Topic Editors

1. Department of Applied Mechanics, University Dunarea de Jos of Galati, Strada Domnească 47, Galați, Romania
2. CENTEC - Centre for Marine Technology and Ocean Engineering, University of Lisbon, Lisbon, Portugal
School of Naval Architecture & Marine Engineering, National Technical University of Athens, Athens, Greece
Department of Civil Engineering and Geosciences, Delft University of Technology (TU Delft), Delft, The Netherlands

Marine Renewable Energy, 2nd Volume

Abstract submission deadline
31 August 2023
Manuscript submission deadline
30 November 2023
Viewed by
3365

Topic Information

Dear Colleagues,

We would like to invite submissions to this Topic on the subject of Marine Renewable Energy, which is a continuation of a successful previous Topic.

Marine Renewable Energy (MRE) is abundant, and there are large spaces in both offshore and coastal environments that can be considered for harvesting various kinds of marine energy. The effects of climate change have become obvious, and a drastic reduction in CO2 emissions represents an issue of highly increasing importance. From this perspective, the technologies currently associated with marine renewable energy extraction are very significant for achieving the expected targets in energy efficiency and environmental protection. Research into offshore wind has experienced significant success in the last decade and is expected to advance other MRE sources. On the other hand, although significant advances have been noticed in recent years, with regard to extracting marine renewable energy, there are still important challenges related to the implementation of cost-effective technologies that could survive in the harsh marine environment. From this perspective, this Topic seeks to contribute to the renewable energy agenda through enhanced scientific and multidisciplinary works, aiming to improve knowledge and performance in harvesting ocean energy. We strongly encourage papers providing innovative technical developments, reviews, case studies, and analytics, as well as assessments and manuscripts targeting different disciplines, which are relevant to harvesting ocean energy and to the associated advances and challenges.

Prof. Dr. Eugen Rusu
Prof. Dr. Kostas Belibassakis
Dr. George Lavidas
Topic Editors

Keywords

  • marine environment
  • offshore and floating wind
  • tide and wave energy
  • floating solar energy
  • osmotic energy
  • power to X systems
  • storage systems
  • resource assessment
  • hybrid against colocation concepts
  • multiplatform concepts
  • arrays of energy converters
  • numerical modelling
  • laboratory experiments
  • climate change and environmental impact
  • marine spatial planning issues

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Energies
energies
3.252 5.0 2008 15.5 Days 2200 CHF Submit
Journal of Marine Science and Engineering
jmse
2.744 2.8 2013 15.8 Days 2200 CHF Submit
Processes
processes
3.352 3.5 2013 12.7 Days 2000 CHF Submit
Inventions
inventions
- 5.2 2016 14.7 Days 1500 CHF Submit

Preprints is a platform dedicated to making early versions of research outputs permanently available and citable. MDPI journals allow posting on preprint servers such as Preprints.org prior to publication. For more details about reprints, please visit https://www.preprints.org.

Published Papers (3 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
Article
Experimental Investigation of Flow-Induced Motion and Energy Conversion for Two Rigidly Coupled Triangular Prisms Arranged in Tandem
Energies 2022, 15(21), 8190; https://doi.org/10.3390/en15218190 - 02 Nov 2022
Viewed by 738
Abstract
A series of experimental tests on flow-induced motion (FIM) and energy conversion of two rigidly coupled triangular prisms (TRCTP) in tandem arrangement were conducted in a recirculating water channel with the constant oscillation mass mosc. The incoming flow velocity covered the [...] Read more.
A series of experimental tests on flow-induced motion (FIM) and energy conversion of two rigidly coupled triangular prisms (TRCTP) in tandem arrangement were conducted in a recirculating water channel with the constant oscillation mass mosc. The incoming flow velocity covered the range of 0.395 m/s ≤ U ≤ 1.438 m/s, corresponding to the Reynolds number range of 3.45 × 104Re ≤ 1.25 × 105. The upstream and downstream triangular prisms with a width of 0.1 m and length of 0.9 m were connected by two rectangular endplates. Seven stiffness (1000 N/m ≤ K ≤ 2400 N/m), five load resistances (8 Ω ≤ RL ≤ 23 Ω), and five gap ratios (1 ≤ L/D ≤ 4) were selected as the parameters, and the FIM responses and energy conversion of TRCTP in tandem were analyzed and discussed to illustrate the effects. The experimental results indicate that the “sharp jump” phenomenon may appear at L/D = 2 and L/D = 3 significantly, with substantially increasing amplitude and decreasing oscillation frequency. The maximum amplitude ratio in the experiments is A*Max = 2.24, which appears after the “sharp jump” phenomenon at L/D = 3. In the present tests, the optimal active power Pharn = 21.04 W appears at L/D = 4 (Ur = 12.25, K = 2000 N/m, RL = 8 Ω), corresponding to the energy conversion efficiency ηharn = 4.67%. Full article
(This article belongs to the Topic Marine Renewable Energy, 2nd Volume)
Show Figures

