12]
for a fundamentally different approach), another condition that has been proposed is that
the map should not generate pseudo-random outputs like π = 3.1415 . . ., which standard

Entropy 2024, 26, 426. https://doi.org/10.3390/e26050426 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26050426
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-4423-3255
https://doi.org/10.3390/e26050426
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26050426?type=check_update&version=1


Entropy 2024, 26, 426 2 of 20

compressors cannot handle effectively. The presence of such outputs may yield high-
probability outputs which appear ‘complex’, apparently violating simplicity bias, but
which are in fact simple.

To further explore the presence of simplicity bias in dynamical systems and physics,
and also in maps which test the boundaries of the conditions for simplicity bias described
above, we examine the output trajectories of a selection of 1D maps from chaos theory,
namely the logistic map, the Gauss (“mouse”) map, the sine map, the Bernoulli map, and
the tent map. Starting with its popularisation by Robert May [13] in the 1970s, the logistic
map has been heavily studied. The map is a textbook example of a simple system which
can produce simple, complex, and chaotic patterns via iterations of the map [14]. This map
is related to a very wide range of nonlinear models with applications in epidemiology,
economics, physics, time series, etc. [15]. Due to the popularity of the logistic map, and
because its trajectory outputs can depict simple as well as complex, chaotic, and even
pseudo-random patterns, we focus primarily on the logistic map, but we also analyse the
other mentioned maps.

Although we are not restricted to studying binary strings, most AIT results are framed
in the context of binary strings and hence applications are easier in the same framework.
Thus, in this work, we will study simplicity bias in digitised binary trajectories of these
example 1D dynamical systems. Our main conclusions are that simplicity bias appears in
the logistic map, the Gauss (“mouse”) map, and the sine map, and hence we suggest that
simplicity bias may also appear in natural dynamical systems more generally. As a broader
context of motivation, this work contributes to research at the intersection of dynamical
systems, AIT, and machine learning.

2. Background and Problem Set-Up
2.1. Background Theory and Pertinent Results
2.1.1. AIT and Kolmogorov Complexity

We will now provide some basic background information regarding AIT, and describe
simplicity bias in more detail. Note that the current work will not involve detailed AIT
or related theory, so we only give a brief survey of relevant results without giving many
formal details here. There are many standard texts which the interested reader can refer to
if needed, e.g., refs. [16–19].

Within computer science, algorithmic information theory [3–5] (AIT) directly connects
computation, computability theory, and information theory. The central quantity of AIT is
Kolmogorov complexity, K(x), which measures the complexity of an individual object x as the
amount of information required to describe or generate x. K(x) is more technically defined
as the length of a shortest program which runs on an (optimal prefix) universal Turing
machine (UTM) [20], generates x, and halts. More formally, the Kolmogorov complexity
KU(x) of a string x with respect to U is defined [3–5] as

KU(x) = min
p

{|p| : U(p) = x} (1)

where p is a binary program for a prefix optimal UTM U, and |p| indicates the length of
the program p in bits. Due to the invariance theorem [16] for any two optimal UTMs U
and V, KU(x) = KV(x) + O(1) so that the complexity of x is independent of the machine,
up to additive constants. Hence, we conventionally drop the subscript U in KU(x), and
speak of ‘the’ Kolmogorov complexity K(x). Informally, K(x) can be defined as the length
of the shortest program that produces x, or simply as the size in bits of the compressed
version of x (assuming we have a perfect compressor). If x contains repeating patterns
like x = 1010101010101010 then it is easy to compress, and hence K(x) will be small.
On the other hand, a randomly generated bit string of length n is highly unlikely to
contain any significant patterns, and hence can only be described via specifying each bit
separately without any compression, so that K(x) ≈ n bits. Other more expressive names
for K(x) are descriptional complexity, algorithmic complexity, and program-size complexity, each
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of which highlight the idea that K(x) is measuring the amount of information to describe or
generate x precisely and unambiguously. Note that Shannon information and Kolmogorov
complexity are related [21], but differ fundamentally in that Shannon information quantifies
the information or complexity of a random source, while Kolmogorov complexity quantifies
the information of individual sequences or objects.

An increasing number of studies show that AIT and Kolmogorov complexity can be
successfully applied in physics, including thermodynamics [22–25], quantum physics [26],
and entropy estimation [27,28]. Further, they also have numerous potential applications in
biology [8,29,30], other natural sciences [31], and engineering [16,32,33].

2.1.2. The Coding Theorem and Algorithmic Probability

An important result in AIT is Levin’s [34] coding theorem, which establishes a funda-
mental connection between K(x) and probability predictions. Mathematically, it states that

P(x) = 2−K(x)+O(1) (2)

where P(x) is the probability that an output x is generated by a (prefix optimal) UTM fed
with a random binary program. Thus, high complexity outputs have exponentially low
probability, and simple outputs must have high probability. This is a profound result which
links notions of data compression and probability in a direct way. P(x) is also known as
the algorithmic probability of x. Given the wide-reaching and striking nature of this theorem,
it is somewhat surprising that it is not more widely studied in the natural sciences. The
reason, in part, for this inattention is that AIT results are often difficult to apply directly
in real-world contexts due to a number of issues, including the fact that K(x) is formally
uncomputable and also in light of the ubiquitous use of UTMs.

2.1.3. The Simplicity Bias Bound

Coding theorem-like behaviour in real-world input–output maps has been studied
recently, leading to the observation of a phenomenon called simplicity bias [1] (see also
ref. [35]). Simplicity bias is captured mathematically as

P(x) ≤ 2−aK̃(x)−b (3)

where P(x) is the (computable) probability of observing output x on random choice of
inputs, and K̃(x) is the approximate Kolmogorov complexity of the output x: complex
outputs from input–output maps have lower probabilities, and high-probability outputs are
simpler. The constants a > 0 and b can be fit with little sampling and often even predicted
without recourse to sampling [1]. We will assume that b = 0 in Equation (3) throughout
this work, which is a default assumption, as argued and discussed in ref. [1]. There is also
a conditional version of the simplicity bias equation [36].

