Topic Editors

The Key State Laboratory of Precision Measuring Technology and Instrument, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
Department of Mechanical Engineering, University of Auckland, Auckland 1142, New Zealand
School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China
Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK
Dr. Wee Chee Gan
School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Malaysia

Advanced Energy Harvesting Technology

Abstract submission deadline
closed (31 October 2023)
Manuscript submission deadline
31 December 2023
Viewed by
28272

Topic Information

Dear Colleagues,

Energy harvesting has been a promising technique for next-generation wireless and wearable electronic devices since it can deliver sustainable energy to power low-power electronic devices by capturing ambient forms of energy that would otherwise be lost, such as light, heat, sound, vibration, etc. Energy harvesting is a multi-disciplinary technology that combines a wide range of research fields, e.g., the development of advanced energy materials, smart structures, and circuits for power management to achieve sufficient harvesting efficiency and innovations in applications to broaden the potential of the energy harvesting technology. Here, we are pleased to invite the research community to submit a review or original research article on, but not limited to, the following relevant topics related to Advanced Energy Harvesting Technology:

  • Advanced materials for energy harvesting
  • Kinetic, thermal energy harvesting, etc.
  • Power management for energy harvesting systems
  • Self-powered sensors
  • Applications of energy harvesting

Dr. Mengying Xie
Dr. Kean Aw
Prof. Dr. Junlei Wang
Dr. Hailing Fu
Dr. Wee Chee Gan
Topic Editors

Keywords

  • energy harvesting
  • self-powered sensors
  • piezoelectric
  • triboelectric
  • pyroelectric
  • power management

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Applied Sciences
applsci
2.7 4.5 2011 15.8 Days CHF 2300 Submit
Energies
energies
3.2 5.5 2008 15.7 Days CHF 2600 Submit
Materials
materials
3.4 5.2 2008 14.7 Days CHF 2600 Submit
Micromachines
micromachines
3.4 4.7 2010 15.2 Days CHF 2600 Submit
Sensors
sensors
3.9 6.8 2001 16.4 Days CHF 2600 Submit

Preprints is a platform dedicated to making early versions of research outputs permanently available and citable. MDPI journals allow posting on preprint servers such as Preprints.org prior to publication. For more details about reprints, please visit https://www.preprints.org.

Published Papers (21 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
24 pages, 11591 KiB  
Article
Design of an Energy Harvester Based on a Rubber Bearing Floating Slab Track
Appl. Sci. 2023, 13(22), 12287; https://doi.org/10.3390/app132212287 - 13 Nov 2023
Viewed by 241
Abstract
It is known that a large amount of vibration mechanical energy will be generated during train operation. If the mechanical energy can be obtained from the track structure, it can greatly optimize the energy configuration of the metro. Currently, most sensors are limited [...] Read more.
It is known that a large amount of vibration mechanical energy will be generated during train operation. If the mechanical energy can be obtained from the track structure, it can greatly optimize the energy configuration of the metro. Currently, most sensors are limited to disk or cymbal structures and are not used in the track bed; different from existing structures, this paper designs a spherical energy harvester based on a rubber bearing floating slab track, wherein the size range of the spherical energy harvesting structure was approximately determined based on the geometric spatial relationships of the actual track bed internal structure. Compared to the traditional disk and cymbal energy harvesters, the mechanical and electrical properties of the spherical energy harvesting structure was studied by a numerical simulation method, and the optimal size of the spherical energy was determined by calculation. The main conclusions are as follows: (1) Compared with the traditional disk harvester and cymbal harvester, the spherical harvester had better mechanical and electrical properties. (2) By calculating the output power of energy harvesters under load matching, we found that the output power of the spherical harvester was two orders of magnitude higher than that of the disk harvester and 53% higher than that of the cymbal harvester. (3) The optimum size of the spherical harvester was when the thickness of piezoelectric layer was 2 mm, the radius was 16 mm, the axial ratio of the spherical shell was 0.4, and the thickness of the spherical shell was 4 mm. Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology)
Show Figures