Figure 1

Article
Experimental Proof-of-Concept of a Hybrid Wave Energy Converter Based on Oscillating Water Column and Overtopping Mechanisms
Energies 2022, 15(21), 8065; https://doi.org/10.3390/en15218065 - 30 Oct 2022
Cited by 1 | Viewed by 970
Abstract
This paper presents the results of laboratory tests on a hybrid wave energy converter concept, the O2WC (Oscillating-Overtopping Water Column) device. The proposed device aims at providing an alternative to the classical OWC concept, storing part of the wave energy of [...] Read more.
This paper presents the results of laboratory tests on a hybrid wave energy converter concept, the O2WC (Oscillating-Overtopping Water Column) device. The proposed device aims at providing an alternative to the classical OWC concept, storing part of the wave energy of the highly energetic sea states in a second chamber at atmospheric pressure, through overtopping phenomena. In this way, the maximum airflow rate and air pressure in the OWC chamber are reduced, possibly aiding the safe functioning of the air turbine, and allowing to exploit the excess of energy instead of dissipating it through by-pass valves. The performance of the device is investigated under different incident wave conditions, for different design parameters. The height of the overtopping threshold from the second chamber of the device which allows to maximize the performance has been selected. Results show that the decrease of the primary conversion efficiency of the OWC component of the device caused by the decreased air pressure in the OWC chamber can be partially compensated by the additional energy stored in the overtopping chamber of the O2WC device. Overall, the studied O2WC device has capture width ratio values ranging between 0.3 and 0.7. Full article
(This article belongs to the Topic Marine Renewable Energy, 2nd Volume)
Show Figures

Figure 1

Article
A Numerical Performance Analysis of a Rim-Driven Turbine in Real Flow Conditions
J. Mar. Sci. Eng. 2022, 10(9), 1185; https://doi.org/10.3390/jmse10091185 - 25 Aug 2022
Cited by 1 | Viewed by 1048
Abstract
The tidal turbines represent a new frontier for extracting energy from tides source. Despite the technology being mature, new solutions aimed at improving performance, reliability with reduced environmental impact, manufacturing and installation costs are currently under investigation. The Rim-driven turbine (abbreviated as RDT) [...] Read more.
The tidal turbines represent a new frontier for extracting energy from tides source. Despite the technology being mature, new solutions aimed at improving performance, reliability with reduced environmental impact, manufacturing and installation costs are currently under investigation. The Rim-driven turbine (abbreviated as RDT) was recently proposed. A RDT resembles a ducted turbine (abbreviated as DT), as both contain blades and a duct. The present study aims at investigating the detail performance and flow field of a RDT in a real flow based on the China Zhaitang Island’s tidal current data. To show the difference between the RDT and DT, simulations are also performed on the corresponding DT. It is found that the power and thrust for the two configurations exhibit time-periodic behavior that is consistent with the wave frequency. At axial flow, the fluctuation amplitude on the power and thrust increase with the increase of tip speed ratio. The RDT has higher power output when operating at lower tip speed ratio and has a potential reduction in flow resistance and disturbance with respect to the DT. At yawed flow, the fluctuation amplitude on the power and thrust decrease with the increase of yaw angle. The RDT has less capable of compensating the effect of yawed inflow in reducing the power than the DT at larger yaw angle. In addition, the power and thrust generates micro-amplitude fluctuation integrated into the main waveform, which the frequency is consistent with the turbine rotation frequency. The wake characteristics analysis reveals that the yawed flow field is more turbulent, and the two configurations suffer strong unsteady flow separation along the whole span. Strong interactions are observed between the rotor’s main wake and the duct’s upper wake. The yaw angle primarily determines the downstream wake deflection direction and significantly changes the wake shape and vortex structures. Meanwhile, the wake flow is found to recover more quickly at larger yaw angle. Besides, due to the open-center of RDT, a part free-stream flow is allowed to travel through and forms an obvious high velocity zone. The presence of open-center of RDT has avoided the low velocity zone, improved the wake structure and accelerated wakes recover, which seems to give an advantageous effect in operating a RDT. Full article
(This article belongs to the Topic Marine Renewable Energy, 2nd Volume)
Show Figures

Figure 1

Back to TopTop