The ways in which simplicity bias differs from Levin’s coding theorem include that
it does not assume UTMs, uses approximations of complexities, and for many outputs,
P(x) ≪ 2−K(x). Hence, the abundance of low complexity, low-probability outputs [2,37] is
a sign of simplicity bias.

2.1.4. Estimating Pattern Complexity

To estimate complexity, we follow the guidance of ref. [1] and use

CLZ(x) =

{
log2(n), x = 0n or 1n

log2(n)[Nw(x1 . . . xn) + Nw(xn . . . x1)]/2, otherwise
(4)

where Nw(x) comes from the 1976 Lempel and Ziv complexity measure [9], and where
the simplest strings 0n and 1n are separated because Nw(x) assigns complexity K = 1 to
the string 0 or 1, but complexity 2 to 0n or 1n for n ≥ 2, whereas the true Kolmogorov
complexity of such a trivial string actually scales as log2(n) for typical n, because one only
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needs to encode n. Having said that, the minimum possible value is K(x) ≈ 0 for a simple
set, and so, e.g., for binary strings of length n, we can expect 0 ≤ K(x) ≤ n bits. Because
for a random string of length n the value CLZ(x) is often much larger than n, especially for
short strings, we scale the complexity so that a in Equation (3) is set to a = 1 via

K̃(x) = log2(M) · CLZ(x)− minx(CLZ)

maxx(CLZ)− minx(CLZ)
(5)

where M is the maximum possible number of output patterns in the system, and the
min and max complexities are over all strings x which the map can generate. K̃(x) is the
approximation to Kolmogorov complexity that we use throughout. This scaling results in
0 ≤ K̃(x) ≤ n which is the desirable range of values.

2.2. Digitised Map Trajectories

The AIT coding theorem is framed in terms of random inputs or ‘programs’ and the
resultant output strings or patterns. The core idea of the simplicity bias bound is that for
a large range of systems, uniformly sampling input parameter values (‘programs’) yields
an exponential variation in output pattern probabilities, with high-probability patterns
having low complexities. While dynamical systems may not appear to fit this input–
output framework, they can be viewed as input–output functions if the initial values and
parameters are considered input ‘programs’ which are then computed to generate ‘output’
dynamical system trajectories. Because output pattern complexities and probabilities are
more easily calculated if outputs are binary strings (and as above, AIT is mainly framed in
terms of binary strings), we will digitise the real-valued trajectories into binary strings.

To illustrate this input–output framework, consider binary sequence trajectories re-
sulting from digitised realisations of the logistic map

xk+1 = µxk(1 − xk) (6)

where the inputs are the pair of values x0 ∈(0.0, 1.0) and µ ∈ (0.0, 4.0]. For the outputs, the
map is first iterated to obtain a sequence of n real values x1, x2, x3, . . . , xn in [0, 1]. Similar
to the field of symbolic dynamics [38], the real-valued trajectory is digitised to become a
binary string output sequence x by applying a threshold, and writing 1 if xk ≥ 0.5 and 0
otherwise [39]. Hence, a binary sequence output x of n bits is generated for each input pair
µ and x0.

By way of example, consider choosing µ = 3.8 and x0 = 0.1 with n = 25, then from
iterating Equation (6) with k = 1, 2, . . . , 25 we obtain the real-valued trajectory

x1, x2, . . . , x25 = 0.34, 0.86, . . . , 0.25, 0.72, 0.77, 0.67

which, after digitisation, becomes the binary string

x = 0101011011111011010110111

Figure 1 illustrates the trajectory and digitisation procedure. The choice of n strikes a
balance, as it is long enough that many different patterns can emerge, and short enough
that decent frequency and probability estimates can be made without the need for excessive
sampling. Different µ and x0 inputs can yield different binary strings x ∈ {0, 1}n.



Entropy 2024, 26, 426 5 of 20

Figure 1. An example of a real-valued (orange) and digitised (blue) trajectory of the logistic map,
with µ = 3.8 and x0 = 0.1. The discretisation is defined by writing 1 if xk ≥ 0.5 and 0 otherwise,
resulting in the pattern x = 0101011011111011010110111, which has a length of n = 25 bits.

Note that throughout the paper, we will ignore the first 50 iterations of a map so as
to discard the transient dynamics of the iterated maps. This step of ignoring the initial
iterations is common practice [40].

3. Results
3.1. Logistic Map

The logistic map in Equation (6) is possibly the best known and most iconic 1D map
studied in dynamical systems and chaos theory. To our knowledge, there have not been
many studies investigating the complexity of digitised trajectories of the logistic map. A
notable exception is the work by Kaspar and Schuster [41], who also studied the estimated
complexity of resulting binary string trajectories. However, their work was fundamentally
different in that it was not concerned with simplicity bias or estimating the probability of
different outputs.

3.1.1. Parameter Intervals

The intervals x0 ∈ (0.0, 1.0) and µ ∈ (0.0, 4.0] are standard ranges in which the logistic
map is studied and it can be shown [40], for example, that for µ > 4.0, very few trajectories
are confined to [0, 1]; similarly, if x0 /∈ (0, 1), the behaviour can be unbounded or trivial. For
some large values of µ (e.g., µ = 4.0), almost all initial values x0 yield complex and chaotic
outputs [14], and the distribution over digitised trajectories is roughly uniform, with little
bias. Note that we use the word ‘bias’ to describe a strongly non-uniform distribution of
the probability to obtain a given binary string output.