Figure 1

14 pages, 7215 KiB  
Article
Potential of Variable Geometry Radial Inflow Turbines as Expansion Machines in Organic Rankine Cycles Integrated with Heavy-Duty Diesel Engines
Appl. Sci. 2023, 13(22), 12139; https://doi.org/10.3390/app132212139 - 08 Nov 2023
Viewed by 303
Abstract
This work evaluates the feasibility of utilizing an organic Rankine cycle (ORC) for waste heat recovery in internal combustion engines to meet the stringent regulations for reducing emissions resulting from the combustion of fossil fuels. The turbine is the most crucial component of [...] Read more.
This work evaluates the feasibility of utilizing an organic Rankine cycle (ORC) for waste heat recovery in internal combustion engines to meet the stringent regulations for reducing emissions resulting from the combustion of fossil fuels. The turbine is the most crucial component of the ORC cycle since it is responsible for power production. In this study, a variable geometry radial inflow turbine is designed to cope with variable exhaust conditions. A variable geometry turbine is simply a radial turbine with different throat openings: 30, 60, and 100%. The exhaust gases of a heavy-duty diesel engine are utilized as a heat source for the ORC system. Different engine operating points are explored, in which each point has a different exhaust temperature and mass flow rate. The results showed that the maximum improvements in engine power and brake specific fuel consumption (BSFC) were 5.5% and 5.3% when coupled to the ORC system with a variable geometry turbine. Moreover, the variable geometry turbine increased the thermal efficiency of the cycle by at least 20% compared to the system with a fixed geometry turbine. Therefore, variable geometry turbines are considered a promising technology in the field and should be further investigated by scholars. Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology)
Show Figures

Figure 1

10 pages, 9758 KiB  
Article
Nano Groove and Prism-Structured Triboelectric Nanogenerators
Micromachines 2023, 14(9), 1707; https://doi.org/10.3390/mi14091707 - 31 Aug 2023
Viewed by 878
Abstract
Enhancing the output power of triboelectric nanogenerators (TENGs) requires the creation of micro or nano-features on polymeric triboelectric surfaces to increase the TENGs’ effective contact area and, therefore, output power. We deploy a novel bench-top fabrication method called dynamic Scanning Probe Lithography (d-SPL) [...] Read more.
Enhancing the output power of triboelectric nanogenerators (TENGs) requires the creation of micro or nano-features on polymeric triboelectric surfaces to increase the TENGs’ effective contact area and, therefore, output power. We deploy a novel bench-top fabrication method called dynamic Scanning Probe Lithography (d-SPL) to fabricate massive arrays of uniform 1 cm long and 2.5 µm wide nano-features comprising a 600 nm deep groove (NG) and a 600 nm high triangular prism (NTP). The method creates both features simultaneously in the polymeric surface, thereby doubling the structured surface area. Six thousand pairs of NGs and NTPs were patterned on a 6×5 cm2 PMMA substrate. It was then used as a mold to structure the surface of a 200 µm thick Polydimethylsiloxane (PDMS) layer. We show that the output power of the nano-structured TENG is significantly more than that of a TENG using flat PDMS films, at 12.2 mW compared to 2.2 mW, under the same operating conditions (a base acceleration amplitude of 0.8 g). Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology)
Show Figures

Figure 1

19 pages, 6816 KiB  
Article
Design of Flexible FeCoSiB/ZnO Thin-Film Multiferroic Module for Low-Frequency Energy Harvesting
Energies 2023, 16(13), 5049; https://doi.org/10.3390/en16135049 - 29 Jun 2023
Viewed by 525
Abstract
Multiphase magnetoelectric (ME) composites deposited on flexible substrates have been widely studied, which can respond to ambient mechanical, magnetic, and electric field excitations. This paper reports an investigation of flexible FeCoSiB/ZnO thin-film generators for low-frequency energy harvesting based on three substrates. Both hard [...] Read more.
Multiphase magnetoelectric (ME) composites deposited on flexible substrates have been widely studied, which can respond to ambient mechanical, magnetic, and electric field excitations. This paper reports an investigation of flexible FeCoSiB/ZnO thin-film generators for low-frequency energy harvesting based on three substrates. Both hard substrate Si and flexible substrates (Polyethylene terephthalate (PET) and Polyimide (PI)) are adopted to make a comparison of energy conversion efficiency. For the single ME laminate, a PET-based flexible ME generator presents the best ME coupling performance with an average coupling voltage output of ~0.643 mV and power output of ~41.3 nW under the alternating magnetic field of 40 Oe and 20 Hz. The corresponding ME coupling coefficient reaches the value of 321.5 mV/(cm·Oe) for this micrometer scale harvester. Flexible ME modules with double cantilevered ME generators are further designed and fabricated. When two PET-based generators are connected in series, the average voltage output and power are ~0.067 mV and ~0.447 nW, respectively. Although the energy harvested by ME thin-film generators is much smaller than bulk multiferroic materials, it proves the feasibility of using flexible FeCoSiB/ZnO generators for harvesting ambient magnetic energy and supplying sustainable electronic devices in the future. Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology)
Show Figures

