Topic Editors

School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China
Prof. Dr. Yujun Zuo
Mining College, Guizhou University, Guiyang 550025, China
School of Civil Engineering, Dalian University of Technology, Dalian 116024, China
Dr. Qian Yin
Associate Professor, State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China

Complex Rock Mechanics Problems and Solutions

Abstract submission deadline
31 March 2024
Manuscript submission deadline
31 July 2024
Viewed by
4996

Topic Information

Dear Colleagues,

The purpose behind the birth of rock mechanics was to solve rock engineering stability problems and study rock crushing conditions. The research medium is very complex, and there are many unstable or uncertain factors associated with mechanical properties, which make it difficult to establish an independent, complete and systematic theoretical basis for this discipline. The development of rock mechanics has always used the basic theories and research results of solid mechanics, soil mechanics, engineering geology and other disciplines to solve the problems of geotechnical engineering. Therefore, rock mechanics that emphasize different industries often have different definitions. Due to the extensiveness of the service objects of rock mechanics and the complexity of the research objects, it has been concluded that the research content of rock mechanics must also be extensive and complex. We, therefore, invite papers on innovative technical developments, in addition to reviews, case studies and analytical and assessment papers from different disciplines that are relevant to the topic of rock mechanics. The main topics of the section include, but are not limited to, the following:

  • Simulation, mechanical expression and mechanical mechanism of rock mass structure and structural plane;
  • The strength, failure mechanism and failure criterion of fractured rock mass;
  • Interaction and stability evaluation of rock mass and engineering structure;
  • Mechanical properties of soft rock and its rock mass mechanics;
  • Water-rock-stress coupling effect and rock mass engineering stability;
  • High in-situ stress rock mass mechanics;
  • The overall comprehensive simulation feedback system and optimization technology of rock mass structure;
  • Rock mass dynamics, thermodynamics and hydraulic problems;
  • Rock mass rheology and long-term strength;
  • Computer-aided design of rock mass engineering and automatic image generation processing.

Prof. Dr. Chun Zhu
Prof. Yujun Zuo
Prof. Dr. Shibin Tang
Dr. Qian Yin
Topic Editors

Keywords

  • rock mechanics
  • mining engineering
  • computer-aided design
  • slope stability
  • underground excavation
  • numerical modelling

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Applied Sciences
applsci
2.838 3.7 2011 14.9 Days 2300 CHF Submit
Energies
energies
3.252 5.0 2008 15.5 Days 2200 CHF Submit
Geosciences
geosciences
- 4.8 2011 22.5 Days 1500 CHF Submit
Minerals
minerals
2.818 3.7 2011 16.2 Days 2000 CHF Submit
Remote Sensing
remotesensing
5.349 7.4 2009 19.7 Days 2500 CHF Submit

Preprints is a platform dedicated to making early versions of research outputs permanently available and citable. MDPI journals allow posting on preprint servers such as Preprints.org prior to publication. For more details about reprints, please visit https://www.preprints.org.

Published Papers (7 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
Article
Numerical Simulation and Analysis of the Causes and Distribution of Secondary Lining Cracks in Overlapping Railway Tunnels
Appl. Sci. 2023, 13(11), 6436; https://doi.org/10.3390/app13116436 - 25 May 2023
Viewed by 300
Abstract
The construction of new tunnels above existing tunnels has become increasingly common to optimize underground space utilization. However, such construction may pose potential engineering hazards due to cracking in the secondary lining of the lower tunnel. This study investigates the occurrence and evolutionary [...] Read more.
The construction of new tunnels above existing tunnels has become increasingly common to optimize underground space utilization. However, such construction may pose potential engineering hazards due to cracking in the secondary lining of the lower tunnel. This study investigates the occurrence and evolutionary characteristics of longitudinal cracks in the secondary lining of the lower tunnel during the construction of the upper tunnel adjacent to the pre-existing lower tunnel. Our findings demonstrate that the construction of the upper tunnel has a significant impact on the lower tunnel, as confirmed by on-site monitoring and numerical simulation results. The redistribution of surrounding rock pressure alters the stress distribution of the secondary lining of the lower tunnel, which is the primary reason for the observed cracking. To mitigate the risk of cracks, two different methods are recommended based on the density of the cracks. In areas with less dense cracks, the method of chiseling and grouting is adopted to improve the strength of the secondary lining, while in relatively dense areas, resin anchor rods with saddle joints are used to enhance the stability of the surrounding rock. Long-term monitoring, classification, and early warning of cracks are also recommended. Full article
(This article belongs to the Topic Complex Rock Mechanics Problems and Solutions)
Show Figures