In Figure 2a, the bifurcation diagram of the logistic map is shown, in which for
different values of µ the asymptotic xk values are depicted. The diagram shows fixed
points, oscillations, and non-period behaviour.

The value 0.5 is also added as a red line, highlighting the digitising threshold. It is
known [14] that if µ ∈ [0.0, 1.0], then the trajectories tend toward 0. Because we truncate
at 0.5, the corresponding binary string would be x = . . . 0000. If µ ∈ (1.0, 2.0], then the
trajectories tend toward 1 − (1/µ), which means that we expect to see binary strings
x = . . . 0000. For µ ∈ (2.0, 3.0], the resulting pattern would be x = . . . 1111 because
1 − (1/µ) is greater than 0.5. For µ from 3.0 to ≈3.3, we still expect x = . . . 1111 because
although the first bifurcation appears at µ = 3.0, and oscillations with period two begin,
until about 3.3, both values of the oscillations are larger than 0.5. Figure 2b shows the same
bifurcation diagram, but zooms in on the larger values of µ. From about 3.3 to about 3.5,
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oscillations between two and four values appear, and larger values of µ can yield oscillation
periods of 8, 16, etc., which will yield patterns such as x = 0101 . . .. Chaotic trajectories
do not occur until [14] µ ≥ 3.56994567 . . . ≈ 3.57 (https://oeis.org/A098587 (accessed on
1 September 2023)), and so the µ interval from 3.0 to about 3.5699 contains period-doubling
bifurcations, in which oscillations of exponentially increasing frequency occur, but there
are no truly chaotic trajectories. Finally, for µ between ≈3.57 and 4.0, more complex and
chaotic patterns can emerge, but also ‘islands’ of stability appear in this interval, as can be
observed in Figure 2b.

(a) (b)

Figure 2. A bifurcation diagram for the logistic map. In (a), we see the diagram for parameters
µ ∈(0, 4.0]; and in (b), we see the diagram for values µ ∈(2.9, 4.0]. The value 0.5 has been highlighted
in red, to indicate the cut-off threshold used to digitise trajectories by a value of 0 if the output is
below the threshold, and a value of 1 if it is greater than or equal to the threshold.

In our numerical simulations, we will separately investigate various intervals for µ,
namely µ sampled uniformly from (0.0, 4.0], [3.0, 4.0], [3.57, 4.0], and finally also fixing
µ = 4.0. The motivation for choosing these intervals is as follows: given that the interval
µ ∈ (0.0, 4.0] is the standard range in which the map is studied, the most ‘natural’ sampling
strategy is to sample uniformly across this interval. As for choosing intervals [3.0, 4.0] and
[3.57, 4.0], these are interesting test cases because we can expect to see complex patterns
appearing more frequently at these intervals. Finally, when fixing µ = 4.0, most trajectories
will be highly complex, and so we might expect simplicity bias to disappear.

3.1.2. Connection of Simplicity and Probability

Reflecting on the bifurcation diagram and the above-related comments, it is easily
seen by uniformly sampling µ from (0.0, 4.0] that some simple binary patterns will have
high probability, and highly complex patterns will have low probability, just because most
of the interval (0.0, 4.0] yields fixed points or low-period oscillations. Hence, some general
form of bias towards simplicity is expected for the logistic map. However, what is not a
priori obvious is whether or to what extend the simplicity bias bound in Equation (3) will
be followed or will have predictive value.

3.1.3. Simplicity Bias Appears When Bias Appears

Following the protocol for generating binary strings via logistic map trajectories
described above, we now examine the probability P(x) that the digitised trajectory x is
produced on random sampling of input parameters µ and x0, which is performed here
using 106 samples over uniformly chosen random parameters. Using Equation (3), we can
make an a priori prediction regarding the upper-bound decay upon sampling of the input

https://oeis.org/A098587
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parameters. (Recall that we ignore the first 50 iterations of the map in order to exclude the
transient dynamics).

Figure 3a shows that the upper-bound prediction (the black line) agrees remarkably
well with the probability and complexity data for different binary string output (blue dots);
we see that the logistic map displays simplicity bias when uniform sampling µ ∈ (0.0, 4.0],
such that high-probability outputs have low complexities, and complex outputs have
low probability. The gradient prediction (a = 1) of the black line used no information
about the map, except that we assumed that almost all 2n outputs of length n bits can be
realised. An upper-bound fit to the log10 P(x) data gives the slope as −0.18. Note that
many output strings fall below the upper-bound prediction, as we expected based on
earlier studies [1,37], but nonetheless it is known that randomly generated outputs tend
to be close to the bound [2]. Put differently, even though many output strings (blue dots)
appear to be far below the bound, most of the probability mass for each complexity value
is concentrated close to the bound. Thus, this simple bound predicts P(x) quite accurately
by using the complexity values of output strings while otherwise completely ignoring the
details of the underlying dynamical system.