Figure 1

18 pages, 14685 KiB  
Article
Vibration Energy Harvester Based on Bilateral Periodic One-Dimensional Acoustic Black Hole
Appl. Sci. 2023, 13(11), 6423; https://doi.org/10.3390/app13116423 - 24 May 2023
Cited by 1 | Viewed by 629
Abstract
An acoustic black hole (ABH) has been applied in the regulation of structural performance to form the aggregation effect of elastic waves in the local area of the structure, which has been used in energy harvesting in recent years. The piezoelectric vibration energy [...] Read more.
An acoustic black hole (ABH) has been applied in the regulation of structural performance to form the aggregation effect of elastic waves in the local area of the structure, which has been used in energy harvesting in recent years. The piezoelectric vibration energy harvester (VEH) integrated with the beam of a bilateral periodic 1D ABH is proposed in this study. The theoretical model of the proposed VEH is established and analyzed based on the transfer matrix method. The performance of the VEHs is numerically simulated by COMSOL Multiphysics. The simulation results show that the performance of the bilateral ABH beam is higher than its traditional counterpart. Finally, the performance of the proposed VEH is validated in an experimental system. The experimental results show that the peak output voltage of the VEH Model 3 can reach 169.16 V, which is 1.9 times that of the traditional one. In the optimal impedance matching, the output power of the third bilateral VEH is 2.7 times that of the traditional ABH, which can reach 91.52 mW. Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology)
Show Figures

Figure 1

10 pages, 2306 KiB  
Communication
Improving the Output Efficiency of Triboelectric Nanogenerator by a Power Regulation Circuit
Sensors 2023, 23(10), 4912; https://doi.org/10.3390/s23104912 - 19 May 2023
Cited by 2 | Viewed by 1242
Abstract
Triboelectric nanogenerator (TENG) is a promising technology for harvesting energy from various sources, such as human motion, wind and vibration. At the same time, a matching backend management circuit is essential to improve the energy utilization efficiency of TENG. Therefore, this work proposes [...] Read more.
Triboelectric nanogenerator (TENG) is a promising technology for harvesting energy from various sources, such as human motion, wind and vibration. At the same time, a matching backend management circuit is essential to improve the energy utilization efficiency of TENG. Therefore, this work proposes a power regulation circuit (PRC) suitable for TENG, which is composed of a valley-filling circuit and a switching step-down circuit. The experimental results indicate that after incorporating a PRC, the conduction time of each cycle of the rectifier circuit doubles, increasing the number of current pulses in the TENG output and resulting in an output charge that is 1.6 fold that of the original circuit. Compared with the initial output signal, the charging rate of the output capacitor increased significantly by 75% with a PRC at a rotational speed of 120 rpm, significantly improving the utilization efficiency of the TENG’s output energy. At the same time, when the TENG powers LEDs, the flickering frequency of LEDs is reduced after adding a PRC, and the light emission is more stable, which further verifies the test results. The PRC proposed in this study can enable the energy harvested by the TENG to be utilized more efficiently, which has a certain promoting effect on the development and application of TENG technology. Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology)
Show Figures

Figure 1

31 pages, 6232 KiB  
Article
Complex Positioning System for the Control and Visualization of Photovoltaic Systems
Energies 2023, 16(10), 4001; https://doi.org/10.3390/en16104001 - 09 May 2023
Viewed by 1112
Abstract
This paper presents a proposal of a complex mechatronic system that enhances the effectivity of obtaining energy from renewable resources. The main focus is on the photovoltaic energy system, which obtains electricity from the conversion of solar radiation through photovoltaic crystalline silicon-based panels. [...] Read more.
This paper presents a proposal of a complex mechatronic system that enhances the effectivity of obtaining energy from renewable resources. The main focus is on the photovoltaic energy system, which obtains electricity from the conversion of solar radiation through photovoltaic crystalline silicon-based panels. The design of the complex mechatronic system consists of several steps. The structural design of the photovoltaic panel positioning unit in the form of a three-dimensional model is made in the selected modelling programming environment. Subsequently, a propulsion system is proposed for the designed structure, the functionality of which is verified in the programming environment Automated Dynamic Analysis of Mechanical Systems. The control system design using a programmable logical controller is also presented. The corresponding control algorithm is designed in the programming environment Step7 and covers the optimal positioning of photovoltaic panels. The developed application in the WinCC environment provides a visualization of the positioning control process. The conclusion is devoted to the assessment of the obtained results for the proposed complex mechatronic system for photovoltaic panel positioning in comparison with photovoltaic panels in fixed installation. The presented results were obtained by simulations. Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology)
Show Figures