Figure 1

Article
Stability Study of the Roof Plate of the Yuanjue Cave Based on the Equivalent Support Stiffness Method
Appl. Sci. 2023, 13(7), 4451; https://doi.org/10.3390/app13074451 - 31 Mar 2023
Viewed by 634
Abstract
As precious cultural heritage sites, the state of preservation of cave temples is closely related to the geological and climatic conditions in which they are located. This paper constructed an analytical method of sized slate stability based on the equivalent support stiffness method. [...] Read more.
As precious cultural heritage sites, the state of preservation of cave temples is closely related to the geological and climatic conditions in which they are located. This paper constructed an analytical method of sized slate stability based on the equivalent support stiffness method. The stability analysis of the roof slab of Yuanjue Cave was carried out by establishing a three-dimensional numerical calculation model. Through comparative analysis of the results of stress and displacement fields under different conditions, the stress and deformation characteristics of the roof slab of Yuanjue Cave were revealed, as well as the study of the main factors affecting the stability of the roof slab of Yuanjue Cave and the key slate to be monitored. The main research results are as follows. The stress deformation of the roof plate of Yuanjue cave is mainly divided into the initial uniform change stage, the medium-term stable change stage or the medium-term accelerated change stage, and the later rapid change stage. With the increase in the number of overhanging and broken slates and the increase in the damage factor of cracked slates, the vertical stress extremum of the stones increases continuously, and the equivalent support stiffness decreases, which aggravates the uneven stress deformation of the roof of the Yuanjue Cave. This study provides a reliable reference basis for the stability analysis and evaluation of the roof slab of a large number of cave temples existing in the Sichuan and Chongqing areas in China. Full article
(This article belongs to the Topic Complex Rock Mechanics Problems and Solutions)
Show Figures

Figure 1

Article
A Coupled Darcy-Forchheimer Flow Model in Fractured Porous Media
Appl. Sci. 2023, 13(1), 344; https://doi.org/10.3390/app13010344 - 27 Dec 2022
Viewed by 513
Abstract
Aiming at nonlinear flow in fractured porous media, based on the finite volume method, the discrete equations of Darcy flow in porous and Forchheimer flow in fracture were derived, and a solution method for coupling flow is proposed. The flow solution by the [...] Read more.
Aiming at nonlinear flow in fractured porous media, based on the finite volume method, the discrete equations of Darcy flow in porous and Forchheimer flow in fracture were derived, and a solution method for coupling flow is proposed. The flow solution by the proposed method for single fracture and intersecting fracture is verified against Frih’s solution. Based on this method, nonlinear flow behavior for fractured rock deep-buried tunnels under high water heads was discussed. The results show that the hydraulic gradient of surrounding rock is characterized by “large at the bottom and small at the top”, with a maximum difference of 2.5 times. Therefore, the flow rate at the bottom of the tunnel is greater than that at the top. The fracture flow rate along the flow direction is also greater than that in the vertical flow direction, with a maximum difference of 60 times. The distribution homogeneity and density of fracture are the most important factors that affect the hydraulic behavior of fractured rock tunnels. The more fractures concentrated in the direction of water pressure and the greater the density, the greater the surrounding rock conductivity and the greater the flow rate of the tunnel. Under this condition, the water-inflow accident of the tunnel would be prone to occur. The research results provide a reference for the waterproof design and engineering practice of fractured rock tunnels. Full article
(This article belongs to the Topic Complex Rock Mechanics Problems and Solutions)
Show Figures

