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Abstract: Geodetic observations through high-rate GPS time-series data allow the precise modeling
of slow ground deformation at the millimeter level. However, significant attention has been devoted
to utilizing these data for various earth science applications, including to determine crustal velocity
fields and to detect significant displacement from earthquakes. The relationships inherent in these
GPS displacement observations have not been fully explored. This study employs the sequential
Monte Carlo method, specifically particle filtering (PF), to develop a time-varying analysis of the
relationships among GPS displacement time-series within a network, with the aim of uncovering
network dynamics. Additionally, we introduce a proposed graph representation to enhance the
understanding of these relationships. Using the 1-Hz GEONET GNSS network data of the Tohoku-Oki
Mw9.0 2011 as a demonstration, the results demonstrate successful parameter tracking that clarifies
the observations’ underlying dynamics. These findings have potential applications in detecting
anomalous displacements in the future.

Keywords: sequential Monte Carlo; particle filtering; GPS time-series analysis; spatiotemporal
analysis; geodetics

1. Introduction

The Global Positioning System (GPS) provides permanent static displacement informa-
tion which is useful in the verification of physically based models in the study of tectonic
and volcanic systems [1] and complements seismological data in earthquake-related studies.
It can aid in determining earthquake rupture geometry [2], estimating the time-varying
distribution of fault slip [3], assessing earthquake magnitude for early warning systems [4],
and detecting ground motion caused by earthquakes [5,6]. Additionally, GPS data are used
to calculate velocity fields, contributing to the description of crustal deformation in various
regions [7–9].

As the significance of GPS observations in earthquake-related studies and crustal de-
formation analyses becomes evident, the spatiotemporal dynamics of surface displacement
from GPS network data become crucial for effective geological hazard assessment and miti-
gation. Previous studies have explored correlations between seismic activity and surface
deformations [10], used machine learning frameworks to integrate the spatiotemporal de-
pendencies of GPS displacements for landslide displacement prediction [11], and employed
the spatiotemporal fields of GPS time-series for earthquake prediction [12].

Despite these efforts, there has been minimal attention paid to modeling the rela-
tionships among GPS measurements in a network and tracking network dynamics. This
study builds upon the potential of high-rate GPS time-series data, employing the sequential
Monte Carlo method, specifically particle filtering (PF), to develop a time-varying analysis
of the relationships among GPS displacement time-series within a network. The aim is
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to uncover the network dynamics and enhance the understanding of these relationships
through a proposed graph representation. Our focus is on utilizing the 1-Hz GEONET
GNSS network data of the Tohoku-Oki Mw9.0 2011 earthquake as a demonstration, with re-
sults highlighting the potential of our approach for anomalous displacement detection and
geological hazard assessment in the future.

2. GPS Data

The post-processed GPS records used in this study obtained from [13], originally
composed of 1-Hz GPS displacement data from 847 GEONET [14] stations in Japan in the
north–south, east–west, and up–down components. The dataset covers a period prior,
during, and after the Tohoku-Oki Mw9.0 earthquake in Japan on 11 March 2011, and it was
originally used in a study to detect significant ground motion from a GPS data network [6],
from which the data were also shown to reliably express the ground motion caused by
the propagation of seismic motion. For an illustrative purpose, a subset of these data
was selected for the experiment, as discussed in Section 5.1. Additionally, the location
coordinates of the GPS stations were separately obtained from [15].

3. Model

In this study, a network consists of a subset of N GPS stations. The displacement
observed at any station at time epoch t is assumed to be related to the displacement
observed at the previous time epoch t− 1 of all stations including itself. A simple linear
relationship for an observation at the ith GPS station is assumed as follows:

xi,t = ai1,tx1,t−1 + ai2,tx2,t−1 + · · ·+ aiN,txN,t−1 + ηi,t

= ai,t · xt−1 + ηi,t,
(1)

where xi,t denotes an observation of the ith GPS station at time epoch t. The vector xt−1
denotes the observations of all GPS stations in a network at time epoch t − 1. aij,t are
coefficients of the linear equation, which we want to recover. These coefficients reflect the
influence of the previous observation at station j on the current observation at station i.
Moreover, they are time-varying and can be of different values at a different time epoch t.
Lastly, ηi,t are noise terms.