(a) (b)

(c) (d)

Figure 3. Simplicity bias in the digitised logistic map from random samples with x0 ∈ (0, 1) and
µ sampled in different intervals. Each blue data-point corresponds to a different binary digitised
trajectory x of 25 bits in length. The black line is the upper-bound prediction of Equation (3).
(a) Clear simplicity bias for µ ∈ (0.0, 4.0] with P(x) closely following the upper bound, except for low
frequency and high complexity outputs which suffer from increased sampling noise; (b) simplicity
bias is still present for µ ∈ [3.0, 4.0]; (c) the distribution of P(x) becomes more flat (less biased) and
simplicity bias is much less clear when µ ∈ [3.57, 4.0] due to constraining the sampling to µ-regions
more likely to show chaos; (d) the distribution of P(x) is roughly uniform when using µ = 4.0, with
almost no bias, and hence no possibility of simplicity bias.
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In Figure 3b we make a similar plot to panel (a) except that we restrict the sampling to
µ ∈ [3.0, 4.0]. The qualitative pattern in (b) is similar to (a), although the simplicity bias
is slightly less clear than in (a). An upper-bound fit to the log10 P(x) data gives the slope
as −0.17. For Figure 3c, the sampling interval was chosen so that µ ∈ [3.57, 4.0] which is
the region containing some truly chaotic trajectories [40]. Both bias and simplicity bias are
less clear in this plot. An upper-bound fit to the log10 P(x) data gives a slope of −0.04. In
Figure 3d a plot is given in which µ is no longer sampled, but is fixed at µ = 4.0, so that
almost all x0 values yield chaotic trajectories. As expected, there is very little bias in the
distribution, i.e., the distribution of P(x) is roughly uniform, and hence no simplicity bias
can be observed. An upper-bound fit to the log10 P(x) data gives a slope of 0.02. Figure 3d
still shows some very simple strings, which can be understood based on the fact that
xi ≈ 0 ⇒ xi+j ≈ 0 for j ≈ 1 even if the trajectories may become much more complex for
j ≫ 1. In other words, if the trajectory reaches a value close to zero, then it tends to stay
close to zero for several iterations. These initial short trajectories with many 0 s will have
very low complexity.

As argued above, the fact that simple patterns occur with high probability when
sampling µ from (0.0, 4.0] is not in itself remarkable, and can be rationalised based on
the bifurcation diagram. However, what is noteworthy in our investigation is that we
do not just see a vague general inverse relation between complexity and probability (as
the preceding discussion might predict), but rather that we see an exponential decay
in probability with linearly increasing complexity, which follows the upper bound of
Equation (3) quite closely.

See the Appendix A for an illustration of the effects of using the different values of n.
See Appendix B for the same plots as in Figure 3, but with semi-transparent data points to
highlight the distribution of data points.

3.1.4. Distribution of Complexities

By itself, simplicity bias does not necessarily imply that the distribution of complexity
values, P(K(x) = r), will be skewed towards low complexity values. Rather, simplicity
bias means that the individual probability of some simple strings will be higher than that of
more complex strings. Because the probability of observing a given complexity r depends
on the product of the number of strings of complexity r and their individual probabilities,
the distribution P(K(x) = r) may in fact peak at high complexities, or low complexities, or
have no peak at all possibly.

To investigate this distribution in the logistic map, in Figure 4, we plot the distribution
of complexities for the different sampling intervals of µ. As can be seen in Figure 4a, when
sampling from [0.0, 4.0] there is a bias towards lower complexities. As for (b), when µ is
sampled from [3.0, 4.0] the distribution of complexities is roughly uniform (at least on a log
scale). In Figure 4c, the distribution is also somewhat uniform but peaks around medium
complexity values. In (d), there is a bias towards higher complexity values. For comparison,
in (e) we also plot the distribution of complexities resulting from sampling purely random
binary strings, and this distribution is very similar to that in (d), which is obtained when
µ = 4.0. It is noteworthy that in some of these cases, while there is some evidence of bias
toward higher or lower complexities, the distributions still display spread and are not
narrowly peaked (at least on a log scale). We note that if the logistic map produced binary
output strings with a uniform probability over strings, in theory, the frequency would grow
exponentially with complexity r. However, for Lempel–Ziv complexity with short strings,
the distribution is not quite exponential; see [1,42].
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(a) (b)

(c) (d) (e)

Figure 4. The distribution P(K̃(x) = r) of output complexity values, with x0 ∈ (0.0, 1.0) and µ

sampled from different intervals. (a) A roughly uniform complexity distribution for µ ∈ (0.0, 4.0],
with some bias towards lower complexities (mean is 3.4 bits); (b) close to uniform distribution of
complexities for µ ∈ [3.0, 4.0], mean is 10.3 bits; (c) the distribution leans toward higher complexities
when µ ∈ [3.57, 4.0], mean is 14.1 bits; (d) the distribution is biased to higher complexity values when
µ = 4.0 (mean is 16.4 bits); (e) for comparison, purely random binary strings of 25 bits in length were
generated (mean is 16.2 bits). The distributions of complexity values in (d,e) are very similar, but
(a–c) show distinct differences. Calculating and comparing P(K) is an efficient way of checking how
simplicity-biased a map is.

The appearance of a distribution that is much less peaked towards high complexity
than that of randomly chosen strings can be rationalised from AIT arguments. To the
first order, there are ∼ 2r strings of complexity r, each with probability ∼ 2−r, such that
the product 2r2−r = O(1) is independent of r, and is presumably uniform. For prefix
complexity, the number of strings with complexity r is slightly less than 2r, and hence
for a prefix UTM, the distribution would be biased to lower r values to some extent.
Nonetheless, the brief rough argument outlined is still valid as a first-order approximation
for distributions with large spread, as we see in Figure 4. See ref. [8] for similar arguments
and results regarding the distribution of complexities in a biological setting, as well as
ref. [42] for the machine learning settings.