Figure 1

Article
Study on Dynamic Disaster Mechanisms of Thick Hard Roof Induced by Hydraulic Fracturing in Surface Vertical Well
Minerals 2022, 12(12), 1537; https://doi.org/10.3390/min12121537 - 29 Nov 2022
Viewed by 591
Abstract
With the increase in mining depth and the deterioration of mining conditions, thick and hard overburden movement frequently induces mine earthquakes and rock bursts. Some mines are expected to prevent and control super thick hard rock mine earthquakes through vertical ground well water [...] Read more.
With the increase in mining depth and the deterioration of mining conditions, thick and hard overburden movement frequently induces mine earthquakes and rock bursts. Some mines are expected to prevent and control super thick hard rock mine earthquakes through vertical ground well water fracturing technology. However, the dynamic underground disaster appears more intense. Taking the ‘11.30’ mine earthquake in a mine in Shandong Province as the engineering background, the dynamic disaster mechanism of an extraordinarily thick and hard roof induced by hydraulic fracturing of vertical wells on the ground was studied utilizing field investigation, accident case analysis, similar material simulation test, and theoretical analysis. The main conclusions are as follows: (1) After hydraulic fracturing vertical wells on the ground, the movement mode of thick and hard roofs changed from layer-by-layer to overall sliding movement; (2) The influence range of the advanced abutment pressure of the working face is reduced by the hydraulic fracturing of the vertical shaft, and the peak value of the advanced abutment pressure increases. Furthermore, the advanced abutment pressure’s peak is far from the coal wall; (3) The hydraulic fracturing technology of cross-arranged vertical surface deep and shallow wells and the hydraulic fracturing technology of cross-perforated surface multi-branch horizontal wells are proposed to avoid the dynamic disaster of overall sliding movement of an extremely thick hard roof induced by surface hydraulic fracturing. Therefore, these research results provide significance for preventing and controlling mine earthquakes and rock bursts in super thick hard roof mines. Full article
(This article belongs to the Topic Complex Rock Mechanics Problems and Solutions)
Show Figures

Figure 1

Article
Heat Transfer and Flow Characteristics of Coal Slurries under the Temperature Difference between Inside and Outside of the Channel
Appl. Sci. 2022, 12(23), 12028; https://doi.org/10.3390/app122312028 - 24 Nov 2022
Viewed by 447
Abstract
The pipeline transportation of coal slurries is always subject to a temperature difference between the outdoors environment and the fluid body. As slurries’ viscosity is typically temperature dependent, the flow is accompanied by the heat transfer. In this study, we used the CFD [...] Read more.
The pipeline transportation of coal slurries is always subject to a temperature difference between the outdoors environment and the fluid body. As slurries’ viscosity is typically temperature dependent, the flow is accompanied by the heat transfer. In this study, we used the CFD method to investigate temperature distributions and flow structures in straight and curved channels, which has not previously been investigated, according to our knowledge. First, the results demonstrate that the cooling process influences the flow structures along the stream. The fluid turns more sharply in the cooler fluid in the curved channel, the streamlines overlap at an earlier position within the bend, and the velocity maximum zone is wider. Cooling also has a significant impact on transverse flow. Because of the higher viscosity of the more cooled fluid and thus the difficulty of shearing the fluid in the stream-wise direction, the vorticity and strength of the vortex flow are greater. The fluid velocity at the central part of the channel points toward the inner wall at the beginning of the bend, resulting in an inner-wall biased temperature distribution, as the heat transfer is partially carried out by the fluid velocity. The central velocity points toward the outer wall at the end of the bend, resulting in the outer-wall biased temperature profile. Full article
(This article belongs to the Topic Complex Rock Mechanics Problems and Solutions)
Show Figures