Figure 1

18 pages, 1637 KiB  
Article
Oscillating-Foil Turbine Performance Improvement by the Addition of Double Gurney Flaps and Kinematics Optimization
Energies 2023, 16(6), 2885; https://doi.org/10.3390/en16062885 - 21 Mar 2023
Viewed by 932
Abstract
Refinement of the performance of a fully constrained oscillating-foil turbine is carried out via the addition of passive double Gurney flaps. Flaps ranging from hGF=0.005c to 0.075c are added at the trailing edge of the NACA 0015 blade [...] Read more.
Refinement of the performance of a fully constrained oscillating-foil turbine is carried out via the addition of passive double Gurney flaps. Flaps ranging from hGF=0.005c to 0.075c are added at the trailing edge of the NACA 0015 blade of turbines operating in high-efficiency regimes without leading-edge vortex shedding (LEVS). Performance improvements are determined using 2D numerical simulations with an unsteady Reynolds-averaged Navier–Stokes (URANS) approach. Based on a recent study of the double Gurney flaps on stationary foils, instantaneous power-extraction coefficients are analyzed and modifications of the foil’s kinematics are tested in order to fully benefit from the Gurney flaps’ performance improvements. Modifications to the pivot point location of the foil, to the pitch-heave phase, and to the pitching amplitude of the turbine are considered. Improvements are found for all turbine cases studied, including some of the previously optimal cases reported in the literature. The double Gurney flaps, being a simple and passive device, offer great practical application potential. They represent an efficient refinement to already robust and high-performance oscillating-foil turbines operating without the perceived benefit of leading-edge vortex shedding, an essential characteristic for actual, finite-span applications. Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology)
Show Figures

Figure 1

14 pages, 1211 KiB  
Article
Inverter-Less Integration of Roof-Top Solar PV with Grid Connected Industrial Drives
Energies 2023, 16(4), 2060; https://doi.org/10.3390/en16042060 - 20 Feb 2023
Cited by 2 | Viewed by 1368
Abstract
Green energy from Solar PV is getting increased attention in the industries due to the falling price of solar panels in the world market. A grid-tied inverter is one of the major components in such a system, where the DC energy from PV [...] Read more.
Green energy from Solar PV is getting increased attention in the industries due to the falling price of solar panels in the world market. A grid-tied inverter is one of the major components in such a system, where the DC energy from PV is converted to AC and synchronized with the grid to obtain power sharing between the PV and the grid for the industrial drives. In this paper, a DC link has been proposed instead of an AC link for interconnection between the solar PV system and the grid to run those industrial drives. In most modern industrial applications, induction motors are driven by VVVF (Variable Voltage and Variable Frequency) inverters to achieve efficient speed control. The inverters commonly have a rectifier section at the front end that rectifies the input AC to DC and the DC is then used in PWM mode to generate the required voltage and frequency for the induction motor operating under variable speed and load conditions. Such an inverter can use both AC or DC as the input so long the supply voltage has the right value for the inverter to operate. In our proposition, we eliminate the grid-tied inverter and use a DC link, created from the rectified AC and the regular Solar PV, to obtain the power-sharing between the PV output and the grid. Using the DC link output directly to energize the VVVF inverter has an impact on the performance of the inverter. In the proposed system, the solar PV array is designed in such a way that the grid remains as the supplementary power source only to supplement any shortfall in the PV output due to variable sunshine conditions. The control circuit used in this novel technique is inexpensive, efficient, and simple in design when compared to the grid-tied inverters. The proposed system has been implemented at Niagara Textiles in Gazipur, Bangladesh. The experimental/practical results are presented to validate the basic concept. Around a 20% reduction in the cost of energy has been reported in this paper, with a more than 90% efficient system. This will definitely make solar PV energy more competitive with regular energy and attractive to industries for its simplicity. Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology)
Show Figures