Finally, we note that in practice, far fewer samples are needed to produce a P(K̃(x) = r)
distribution than a P(x) distribution, because many strings have the same K̃. Comparing
the sampled distribution to a null model of random strings may be the quickest and easiest
way to diagnose simplicity bias in a dynamical system.
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3.1.5. Complex and Pseudo-Random Outputs

The occurrence of complex patterns may prompt a question: since the logistic map in
Equation (6) is itself simple with low Kolmogorov complexity, it might be supposed that
any output x it generates should be simple as well. So, how can we obtain large variations
in complexity which would lead to large variations in probability? Or are all the apparently
complex outputs merely pseudo-random patterns? We can address these analytically via
bounding the complexity K(x) of a discretised trajectory written as an n-bit binary string x
using the following inequality

K(x) ≤ K(logistic map) + K(µ, x0) + K(n) + O(1) (7)

This bound follows from the fact that any x can be described precisely by first describing: (a) the
logistic map function in Equation (6) with only a few bits because K(logistic map) = O(1) bits,
(b) a pair of values µ and x0 which yield x with K(µ, x0) bits, and (c) the length of the
string (i.e., the number of iterations to perform) via n, which is at most log2(n) bits (up
to loglog terms). From this upper bound, we see that if µ and x0 are simple values with
short descriptions, then K(x) ≪ n, so x must be simple. However, because µ and x0 are
(truncated) real numbers randomly chosen from their intervals, they need not be simple—
rather the opposite—because almost all decimal numbers sampled here are given to d
decimal places, and so will have high complexity values of ∼ log2(10)d bits. Therefore,
outputs need not be simple just because the map is simple, due to the presence of the
complexity of the inputs in Equation (7). Nor are all outputs merely pseudo-random
patterns. Indeed, this argument concurs with the fact that in Figure 3, we see that very
many outputs x are realised, most of which must be (truly) complex because it is well
known from AIT that almost all strings of length n are complex and only relatively few
are simple.

Extending the preceding discussion on Equation (7), it is also interesting to ask if there
are simple input parameters which generate high-entropy pseudo-random outputs. Indeed
there are; for example, if µ = 4.0 then almost all x0 lead to chaotic trajectories, including
some simple initial values like x0 = 1/3, which can be described with only a few bits, so
that K(µ, x0) = O(1) and so K(x) ≤ log2(n) + O(1) (up to additive loglog terms), but at
the same time K̃(x) ≈ n bits because the Lempel–Ziv complexity measure cannot compress
pseudo-random strings.

On reflection, these pseudo-random strings with K(x) ≪ K̃(x) must be ‘rare’ in
the space, and do not have individually high probability, otherwise we would not see
simplicity bias, or at least we would see many points that strongly violate the upper bound
in Figure 3a, which we do not.

3.1.6. Pre-Chaotic Regime

As discussed above, when µ > 3.5699 . . . some trajectories can be chaotic, but there are
also intermittent ‘islands’ of stability, and in general the pattern of types of behaviour in the
region 3.57 to 4.0 is intricate and complicated. However, in the region µ ∈ [0.0, 3.5699], the
types of behaviour are more straightforward, with progressive period-doubling bifurcations
but no true chaos. Feigenbaum [43,44] famously showed that the distance between successive
bifurcations eventually decreases exponentially, as µq+1 − µq ≈ 2.069/4.669q [40], where µq is
the value of the qth bifurcation.

Because this interval µ ∈ [0.0, 3.5699] is relatively easy to understand, and it is similarly
easy to determine if simplicity bias appears even without chaos, we also generated a
complexity–probability plot for µ ∈ [0.0, 3.5699], which was uniformly sampled: Figure 5a
shows the decay in probability with increasing complexity. As is apparent, there are fewer
patterns (blue dots), which is because we are restricting the possible space of patterns by
restricting to this interval of µ. We see that some simplicity bias is observed, but the bound
is less clearly followed as compared to that observed when sampling across [0.0, 4.0]. For
example, the upper bound on the data points’ decay is less clearly linear.
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(a) (b) (c)

Figure 5. Simplicity bias in (a) the logistic map with µ sampled in [0.0, 3.5699], which is the non-
chaotic period doubling regime (upper bound fitted slope is −0.17); (b) the Gauss map (upper bound
fitted slope is −0.13); and (c) the sine map (upper bound fitted slope is −0.17).

To obtain a better understanding of the complexity of trajectories, we can find (Wol-
framAlpha (https://www.wolframalpha.com/ (accessed on 1 September 2023)), using
command “logistic map for r = [//number:3.4//] and x = [//number:0.2//]”) the oscilla-
tion periods for some chosen values of µ: With µ = 3.4, period 2; µ = 3.5, period 4; µ = 3.56,
period 8; µ = 3.569, period 32; µ = 3.5699, period 128. So for the sampled interval [0.0,
3.5699] the highest period is 128. Because we use n = 25, any pattern with a period of 32 or
more will not appear as periodic, because n needs to be large for the periodicity to become
plain. From this brief analysis, we can see how the low-probability and high-complexity
patterns have appeared in Figure 5a. In conclusion, some simplicity bias is observed for the
interval µ ∈ [0.0, 3.5699], but it is not as pronounced as that for sampling µ ∈ [0.0, 4.0], which is
presumably due to the presence of potentially more complex patterns in the interval 3.57 to 4.0.

3.2. Gauss Map (“Mouse Map”)

Moving on from the logistic map, we now explore simplicity bias in another 1D map,
namely the Gauss map, which is also known as the mouse map because the bifurcation
diagram is reminiscent of a mouse [45]. The equation defining the dynamical system is

xk+1 = e−αx2
k + β (8)

The value α = 7.5 is chosen and will be fixed. For many values of α, the bifurcation diagram
is not sufficiently complex as to yield many varied trajectories; also the value 7.5 has been
used previously [46]. The value β is the bifurcation parameter and the map is typically
studied [45,47] with β ∈ [−1.0, 1.0] .

Similar to the logistic map example, we will sample initial values x0 and values of
β, then ignore the first 50 iterations (due to transient dynamics), and then digitise the
real-valued trajectory to form binary string outputs. Because iterations of Equation (8)
are not confined to [0.0, 1.0] and due to the form of the bifurcation diagram [45], we will
sample x0 ∈ [−0.5, 0.5] uniformly. Also, due to the form of the bifurcation diagram, the
digitisation threshold will be set at 0.2 (instead of 0.5, as it was in the case of the logistic
map). Changing the threshold is implemented merely to avoid having too many trivial
outputs of x = 000 . . . 000. As stated above, we will use n = 25.