Observation Equation (1) can be written in a vector form as

xt = Atxt−1 + ηt
x1,t
x2,t

...
xN,t

 =


a11,t a12,t · · · a1N,t
a21,t a22,t · · · a2N,t

...
...

. . .
...

aN1,t aN2,t · · · aNN,t




x1,t−1
x2,t−1

...
xN,t−1

+


η1,t
η2,t

...
ηN,t

,
(2)

where it can be noted that each ith row of At, the denoted ai,t =
(
ai1,t ai2,t · · · aiN,t

)
is a hidden state vector for an observation of the ith GPS station at time epoch t, or xi,t.
Later, in Section 5.4, a graph representation based on the recovered At for each time epoch
is introduced.

The coefficients aij,t in Equation (1) are assumed to have linear transitions from time
epoch t− 1 to time epoch t as follows:

aij,t = aij,t−1 + vij,t, (3)

where vij,t are noise terms.
For simplicity, the state noise terms vij,t in Equation (3) are assumed to be i.i.d. (in-

dependently and identically distributed) Gaussians. Conversely, the GPS observation
noises ηij,t in Equation (1) have been shown not to necessarily follow Gaussian distribu-
tions [16–18]. These observation noises might exhibit heavier tails or other non-Gaussian
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characteristics. In this study, we model these observation noises ηij,t, using three different
distributions, i.i.d. Gaussian, i.i.d. Laplace, and i.i.d. Cauchy, and we present results for
each. However, it can be noted that these noise terms can be modeled using other kinds of
noise such as Gaussian mixtures [19], and alpha-stable [20] distributions, depending on the
specific application requirements. This flexibility in choosing the noise terms allows for
more accurate and tailored representations in various application scenarios.

Equations (1) and (3) define a model [21] widely used in time-series models, which
has been applied in various fields such as computational biology [22], biogeophysics [23],
brain connectivity [24], and petroleum science [25].

More precisely, our model is defined by two stochastic processes in the forms

at = ft(at−1, vt), (4)

xt = ht(at, ηt), (5)

where a state Equation (4) represents a process [26], in which a hidden parameter vector at
time t depends on that of the previous time instant t− 1. Equation (5) is an observation
equation which is related to the hidden parameter vector at of the state equation. vt and ηt
are noise terms. The intuition of the model is to capture the behaviors of an observation
vector xt in terms of an unobserved state vector at.

In the case of a linear Gaussian model, where ft and ht are linear functions and the
noise terms vt and ηt are normally distributed, one of the classical methods to solve this
problem is the Kalman Filter [27]. However, the aim of this study is to incorporate any
existing information and model hidden parameters across any underlying distribution.
Furthermore, our approach can be generalized to nonlinear observation or state equa-
tions, thereby offering enhanced flexibility and applicability across a broader spectrum of
scenarios.

4. Sequential Monte Carlo

We propose to apply the sequential Monte Carlo method or particle filtering, a Bayesian
method based on an importance sampling and resampling technique. This method is used
to compute the posterior distributions of the hidden parameters, while it also allows
the utilization of prior information. Importantly, this method allows nonlinearities and
non-Gaussian noises in the state and observation equations. This offers flexibility to the
modeling of geophysical phenomena, which may not always follow a Gaussian distribution,
and deviations from the normal distribution can influence actual dynamics [28,29].

More precisely, in this study, a sequential Monte Carlo method or particle filtering (PF)
is used to sequentially find the following posterior of the hidden parameter vector at each
time epoch t, according to Bayes’ rule:

p(ai,t|x1:t) =
p(xt|ai,t)p(ai,t|x1:t−1)

p(xt|x1:t−1)
, (6)

where x1:t denoted observations at all GPS stations from time epochs 1 to t, while xt
denoted the observations at time epoch t. Recall that ai,t =

(
ai1,t ai2,t · · · aiN,t

)
is a

hidden parameter vector, which we want to recover, for an observation at the ith GPS
station at time t or xi,t.