Figure 1

19 pages, 3692 KiB  
Article
A Voltage Doubler Boost Converter Circuit for Piezoelectric Energy Harvesting Systems
Energies 2023, 16(4), 1631; https://doi.org/10.3390/en16041631 - 06 Feb 2023
Cited by 3 | Viewed by 1595
Abstract
This paper describes the detailed modelling of a vibration-based miniature piezoelectric device (PD) and the analysis modes of operation and control of a voltage doubler boost converter (VDBC) circuit to find the PD’s optimal operating conditions. The proposed VDBC circuit integrates a conventional [...] Read more.
This paper describes the detailed modelling of a vibration-based miniature piezoelectric device (PD) and the analysis modes of operation and control of a voltage doubler boost converter (VDBC) circuit to find the PD’s optimal operating conditions. The proposed VDBC circuit integrates a conventional voltage doubler (VD) circuit with a step-up DC-DC converter circuit in modes 1–4, while a non-linear synchronisation procedure of a conventional boost converter circuit is employed in modes 5–6. This integration acted as the voltage boost circuit without utilising duty cycles and complex auxiliary switching components. In addition, the circuit does not require external trigger signals to turn on the bidirectional switches. This facilitates the operation of VDBC circuit at very low AC voltage (Vac ≥ 0.5 V). Besides this, the electrical characteristics of VDBC circuit’s input (i.e., PD) perfectly concurs with the studied testing scenarios using impedance power sources (mechanical shaker). Firstly, the proposed circuit which can rectify the PD’s output was tested at both constant input voltage with varying excitation frequency and constant excitation frequency with varying input voltage. Next, a small-scale solar battery was charged to validate the feasibility of the performance of the proposed VDBC circuit. The proposed circuit achieved a maximum output voltage of 11.7 Vdc with an output power of 1.37 mW. In addition, the rectified voltage waveform is stable due to the sminimisation of the ripples. In addition, the performance of VDBC circuit was verified by comparing the achieved results with previously published circuits in the literature. The results show that the proposed VDBC circuit outperformed existing units as described in the literature regarding output voltage and power. The developed rectifier circuit is suitable for various real-life applications such as energy harvesting and battery charging. Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology)
Show Figures

Figure 1

25 pages, 4927 KiB  
Article
Enhancing the Bandwidth and Energy Production of Piezoelectric Energy Harvester Using Novel Multimode Bent Branched Beam Design for Human Motion Application
Sensors 2023, 23(3), 1372; https://doi.org/10.3390/s23031372 - 26 Jan 2023
Cited by 1 | Viewed by 1351
Abstract
In recent years, harvesting energy from ubiquitous ultralow-frequency vibration sources, such as biomechanical motions using piezoelectric materials to power wearable devices and wireless sensors (e.g., personalized assistive tools for monitoring human locomotion and physiological signals), has drawn considerable interest from the renewable energy [...] Read more.
In recent years, harvesting energy from ubiquitous ultralow-frequency vibration sources, such as biomechanical motions using piezoelectric materials to power wearable devices and wireless sensors (e.g., personalized assistive tools for monitoring human locomotion and physiological signals), has drawn considerable interest from the renewable energy research community. Conventional linear piezoelectric energy harvesters (PEHs) generally consist of a cantilever beam with a piezoelectric patch and a proof mass, and they are often inefficient in such practical applications due to their narrow operating bandwidth and low voltage generation. Multimodal harvesters with multiple resonances appear to be a viable solution, but most of the previously proposed designs are unsuitable for ultralow-frequency vibration. This study investigated a novel multimode design, which included a bent branched beam harvester (BBBH) to enhance PEHs’ bandwidth output voltage and output power for ultralow-frequency applications. The study was conducted using finite element method (FEM) analysis to optimize the geometrical design of the BBBH on the basis of the targeted frequency spectrum of human motion. The selected design was then experimentally studied using a mechanical shaker and human motion as excitation sources. The performance was also compared to the previously proposed V-shaped bent beam harvester (VBH) and conventional cantilever beam harvester (CBH) designs. The results prove that the proposed BBBH could harness considerably higher output voltages and power with lower idle time. Its operating bandwidth was also remarkably widened as it achieved three close resonances in the ultralow-frequency range. It was concluded that the proposed BBBH outperformed the conventional counterparts when used to harvest energy from ultralow-frequency sources, such as human motion. Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology)
Show Figures