In Figure 5b, we see that there is clear simplicity bias in the Gauss map. The slope of
the decay follows the predicted black line very closely, but the offset value b is not well
approximated by b = 0. Nonetheless, there is clear simplicity bias, which is similar to the
logistic map case. Hence, we can predict the relative log-probability of output strings with
quite high accuracy.

https://www.wolframalpha.com/
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3.3. Sine Map

We now study simplicity bias in the sine map. Wolfram [48] described the sine map

xk+1 = µ sin(π
√

xk) (9)

and further displayed the bifurcation diagram for this map, which is broadly similar to
that of the logistic map, to illustrate Feigenbaum’s discovery of universality. For this map,
we sample x0 ∈ [0.0, 1.0] uniformly 106 times and return to the digitisation threshold of
0.5. The parameter µ will be sampled uniformly from [0.0, 1.0]. As stated before, the first
50 iterates will be ignored, and we will use n = 25. Note that there is another form of the
sine map which is sometimes studied in dynamical systems [49,50], in which there is no
square root on xk.

Figure 5c shows the complexity–probability plot for the sine map, and simplicity bias
is also present here. However, the upper bound is less clearly linear (on the log scale), and
the black line prediction is not as closely followed. It is also worth noting that in the tail of
the decay at higher complexities, the upper bound appears to curve upward slightly. It is
not clear why this happens.

3.4. Bernoulli Map

Moving on to another prototypical chaotic map, the Bernoulli map (also known as the
dyadic map, bit shift map, doubling map, or sawtooth map) is defined via the equation

xk+1 = (2xk mod 1) (10)

with x0 ∈ (0.0, 1.0). This map shows sensitive dependence on initial conditions because the
trajectories of two inputs x0 and y0 which differ by |x0 − y0| ≈ 0 will eventually diverge
for a large enough k.

Given that the Bernoulli map is also a 1D chaotic system with a simple (O(1) complex-
ity) map, it is interesting to ask whether it shows simplicity bias like the logistic map and
others do. A little reflection shows that this map does not show simplicity bias nor any
other type of bias, even for a digitised version. The trajectory is defined by multiplying
2 by x0, ignoring the integer part, so if x0 is a random real number then the trajectory
will be random and incompressible because (2x0 mod 1) will be another random number,
assuming that x0 is defined to a large number of decimal places. Multiplying a random
number by two does not remove the randomness. Hence, the binary discretised trajectory
sequence would look almost random, with small and quickly decaying autocorrelation (see
Section 9.4 of ref. [17] for a similar conclusion). For bias and simplicity bias, it is necessary
for random inputs to be able to lose a lot of their information and complexity (i.e., complex
inputs must be able to produce simple outputs), but the Bernoulli map does not allow this.
Hence, the behaviour of this map is similar to that of the logistic map with µ = 4.0 in the
sense that there is no bias and no simplicity bias. Indeed, this similarity is quite natural
due to the conjugacy between the logistic map with µ = 4.0 and the Bernoulli (doubling)
map. This map does not have a bifurcation parameter µ.

3.5. Tent Map

The last map we look at is the tent map, which is quite well known and studied in
dynamical systems research [14]. The iterated values follow the function

xk+1 =

{
2xk 0 ≤ xk ≤ 0.5
2 − 2xk 0.5 < xk ≤ 1.0

with xk ∈ [0.0, 1.0], for k = 0, 1, 2, 3, . . . . This map does not have a bifurcation parameter
µ. Despite being a 1D dynamical system, this map does not lead to strong bias in the
distribution of digitised binary string outputs x, and hence it cannot possibly show sim-
plicity bias. Intuitively, this can be seen due to the fact that almost all values of x0 will
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yield complex paths, while simplicity bias typically arises when most inputs lead to rela-
tively simple paths. Indeed, because the tent map is topologically conjugate to the logistic
map [14] when µ = 4.0, and we saw neither bias nor simplicity bias in the logistic map [14]
when µ = 4.0, this helps us to understand the absence of simplicity bias in the tent map.

4. Discussion

Arguments inspired by algorithmic information theory (AIT) predict that in many
input–output maps, strongly non-uniform probability distributions over outputs will
occur, with complex patterns having exponentially low probabilities, and some simple
patterns having high probability; this phenomenon is known as simplicity bias [1]. Here,
we numerically investigated the presence of simplicity bias in digitised trajectories arising
from iterations of the logistic map, Gauss map, sine map, Bernoulli map, and tent map.
By digitising the real-valued trajectories, we studied the probability and complexity of the
resulting binary strings. Our main conclusions are that (i) we observe simplicity bias in
the logistic map, Gauss map, and sine map, and also that in some cases, the probability
of resulting binary strings can be predicted a priori with surprising accuracy; and (ii) we
do not observe simplicity bias in the trajectories of the Bernoulli map and tent map, nor
indeed any bias at all.