Figure 1

Communication
A Potential Mechanism of the Satellite Thermal Infrared Seismic Anomaly Based on Change in Temperature Caused by Stress Variation: Theoretical, Experimental and Field Investigations
Remote Sens. 2022, 14(22), 5697; https://doi.org/10.3390/rs14225697 - 11 Nov 2022
Cited by 2 | Viewed by 531
Abstract
Satellite thermal infrared remote sensing has received worldwide attention in earthquake-precursors exploration. Meanwhile, it has also encountered great controversy due to the lack of quantitative interpretation of the observations, despite the existing qualitative physical mechanisms being able to greatly help us understand thermal [...] Read more.
Satellite thermal infrared remote sensing has received worldwide attention in earthquake-precursors exploration. Meanwhile, it has also encountered great controversy due to the lack of quantitative interpretation of the observations, despite the existing qualitative physical mechanisms being able to greatly help us understand thermal infrared anomalies. Here, we report a potential mechanism to quantitatively analyze co-seismic thermal infrared anomalies based on temperature change caused by stress variation through theoretical, experimental, and field investigations. This paper firstly deduces theoretically the temperature variation during elastic deformation of rock on the basis of the thermodynamic theory. Secondly, three laboratory experiments on rock samples are conducted to verify the theoretical estimates of the temperature changes caused by stress variations using an infrared camera with the spectral range of 8~12 μm. Thirdly, a mechanical model on thrust faults is built to evaluate the co-seismic temperature drop as a result of thrust faulting. The model shows that the co-seismic temperature drop in rocks should be in the order of 0.18 K. This variation in rock temperature may cause a change in heat equivalent to changes in shallow atmospheric temperatures of 3.0–6.0 K, which is in accordance with the temperature anomalies observed by satellite thermal infrared remote sensing. In addition, the temperature change caused by crustal stress variation may involve a large spatial scale, covering the whole focal area, which has characteristics of regional distribution and is conducive to satellite observation. Therefore, a quantitative explanation of the satellite thermal infrared seismic anomaly mechanism can be given via the temperature change caused by crustal stress variation. Full article
(This article belongs to the Topic Complex Rock Mechanics Problems and Solutions)
Show Figures

Figure 1

Article
Numerical Simulation Analysis Method of the Surrounding Rock and Support Bearing Capacity in Underground Cavern
Energies 2022, 15(20), 7788; https://doi.org/10.3390/en15207788 - 20 Oct 2022
Viewed by 599
Abstract
After the excavation of an underground cavern, how the surrounding rock and the support work together to bear the excavation load is an important prerequisite to correctly analyze the joint force characteristics; effectively play the role of support; and ensure the safety, efficiency, [...] Read more.
After the excavation of an underground cavern, how the surrounding rock and the support work together to bear the excavation load is an important prerequisite to correctly analyze the joint force characteristics; effectively play the role of support; and ensure the safety, efficiency, and economy of underground cavern construction. Starting from the elastic-plastic load release characteristics of surrounding rock, this paper proposes a calculation method of the elastic load coefficient of surrounding rock and a graded release method of plastic load, which ensures the actual effect of the synergistic action of the first support and surrounding rock. Based on the elastic-plastic damage evolution characteristics of surrounding rock, a weighted iterative calculation method of elastic-plastic damage is proposed, and an evaluation method of load release ultimate bearing capacity of surrounding rock is determined. By monitoring the change law of rock acoustic wave velocity with surrounding rock damage, the relationship between the wave velocity and the damage coefficient of the surrounding rock in the excavation process is deduced, and it is proposed to determine the latest support time for first support by using the measured rock damage wave velocity. Through the numerical simulation analysis of a diversion tunnel excavation and support, the damage evolution law of the surrounding rock with the release of the excavation load is studied. The ultimate bearing capacity of various surrounding rocks and supporting opportunity is determined. The results demonstrate the validity and practicality of the analysis and calculation methods in this paper, which provide a new idea and analysis method for quantifying the bearing capacity of surrounding rock and determining the support timing in the excavation and support design of underground caverns. Full article
(This article belongs to the Topic Complex Rock Mechanics Problems and Solutions)
Show Figures

Figure 1

Back to TopTop