Figure 1

11 pages, 2218 KiB  
Article
Numerical Simulation on Electromagnetic Energy Harvester Oscillated by Speed Ripple of AC Motors
Energies 2023, 16(2), 940; https://doi.org/10.3390/en16020940 - 13 Jan 2023
Cited by 1 | Viewed by 819
Abstract
The suppression of torque ripples in an interior permanent magnet synchronous motor (IPMSM) is essential to improve its efficiency and responsiveness. Here, we report on the development of an electromagnetic energy harvester incorporated into an IPMSM to suppress its torque ripples. The proposed [...] Read more.
The suppression of torque ripples in an interior permanent magnet synchronous motor (IPMSM) is essential to improve its efficiency and responsiveness. Here, we report on the development of an electromagnetic energy harvester incorporated into an IPMSM to suppress its torque ripples. The proposed harvester is driven to oscillations by the speed ripple of the AC motor. We derived the motion and circuit equations for the motor and the harvester according to Euler–Lagrange equations. We discussed the principle of electrical power generation and used MATLAB/Simulink numerical simulations to investigate the dynamic behavior of the proposed harvester. Our findings revealed that the active Coriolis force unnecessarily reduces the motor’s original torque, leading to unsuccessful power generation. Nevertheless, our results demonstrated that the reactive Coriolis force successfully suppresses the motor torque ripple. Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology)
Show Figures

Figure 1

23 pages, 5808 KiB  
Review
Towards a Highly Efficient ZnO Based Nanogenerator
Micromachines 2022, 13(12), 2200; https://doi.org/10.3390/mi13122200 - 12 Dec 2022
Cited by 2 | Viewed by 1324
Abstract
A nanogenerator (NG) is an energy harvester device that converts mechanical energy into electrical energy on a small scale by relying on physical changes. Piezoelectric semiconductor materials play a key role in producing high output power in piezoelectric nanogenerator. Low cost, reliability, deformation, [...] Read more.
A nanogenerator (NG) is an energy harvester device that converts mechanical energy into electrical energy on a small scale by relying on physical changes. Piezoelectric semiconductor materials play a key role in producing high output power in piezoelectric nanogenerator. Low cost, reliability, deformation, and electrical and thermal properties are the main criteria for an excellent device. Typically, there are several main types of piezoelectric materials, zinc oxide (ZnO) nanorods, barium titanate (BaTiO3) and lead zirconate titanate (PZT). Among those candidate, ZnO nanorods have shown high performance features due to their unique characteristics, such as having a wide-bandgap semiconductor energy of 3.3 eV and the ability to produce more ordered and uniform structures. In addition, ZnO nanorods have generated considerable output power, mainly due to their elastic nanostructure, mechanical stability and appropriate bandgap. Apart from that, doping the ZnO nanorods and adding doping impurities into the bulk ZnO nanorods are shown to have an influence on device performance. Based on findings, Ni-doped ZnO nanorods are found to have higher output power and surface area compared to other doped. This paper discusses several techniques for the synthesis growth of ZnO nanorods. Findings show that the hydrothermal method is the most commonly used technique due to its low cost and straightforward process. This paper reveals that the growth of ZnO nanorods using the hydrothermal method has achieved a high power density of 9 µWcm−2. Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology)
Show Figures

Figure 1

21 pages, 11755 KiB  
Article
Aerodynamic Performance Analysis of Trailing Edge Serrations on a Wells Turbine
Energies 2022, 15(23), 9075; https://doi.org/10.3390/en15239075 - 30 Nov 2022
Cited by 1 | Viewed by 973
Abstract
The primary objective of this investigation was to explore the aerodynamic impact of adding trailing edge serrations to a Wells turbine. The baseline turbine consists of eight NACA 0015 blades. The blade chord length was 0.125 m and the span was 0.100 m. [...] Read more.
The primary objective of this investigation was to explore the aerodynamic impact of adding trailing edge serrations to a Wells turbine. The baseline turbine consists of eight NACA 0015 blades. The blade chord length was 0.125 m and the span was 0.100 m. Two modified serrated blade configurations were studied: (1) full-span, and (2) partial-span covering 0.288c of the trailing edge. The numerical simulations were carried out by solving the three-dimensional, incompressible steady-state Reynolds Averaged Navier-Stokes (RANS) equations using the k-ω SST turbulence model in ANSYS™ (CFX). The aerodynamic performance of the modified Wells turbine was compared to the baseline by calculating non-dimensional parameters (i.e., torque coefficient, pressure drop coefficient, and turbine efficiency). A comparison of the streamlines was performed to analyze the flow topology around the turbine blades for a flow coefficient range of 0.075 ≤ ϕ ≤ 0.275, representing an angle of attack range of 4.29° ≤ α ≤ 15.3°. The trailing edge serrations generated a substantial change in surface pressure and effectively reduced the separated flow region, thus improving efficiency in most cases. As a result, there was a modest peak efficiency increase of 1.51% and 1.22%, for the partial- and full-span trailing edge serrations, respectively. Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology)
Show Figures