Due to the qualitatively different behaviours exhibited by the logistic map for different
µ values, we separately studied different regimes by sampling µ from (0.0, 4.0], (3.0, 4.0],
(3.57, 4.0] and also µ = 4.0. In general, the simplicity bias and upper bound prediction
accuracy was higher for µ sampled across the full range (0.0, 4.0] and decreased for smaller
ranges, and completely disappeared for µ = 4.0. The logistic map is perhaps the most iconic
example of a dynamical system in chaos theory, and has been very extensively studied for
decades. Here, we report a novel finding relating to this map, and one that is not (merely) a
subtle higher-order effect, but rather a strong effect related to order-of-magnitude variations
in pattern probability. This finding is also interesting, given that we did not necessarily
expect to observe simplicity bias when outputs can be pseudo-random (Cf. ref. [1]). It
appears that in this map, pseudo-random outputs are sufficiently rare that they do not cause
strong violations of the simplicity bias upper bound. Additionally, we found simplicity bias
can be ‘tuned’ via altering the µ interval: sampling from the full interval (0.0, 4.0] yields
a biased (low-entropy) distribution over output strings along with simplicity bias, while
sampling from higher values of µ ≈ 4.0 yields low-bias (high-entropy) distributions and
little or no simplicity bias. While we observe simplicity bias similar to that predicted by
AIT arguments in some of these maps, we want to clarify that we do not think that we have
in any way proven that these patterns are in fact directly linked to the AIT arguments. To
achieve that outcome, much more work is needed. Nevertheless, we argue that studying
probability–complexity relationships, and looking for patterns such as simplicity bias, may
be a fruitful perspective for dynamical systems research.

A weakness of our probability predictions is that they only constitute an upper bound
on the probabilities, and, for example, Figure 3a shows that many output trajectory patterns
x fall far below their respective upper bounds. Following the hypothesis from [2,37], these
low-complexity, low-probability outputs are presumably patterns which the logistic map
finds ‘hard’ to make, yet are not intrinsically very complex. Further, the presence of these
low-complexity, low-probability patterns may indicate the non-universal power of the
map [2]. A potential avenue for future work would be studying what types of patterns
may occur far from the bound, and possible approaches to improving on their probability
predictions [37].

The motivations for this work were to explore new examples of simplicity bias in
physics and specifically dynamical systems, test the boundaries of relevance of simplicity
bias, and explore how information theory and algorithmic probability can inform dynamical
systems research. By extension, this work expands on the project of investigating the
interaction between machine learning and dynamical systems because machine learning
is intimately connected to information theory and algorithmics. The broader context of
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our work is a research project that explores the interface of dynamical systems, machine
learning, and AIT. Given the strong interest in applying machine learning to the analysis
of dynamical systems, an open and important line of questioning, then, is the extent to
which machine learning methods are applicable in dynamical systems problems, and
what kinds of limitations or advantages this relatively novel approach may have. Since
information theory and machine learning are inextricably linked and have even been
referred to as “two sides of the same coin” [51], one perspective on these questions is to
consider whether computation and information processing—fundamental components of
machine learning—themselves might have limits of applicability, or in some other way
constrain or inform dynamical behaviours. Some fascinating examples of such limits
have been identified in relation to uncomputability of trajectories, meaning that some
properties of dynamical trajectories may not be possible to calculate, even in principle. In
a seminal paper, Moore [52] proved that the motion of a single particle in a potential can
(in some specific settings) be sufficiently complex as to simulate a Turing machine, and
thereby may yield trajectories with uncomputable quantitative properties. More recently,
Watson et al. [53] proved for an example many-body system that even if the exact initial
values of all system parameters were determined, the renormalisaton group trajectory and
resultant fixed point is impossible to predict. This kind of unpredictability is stronger
than the unpredictability of (merely) chaotic dynamics, in which the limiting factor is the
accuracy with which initial conditions can be measured. See the works of Wolfram [54,55],
Svozil [56], Lloyd [57], and Aguirre et al. [58] for more discussion of (un)computability and
(un)predictability in physical systems. Naturally, if the dynamics of a particular system
cannot be computed even in principle, the accuracy of machine learning approaches to
prediction in these settings will be restricted (but see [59] for further discussion on this).

There may also be deep connections between deep neural networks (DNNs) and sim-
plicity bias. Indeed, upon random sampling of parameters, DNNs exhibit an exponential
bias towards functions with low complexity [60–62]. This property implies that they can
learn simple Kolmogorov data fairly well, but will not generalise well on complex data.
Interestingly, by changing the initialisation over parameters towards a more artefactual
chaotic regime of DNNs, this simplicity bias becomes weaker [63]. It has been recently
shown that in this regime, DNNs no longer generalise well on both simple and complex
data [42] and tend to overfit. This is not unexpected, because DNNs are highly expressive,
and classical bias-variance arguments suggest that they should be highly prone to over-
fitting. The big question is why standard DNNs do not fall prey to this problem. It was
argued that the Occam’s razor like simplicity bias toward simple functions observed in stan-
dard DNNs compensates the exponential growth of the number of possible functions with
complexity, and that this compensation explains why such DNNs can be highly expressive
without overfitting [42]. These principles imply that if a dynamical system exhibits some
form of simplicity bias then the inbuilt Occam’s razor inductive bias of DNNs should make
it much easier to learn by DNNs than in the opposite case where the dynamical system
does not have simplicity bias.

The word “complexity” can take on many meanings [64,65], and can be vague. In this
work, we are precise about what we mean by complexity, which is Kolmogorov complexity,
and in practice using lossless compression methods which is a standard and theoretically
motivated approximation to the true uncomputable quantity. Bialek et al. [66,67] discuss
complexity in relation to time series and argue that Kolmogorov complexity lacks in its
intuitive appeal for a measure of the complexity of these types of sequential patterns. Many
would agree that a series with a rich complicated structure and long-range correlations
is truly complex, whereas a random string of bits is merely an irregular and, in a sense,
trivial pattern. In contrast, Kolmogorov complexity assigns the highest complexity to
such random strings, precisely because they do not contain any correlations or structure.
Having noted this, the discussion does not directly bear upon our work, because we are not
studying ‘complexity’ in a general sense or trying to argue for one or other metric. Rather,
we are studying specifically simplicity bias and AIT inspired arguments as a mathematical
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framework for understanding probability and dynamical systems. AIT allows one to make
quantitative bounds and predictions about various systems, as we illustrate here, regardless
of whether or not the term “complexity” is being used in it truest or most correct sense.