For a Gaussian observation noise assumption, an observation has the following
likelihood:

p(xi,t|ai,t) =
1(

2πσ2
η

)1/2 exp

(
− (xi,t − x̂i,t)

2

2σ2
η

)
, (7)

where x̂i,t is derived from ai,t and xt−1 through Equation (1), and ση is a standard deviation
of the observation noise.



Entropy 2024, 26, 342 4 of 13

For a Laplace observation noise assumption, an observation has the following
likelihood:

p(xi,t|ai,t) =
1

2β
exp

(
−|xi,t − x̂i,t|

β

)
, (8)

where x̂i,t is derived from ai,t and xt−1 through Equation (1). β > 0 is a scale parameter,
and
√

2β is a standard deviation of the observation noise.
For a Cauchy observation noise assumption, an observation has the following likeli-

hood:
p(xi,t|ai,t) =

1

πγ

[
1 +

(
xi,t−x̂i,t

γ

)2
] , (9)

where x̂i,t is derived from ai,t and xt−1 through Equation (1), and γ > 0 is a scale parameter
that determines the distribution’s spread.

Equation (6) provides the optimal Bayesian solution for the hidden parameters for
Equations (4) and (5). However, the denominator in Equation (6) is intractable, and the
solution often cannot be determined [30]. Particle filtering solves for the solution of
the model in Equations (4) and (5) via a sampling scheme. It provides a Monte Carlo
approximation for the posterior in Equation (6), using a finite number M of weighted
samples or particles:

p(ai,t|x1:t) ≈
M

∑
m=1

w(m)
i,t δ

(
ai,t − a(m)

i,t

)
, (10)

where a(m)
i,t are particles, w(m)

i,t are their weights, and δ denotes the delta-Dirac function,
which concentrates probability density at the particles. As the number of particles, M,
grows and tends toward infinity, the accuracy of the approximation improves and converges
towards the true distribution.

More precisely, at any time epoch t, the algorithm has a set of filtering particles
{a(m)

i,t−1, w(m)
i,t−1}m=1...M, which represent samples from the previously estimated posterior

distribution p(ai,t−1|x1:t−1). To estimate the posterior p(ai,t|x1:t) in a current iteration, we
choose to sample from a proposal distribution q, which is perhaps convenient to sample
from and approximates the target posterior distribution in some sense:

a(m)
i,t ∼ q(ai,t|a

(m)
i,t−1, xt). (11)

To ensure that particles approximate samples from the target distribution, the algo-
rithm utilizes the sequential importance sampling method [30], where weights assigned
to particles are determined by a correction factor: p/q. This is to adjust more weights to
particles from critical regions, effectively reducing the overall sampling variance of the esti-
mator. Furthermore, this particular sampling method requires fewer samples compared to
alternative methods such as rejection sampling. More precisely, the importance weight [26]
of a particle a(m)

i,t is assigned as

w(m)
i,t ∝

p(a(m)
i,t |x1:t)

q(a(m)
i,t |a

(m)
i,t−1, xt)

, (12)

which, to avoid recalculation when new data arrives, is equivalent to the following sequen-
tial update [26]:

w(m)
i,t ∝ w(m)

i,t−1

p(xi,t|a
(m)
i,t )p(a(m)

i,t |a
(m)
i,t−1)

q(a(m)
i,t |a

(m)
i,t−1, xt)

. (13)

The proposal distribution, q, should be selected based on the characteristics of the
problem and the target distribution. The popular choice is a bootstrap filter [31], which uses
the state transition density as the proposal distribution, namely to let q(a(m)

i,t |a
(m)
i,t−1, xt) =
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p(a(m)
i,t |a

(m)
i,t−1). This results in a simplified weight update, requiring only the likelihoods

as follows:
w(m)

i,t ∝ w(m)
i,t−1 · p(xi,t|a

(m)
i,t ). (14)

The particle weights in Equation (14) are then normalized so that ∑M
m=1 w(m)

i,t = 1
to ensure that the weighted samples represent a valid probability distribution for the
estimation of the posterior in Equation (6). The normalization [30] is as follows:

w′(m)
i,t =

w(m)
i,t

∑M
m=1 w(m)

i,t

. (15)

The final weighted samples {a(m)
i,t , w′(m)

i,t }m=1...M represent samples which estimate the
posterior distribution in Equation (6).

