Topic Editors

College of Information Science and Technology, Donghua University, Shanghai 201620, China
Dr. Xiaoqian Wang
School of Physics, East China University of Science and Technology, Shanghai 200237, China

Recent Advances in Liquid Crystals

Abstract submission deadline
closed (31 March 2023)
Manuscript submission deadline
closed (31 May 2023)
Viewed by
2758

Topic Information

Dear Colleagues,

Liquid crystals represent the fourth state of matter, being intermediate between the solid and liquid states. They are anisotropic fluids that flow like a liquid but maintain some of the ordered structure of crystals. Liquid crystals were first identified in the mid-to-late 18th century. The interest in both applied and academic topics in liquid crystals has been substantial. One of the best parts of the subject is the characterization of the different liquid crystal mesophases as the main technique, polarized optical microscopy. Liquid crystal molecules tend to be elongated and to orient in specific directions. As the phases are anisotropic, they are birefringent between crossed analyzer and polarizer. Liquid crystals have become an integral part of our commercial electronics world, and liquid crystal displays are a key part of most mobile, battery-powered electronic devices. The optical properties of liquid crystals depend on the direction light travels through a layer of the material. An electric field can change the orientation of molecules in a layer of liquid crystal and thus affect its optical properties. Such a process is termed as the electro-optical effect, and it forms the basis for liquid crystal displays. Liquid crystal materials that align either parallel or perpendicular to an applied field can be selected to suit particular applications. The small electric voltages necessary to orient liquid crystal molecules have been a key feature of the commercial success of liquid crystal displays.

The Special Issue will focus on a wide range of materials, including thermotropic, lyotropic, interfacial, chiral, ferroelectric, polymer, micro/nanocomposite, biological and related soft-matter liquid crystal systems. Additionally, it will explore techniques and challenges for liquid crystal physics, liquid crystal chemistry, liquid crystal optics, liquid crystal photonics, liquid crystal materials and devices, photo-aligning techniques for liquid crystals, micro/nanostructures of liquid crystals, 3D liquid crystal display, as well as flexible liquid crystal displays. It is intended that both extant and novel methods will be covered, ranging from traditional techniques to methods involving non-traditional technologies. The goal is to facilitate the dissemination of information on methods and outcomes that will benefit the broader community involved in the control of liquid crystals.

Dr. Jiatong Sun
Dr. Xiaoqian Wang
Topic Editors

Keywords

  • liquid crystal physics
  • liquid crystal chemistry
  • liquid crystal optics
  • liquid crystal photonics
  • liquid crystal materials and devices
  • micro-/nano-structures of liquid crystals
  • photo-aligning techniques for liquid crystals
  • 3D display
  • flexible liquid crystal displays

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Crystals
crystals
2.670 3.2 2011 11.6 Days 2000 CHF
Liquids
liquids
- - 2021 16.4 Days 1000 CHF
Materials
materials
3.748 4.7 2008 13.9 Days 2300 CHF
Molecules
molecules
4.927 5.9 1996 13.4 Days 2300 CHF
Nanomaterials
nanomaterials
5.719 6.6 2011 12.7 Days 2600 CHF

Preprints is a platform dedicated to making early versions of research outputs permanently available and citable. MDPI journals allow posting on preprint servers such as Preprints.org prior to publication. For more details about reprints, please visit https://www.preprints.org.

Published Papers (2 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
Article
Difluorovinyl Liquid Crystal Diluters Improve the Electro-Optical Properties of High-∆n Liquid Crystal Mixture for AR Displays
Molecules 2023, 28(6), 2458; https://doi.org/10.3390/molecules28062458 - 08 Mar 2023
Viewed by 713
Abstract
A liquid crystal (LC) mixture in liquid crystal on silicon (LCoS) is the core material for augmented reality (AR) displays. However, a LC mixture with high birefringence (Δn) and large dielectric anisotropy (Δε) possesses high viscosity (γ1 [...] Read more.
A liquid crystal (LC) mixture in liquid crystal on silicon (LCoS) is the core material for augmented reality (AR) displays. However, a LC mixture with high birefringence (Δn) and large dielectric anisotropy (Δε) possesses high viscosity (γ1), which results in a slow response time of LCoS devices for AR displays. This work proposes to apply difluorovinyl-based LC diluters to fine balance the low viscosity, high ∆n, and large ∆ε of the LC mixture for a fast response time. Through studying their effects on the key electro-optical properties of a high-∆n LC mixture, it is found that doping these diluter molecules to a high-∆n LC mixture can decrease the viscoelastic coefficient (γ1/K11), increase ∆ε and the figure of merit, maintain a wide nematic phase temperature range, a high clearing point, and ∆n. It also means that these diluters could effectively regulate the relationship between ∆n, ∆ε, and γ1 in the LC mixtures to achieve a fine balance of various excellent properties and further improve the LC device’s response time. The widespread applications of these liquid crystal diluters in emerging liquid crystal optical devices are foreseeable. Full article
(This article belongs to the Topic Recent Advances in Liquid Crystals)
Show Figures

Figure 1

Article
Liquid-Crystalline Order in the Phosphorus-Containing DenDrimers
Molecules 2022, 27(23), 8214; https://doi.org/10.3390/molecules27238214 - 25 Nov 2022
Viewed by 682
Abstract
The structure of phosphorus-containing dendrimers has been studied by IR spectroscopy and optical polarization microscopy. The repeating units of dendrimer molecules are mesogens. This property arises from the conjugation of the aromatic ring and the hydrazone group. An analysis of the IR spectra [...] Read more.
The structure of phosphorus-containing dendrimers has been studied by IR spectroscopy and optical polarization microscopy. The repeating units of dendrimer molecules are mesogens. This property arises from the conjugation of the aromatic ring and the hydrazone group. An analysis of the IR spectra showed that, with an increase in the generation number, the width of the stretching vibration bands ν(PN) and ν(PO) increases. Difficulties in packing molecules of higher generations cause conformational diversity. The shape of the dendrimer molecules was determined by analyzing the increments of dipole moments. Additionally, the modeling of the stacking of repeating links was performed. The spherical model of molecules does not satisfy the experimental dipole moments of the dendrimers. The flat disk model is more suitable for explaining step changes in dipole moments. The liquid-crystalline ordering of dendrimers under the action of applied pressure was found. With simultaneous heating and uniaxial compression, optical anisotropy appears in dendrimers. It is associated with the formation of liquid-crystalline order. However, a thermodynamically stable liquid-crystalline phase is not formed in this case. Dendrimers most likely have disk-shaped molecules. Full article
(This article belongs to the Topic Recent Advances in Liquid Crystals)
Show Figures

Figure 1

Back to TopTop