Mathematicians and physicists are fascinated by studying simple systems which can
exhibit complex patterns, even while they are not technically random. In this context,
Wolfram [55] investigated simple automata, and showed that some have high levels of
computing power, leading to his conjecture that many natural systems can be Turing
complete, i.e., that they can implement arbitrary algorithms, and hence produce complex
patterns. Despite this focus on complexity, we observe in our work that complexity is, in a
sense, not actually that common. Even though the logistic map is famous precisely due
to its ability to produce complex behaviour, within the space of possible parameters, i.e.,
µ, x0 ∈ R and even restricting to µ ∈ (0.0, 4.0] and x0 ∈ (0.0, 1.0), chaos and ‘complexity’
only occur rarely (assuming uniform sampling of the parameter space). This observation is
in agreement with with the fact that while Wolfram highlighted some rule sets that produce
randomness, most of his automata rules sets do not produce complex pseudo-random
patterns [55]. Coe et al. [68] analytically studied the question of when automata produce
‘random’ and complex dynamics, and also found that relatively few are random.

The study of random dynamical systems—in which dynamical systems are randomly
perturbed in some way—is quite well established [69], including specifically dynamical
systems with additive noise [70]. While deterministic dynamical systems have been studied
due to their relevance to modelling problems in, e.g., ecology, physics, and economics,
randomly perturbed dynamics are also common in science and hence are important to study,
and arise naturally when modelling physical systems (e.g., [71]). This motivates studying
simplicity bias in such random dynamical systems in future work. As a separate motivation,
in the deterministic logistic map, many sampled µ values yield trajectories which quickly
converge to fixed points or other fairly trivial patterns. However, by introducing some small
random noise, these trajectories may be prevented from converging into trivial patterns,
and therefore may show simplicity bias even while the deterministic counterpart does not.
The relation of simplicity bias to random dynamical systems has been studied recently for
the first time [72], but many questions on this topic remain unanswered.

In this work, we have used 1D maps—including the logistic map—as toy systems to
explore simplicity bias in dynamical systems. The connection between AIT and dynamical
systems has received some earlier attention from an analytical perspective [73–75], and
computational perspective [72,76]. In future work it may be fruitful to investigate which, if
any, properties of the logistic (or other chaotic) map can be predicted or bounded using
the simplicity bias bound. That is, if we assume that the simplicity bias bound holds, what
other dynamical properties of the map might follow from this? Even if these properties
have already been determined, it would still be insightful to see if they could be derived
(perhaps more simply) from AIT arguments. Further, the presence of simplicity bias in
some of the 1D maps may lead to the simplicity bias bound being used as a trajectory
prediction method. This is related to the a priori prediction of natural time series patterns
attempted by Dingle et al. [7]. Another angle would be to study non-digitised trajectories
of dynamical systems, which would require different complexities measures amenable
to continuous curves, such as proposed in ref. [77]. More generally, exploring the use of
arguments inspired by AIT in dynamical systems and chaos research is an attractive and
potentially fruitful research avenue.
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Appendix A. The Impact of the Number of Iterations

In this brief section, we give examples of the impact of changing the length n of
binary strings.

For very small numbers of iterations, simplicity bias is not pronounced. This is
primarily due to the fact that the complexity measure is not very sensitive to small changes
in complexity values. To illustrate, in Figure A1a a plot is shown for n = 5 iterations only.
In this case, there is some evidence of simplicity bias (i.e., an inverse relation between
complexity and probability), but the relation is not strong. A similar weak connection
between complexity and probability was observed for very short sequences in an earlier
time series study of simplicity bias [7]. In Figure A1b, clear simplicity bias is observed
with n = 25. At this length, the complexity measure is sufficiently sensitive and we have
sufficient sampling to reveal order-of-magnitude variations in probability.

(a) (b)

(c) (d)

Figure A1. Simplicity bias with different number of iterations. (a) With n = 5 iterations, there is
some simplicity bias but it is not pronounced; (b) with n = 25 iterations, the simplicity bias is very
clear; with (c) n = 50 iterations there is still clear simplicity bias, but a long ‘tail’ begins to emerge,
illustrating low-frequency patterns; (d) with n = 100 iterations, there is still some simplicity bias but
the ‘tail’ has become more dominant and the simplicity bias is less clear.



Entropy 2024, 26, 426 17 of 20

In theory, for larger output complexities simplicity bias should be more clear [1],
and in fact AIT results in general are typically stated up to O(1) terms, which become
irrelevant when pattern complexities become asymptotically large [16]. However, in this
logistic map example, we find that for longer iterations, the pattern of simplicity bias
becomes more noisy and less clear; see Figure A1c,d. For a larger n, the number of possible
patterns becomes exponentially large and the one million samples produce many patterns
of frequency ≈ 1, yielding a long flat ‘tail’ in the graph.

Appendix B. Alternate Figures Highlighting Density of Points

In this section, we repeat the some of the plots from the main text, but also provide
semi-transparent data points to highlight the density of data points.

(a) (b)

(c) (d)

Figure A2. Simplicity bias in the logistic map, which is the same as in Figure 3, but with semi-
transparent data points. (a) sampling µ ∈ [0.0, 4.0]; (b) sampling µ ∈ [3.0, 4.0]; (c) sampling µ ∈
[3.57, 4.0]; (d) µ = 4.0;
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(a) (b)

(c)

Figure A3. Simplicity bias in (a) the logistic, (b) Gauss map, and (c) sine map, the same as in
Figure 5, but with semi-transparent data points.
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