It is important to note that in high-dimensional state spaces, it can be difficult to
sample particles that adequately cover the state space. This limited number of particles may
struggle to represent the target distribution accurately, leading to particle weights becoming
concentrated on a few particles. This problem, known as degeneracy, can be resolved by
resampling [32], which involves replicating particles with higher weights, and removing
particles with lower weights. This prevents the algorithm from being dominated by a few
particles. Typically, the resampling step is triggered when Ne f f =

1

∑M
m=1

(
w(m)

t

)2 is below a

user-set threshold [26].
The particle filtering method employed in this study is summarized in Algorithm 1.

It can be noted that this algorithm is applicable to real-time data. Additionally, the first
set of particles are generated from a prior distribution which represents an initial belief or
knowledge about the possible states of a system.

Algorithm 1 GPS Displacement Network Learning

Input: X = [x1, x2, . . . , xT ] ∈ RNxT

Output: M samples from p(ai,t|x1:t) for the ith GPS station at t = 1 . . . T for all
i = 1 . . . N

1: M← number of particles
2: for i = 1 to N do
3: Sample a(m)

i,0 ∼ Prior(i) for m = 1 . . . M

4: Set weight w(m)
i,0 ← 1/M for m = 1 . . . M

5: end for
6: for i = 1 to N do
7: for t = 1 to T do
8: Sample a(m)

i,t ∼ q(ai,t|a
(m)
i,t−1, xt) for m = 1 . . . M (Prediction step)

9: x̂(m)
i,t ← Equation (1) using a(m)

i,t and xt−1 for m = 1 . . . M (Prediction step)

10: w(m)
i,t ← Equation (14) using x̂(m)

i,t and xt for m = 1 . . . M (Update step)

11: {a(m)
i,t , w(m)

i,t }m=1...M ← Equation (15) with resampling if needed.
12: end for
13: end for

5. Results and Discussion
5.1. Selected Network Data

Two networks were selected for modeling and discussion. The first network, Net-
work 1, is a clustered network of 10 GPS stations near the earthquake epicenter. The second
network, Network 2, is a sparse network of 10 GPS stations. Locations of GPS stations in
both networks are shown in Figure 1.
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Figure 2 shows snapshots of post-processed measurements of the north displacement
in meters, retrieved from [13], from GPS stations in the two selected networks. Vertical
lines mark the earthquake’s origin time, the time where the earthquake originates at its source,
at 14:46:18 on 11 March 2011 (Japan local time) [33]. It can be noted that stations whose
locations are near the earthquake epicenter experienced the shaking first; hence, significant
displacements were observed at an earlier time.

Figure 1. The first network (left) consists of 10 GPS stations, clustered near the epicenter of the
earthquake. The second network (right) also consists of 10 GPS stations but is a sparse network. Grey
dots indicate other GPS stations included in the retrieved data [13].

Figure 2. Snapshots of post-processed north displacement measurements in meters of GPS stations of
the two selected networks from 14:43:38 to 14:52:58 (Japan local time) of both networks. Vertical lines
in the zoomed graphs mark the earthquake’s origin time. The second vertical lines in the smaller
graphs are the 6 min marks after the earthquake’s origin time.
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Time-series were selected from GPS measurements of the north component at each
station in both networks from 09:00:05 to 15:25:25 (23,131 data points) from the original
1-Hz data retrieved [13]. It can be noted that vertical displacements were not used in this
study because their accuracy is usually less than that of the horizontal ones [34,35].

The number of particles used is M = 10,000. The state noise terms vij,t in the state
update Equation (3) are modeled as i.i.d. Gaussian distributions with zero mean, and a
standard deviation of 10−2 meter (1 cm).

For observation noise, we utilize three different distributions:
First, for the Gaussian observation noise, the observation noise terms ηi,t in Equation (1)

are assumed to have a zero mean, and a standard deviation of ση = 10−2 m (1 cm).
This value was chosen since it was reported that large coseismic ground displacement
could be detected by a real-time GPS network (RTK mode) once the displacement exceeds
approximately this threshold (1 cm), which represents the GPS data noise level [6].

Second, for the Laplace observation noise, the mean of the observation noise terms
ηi,t in Equation (1) is similarly set to zero, and the standard deviation is 10−2 m (1 cm).
Consequently, this setting results in a β value of ση√

2
for the likelihood Equation (8).

Third, for the Cauchy observation noise, the scale parameter γ in the likelihood
Equation (9) is chosen to be 10−2 m (1 cm).

The particles were initialized for the first iteration, which represents the prior infor-
mation of the matrix At which is a diagonal matrix with unit values along its diagonal,
with zeros elsewhere, added with a normal perturbation with a zero mean and a standard
deviation of 10−2 m (1 cm) to enhance the variability in the initial state estimates.

5.2. Modeling Results

At each time epoch t, the estimated parameters are present in the form of particles.
These particles serve as the basis for deriving valuable statistics, including the mean
and standard deviation. Additionally, the distribution can be visually examined through
representations such as histograms, which provide richer representations of the entire
probability distribution. Figure 3 shows histograms of particles for the hidden parameters
in the north components of Network 1 and Network 2 at one instant, under all three
distributions for the observation noise. The mean value of particles for a given aij,t in the
matrix At is considered to be the estimation for the hidden parameter aij,t.

The prediction residuals are calculated as the difference between the observed and
estimated values. From the start of the estimation results at 9:00:05 until the earthquake’s
origin time at 14:46:18, the mean values of the residuals of both networks are at zero,
and the standard deviations of the residuals are 0.22 cm (Gaussian assumption) and 0.21 cm
(Laplace and Cauchy assumptions) for Network 1, and 0.19 cm (Gaussian assumption)
and 0.18 cm (Laplace and Cauchy assumptions) for Network 2, respectively. These figures
indicate a good performance of the PF estimates, with a marginally improved accuracy
observed under Laplace and Cauchy noise assumptions.

Figure 4 shows snapshots of the prediction residuals, in centimeters, of GPS stations
in Network 1 (top) and Network 2 (bottom), each under three different distribution as-
sumptions for the observation noise. The first vertical lines in all residual graphs mark the
earthquake’s origin time. Notably, following the earthquake, there is a marked fluctuation
in the estimation performance, indicative of strong disturbances. This sudden fluctuation in
the prediction residuals is interpreted as an anomalous event, signifying a deviation from
an expected estimation. For example, in the north component of Network 1, an anomaly
is detected at 14:47:10 (52 seconds after the origin time) for both Gaussian and Laplace
assumptions, and at 14:47:09 for Cauchy assumption. In Network 2, an anomaly is detected
at 14:47:33 (1 min and 15 seconds after the origin time) for both Gaussian and Laplace
assumptions, and at 14:47:42 for Cauchy assumption. The criteria for the anomaly detection
are discussed in Section 5.3.

After the anomalies, up to the 6 min mark after the origin time (as indicated by the
third vertical line of each residual graph in Figure 4), Network 1 exhibited a wider range
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of prediction residuals (−29.1 to 12.8 cm under Gaussian assumption, −11.23 to 15.04 cm
under Laplace assumption, and −24.93 to 25.81 cm under Cauchy assumption) compared
to Network 2’s range (−11.9 to 4.72 cm under Gaussian assumption, −14.50 to 7.67 cm
under Laplace assumption, and −18.44 to 11.58 cm under Cauchy assumption). Note that
the largest observed displacements during this period were 1.93 and 0.99 m for Network 1
and Network 2, respectively. The predictions improved around the 6 min post-origin time,
marked by the third vertical line in each residual graph, as expected since the disturbance
caused by the earthquake started to lessen.

Figure 3. Histograms representing the distributions of particles at the earthquake’s origin time
(14:46:18) of Network 1 (a) and Network 2 (b), under three observation noise assumptions: Gaussian
(top row), Laplace (middle row), and Cauchy (bottom row). The arrangement of each histogram
block mirrors the structure of the matrix At as defined in Equation (2), with rows and columns
corresponding to those of the matrix. In these histograms, the colors blue and red signify non-
negative and negative particle means, respectively. A vertical line within each histogram marks the
mean value of the particles, which serves as the estimate for the respective hidden parameter, ai,j.

It can be noted that, as the number of GPS stations, N, in a network increases, the num-
ber of hidden parameters in the matrix At will increase quadratically. Consequently,
the selection of a subset of GPS stations becomes crucial and poses a challenging task.
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Figure 4. Prediction residuals in centimeters over an 11 min duration for the north components of
Network 1 (a) and Network 2 (b), displayed under models with Gaussian, Laplace, and Cauchy
assumptions. The first vertical line in each graph marks the earthquake’s origin time (14:46:18).
The second vertical line indicates anomalies detected at 14:47:10 (for Gaussian and Laplace) and
at 14:47:09 (for Cauchy) in Network 1, and at 14:47:33 (for Gaussian and Laplace) and 14:47:42 (for
Cauchy) in Network 2. The third vertical line marks the 6 min point post-origin time. Above each
set of residual graphs for Network 1 (a-1–a-3) and Network 2 (b-1–b-3) are histograms depicting
the density of residuals during the leading 260 time points. In Network 1, histograms under all
distribution assumptions show a zero mean, with standard deviations of 0.16 cm (Gaussian) and
0.15 cm (Laplace and Cauchy). In Network 2, they also present a zero mean, with standard deviations
of 0.14 cm (Gaussian), 0.13 cm (Laplace), and 0.14 cm (Cauchy). Importantly, the residuals under
Gaussian observation noise assumptions do not conform to a Gaussian distribution, suggesting that
the observation noise deviates from Gaussian behavior.
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5.3. Parameter Choices for Anomaly Detection

In Figure 4, anomalies are identified using specific criteria: The analysis begins by
defining a leading period (l) of 260 seconds immediately preceding the earthquake’s origin
time. Anomalies are those instances where the the absolute value of the prediction residual
surpasses a specified anomaly threshold (z), multiplied by the standard deviation from the
mean residual value calculated within the leading period. This condition must be met for
a predetermined number of consecutive counts (n). The anomaly threshold z essentially
represents the number of standard deviations by which a residual at a given time point
deviates from the mean residual value of the leading period. The use of consecutive counts
n helps to account for site-specific GPS errors. Specifically, in Figure 4, the anomalies are
marked using the following parameters for both networks: l = 260 s window before the
origin time, z = 3.0, and n = 5.

With these parameters, an anomaly in the east component of Network 1 is detected
slightly earlier, at 14:47:05. This is consistent with expectations, as the seismic displacement
from the Tohoku-Oki earthquake was first detected in the east component [6].

Our approach for identifying anomalies, which utilizes prediction residuals derived
from the estimation of hidden parameters, can offer more sensitivity to the anomaly
detection than if solely relying on raw displacement data. For example, when comparing
anomaly detection based on prediction residuals with a straightforward approach that
applies a short-term moving variance directly to the displacement observations, using
the parameters previously discussed for the north component of Network 2, our method
detects the anomaly the earliest at 14:47:33 (as shown in Figure 4). In contrast, with the
same parameter settings, direct thresholding of the displacement observations identifies
the anomaly later, at 14:47:43.

It is essential to note that the selected anomaly threshold z, the leading period l, and the
consecutive counts n are arbitrary and can be adjusted for each network to accommodate
the varying behaviors in estimation noise. For instance, in the north component of both
Network 1 and 2, changing the leading period to either a 360 s or 460 s window before
the earthquake’s origin time still results in detecting an anomaly within 1 s of the initial
detection time, under all distribution assumptions, for the same anomaly threshold.

5.4. Graph Representation

The hidden parameters aij,t represent relationships between GPS displacements in a
network at different time epochs t. Instead of comparing raw values, we assess z-scores,
denoted zij,t. A z-score is a statistical measure that indicates the number of standard
deviations a data point is from the mean of its distribution. Specifically, at each time
epoch t, a z-score of an estimated hidden parameter aij,t denoted zij,t is calculated as

zij,t =
(aij,t−µt)

σt
, where µt and σt are the mean and the standard deviation of all particles

a(m)
ij,t , in a matrix At of Equation (2).

A graphical representation of a network at time epoch t consists of N nodes, each
representing a GPS station, and NxN directed edges. Directed edges from j to i represent
zij,t. A high positive zij,t reflects a positive influence of measurement of GPS station j on
i, while near-zero zij,t indicates proximity to the mean. Negative zij,t signifies a negative
influence of the measurement of GPS station j on i.

Figure 5 depicts graph representations of the hidden parameters for the north dis-
placements of Network 1 and Network 2 under the three different assumptions for the
observation noise, each at three distinct time instants. The graphs for the first two time
instants (the origin time and the anomalies) of each network exhibit similar behaviors,
noticeable by the similar colors of their edges. However, at the third time instant shown,
both networks display graphs distinct from those in the previous two time instants. This
divergence is understandable since, at the marked anomalies of both networks (center
column), the networks began to undergo changes, reflected by high estimate residuals
(noticeable in Figure 4), caused by the disturbance from the earthquake that the model did
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not capture well initially. Subsequently, at the third time instant (the rightmost column),
the model learns and presents different behaviors, as indicated by graphs with distinctly
different edge colors. It can be noted that in Network 2, at the third time instant shown,
each GPS station’s measurement heavily relies solely on its own previous measurements.
This may be due to the highly sparse locations of the stations and hence less dependency
after the disturbance from the earthquake. Additionally, it can be noted that the Cauchy
observation noise assumptions lead to sparser networks with less significant branches,
as shown by the lighter colors of the graph edges.

Figure 5. Graph representations for the north components of Networks 1 (a) and 2 (b), demonstrating
hidden parameters under three observation noise assumptions: Gaussian (top), Laplace (middle),
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and Cauchy (bottom), respectively. From left to right, the columns depict the earthquake’s origin time
(14:46:18), anomalies (at 14:47:10 for Gaussian and Laplace, and at 14:47:09 for Cauchy in Network
1; at 14:47:33 for Gaussian and Laplace, and at 14:47:42 for Cauchy in Network 2), and the 6 min
mark from the origin time (14:52:18). The edges are color-coded, ranging from red to white to blue,
corresponding to z-scores of −4, 0, and 4, respectively. For visual clarity, self-edges, connecting a
node to itself, are illustrated as the borders of the nodes. The nodes are located relative to the actual
positions of the corresponding GPS stations.

The proposed graph representation of a network enables the tracking of hidden
parameters in a compact manner, with edges defined using the z-scores of the estimated
parameters. This representation should also aid the understanding of networks following
weaker earthquakes, whose hidden parameters are expected to fluctuate more subtly. Other
potential graph representations include a graph whose edges are defined based on the
amount of change in the parameters relative to those in the previous time step.

6. Conclusions

We showcased the capabilities of a sequential Monte Carlo method, specifically particle
filtering, in tracking changes in the relationships among GPS measurements in a network
before, during, and after the disturbance caused by an earthquake. Our proposed model
effectively captures the time-varying behaviors of the network, which can be useful for
anomalous displacement detection. The proposed graph representations aid in under-
standing and facilitate the tracking of network dynamics. The versatility of the method
allows for extensions to model other time-varying geodetic data networks, and it facili-
tates the adoption of different model equations and assumptions. In the future, regarding
this work, we will also consider other distribution models [36] and nonlinear state and
observation models.
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