Figure 1

63 pages, 6829 KiB  
Review
Modelling of Flow-Induced Vibration of Bluff Bodies: A Comprehensive Survey and Future Prospects
Energies 2022, 15(22), 8719; https://doi.org/10.3390/en15228719 - 20 Nov 2022
Cited by 6 | Viewed by 2180
Abstract
A comprehensive review of modelling techniques for the flow-induced vibration (FIV) of bluff bodies is presented. This phenomenology involves bidirectional fluid–structure interaction (FSI) coupled with non-linear dynamics. In addition to experimental investigations of this phenomenon in wind tunnels and water channels, a number [...] Read more.
A comprehensive review of modelling techniques for the flow-induced vibration (FIV) of bluff bodies is presented. This phenomenology involves bidirectional fluid–structure interaction (FSI) coupled with non-linear dynamics. In addition to experimental investigations of this phenomenon in wind tunnels and water channels, a number of modelling methodologies have become important in the study of various aspects of the FIV response of bluff bodies. This paper reviews three different approaches for the modelling of FIV phenomenology. Firstly, we consider the mathematical (semi-analytical) modelling of various types of FIV responses: namely, vortex-induced vibration (VIV), galloping, and combined VIV-galloping. Secondly, the conventional numerical modelling of FIV phenomenology involving various computational fluid dynamics (CFD) methodologies is described, namely: direct numerical simulation (DNS), large-eddy simulation (LES), detached-eddy simulation (DES), and Reynolds-averaged Navier–Stokes (RANS) modelling. Emergent machine learning (ML) approaches based on the data-driven methods to model FIV phenomenology are also reviewed (e.g., reduced-order modelling and application of deep neural networks). Following on from this survey of different modelling approaches to address the FIV problem, the application of these approaches to a fluid energy harvesting problem is described in order to highlight these various modelling techniques for the prediction of FIV phenomenon for this problem. Finally, the critical challenges and future directions for conventional and data-driven approaches are discussed. So, in summary, we review the key prevailing trends in the modelling and prediction of the full spectrum of FIV phenomena (e.g., VIV, galloping, VIV-galloping), provide a discussion of the current state of the field, present the current capabilities and limitations and recommend future work to address these limitations (knowledge gaps). Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology)
Show Figures

Figure 1

24 pages, 5376 KiB  
Review
Recent Advances in Energy Harvesting from the Human Body for Biomedical Applications
Energies 2022, 15(21), 7959; https://doi.org/10.3390/en15217959 - 26 Oct 2022
Cited by 5 | Viewed by 2884
Abstract
Energy harvesters serve as continuous and long-lasting sources of energy that can be integrated into wearable and implantable sensors and biomedical devices. This review paper presents the current progress, the challenges, the advantages, the disadvantages and the future trends of energy harvesters which [...] Read more.
Energy harvesters serve as continuous and long-lasting sources of energy that can be integrated into wearable and implantable sensors and biomedical devices. This review paper presents the current progress, the challenges, the advantages, the disadvantages and the future trends of energy harvesters which can harvest energy from various sources from the human body. The most used types of energy are chemical; thermal and biomechanical and each group is represented by several nano-generators. Chemical energy can be harvested with a help of microbial and enzymatic biofuel cells, thermal energy is collected via thermal and pyroelectric nano-generators, biomechanical energy can be scavenged with piezoelectric and triboelectric materials, electromagnetic and electrostatic generators and photovoltaic effect allows scavenging of light energy. Their operating principles, power ratings, features, materials, and designs are presented. There are different ways of extracting the maximum energy and current trends and approaches in nanogenerator designs are discussed. The ever-growing interest in this field is linked to a larger role of wearable electronics in the future. Possible directions of future development are outlined; and practical biomedical applications of energy harvesters for glucose sensors, oximeters and pacemakers are presented. Based on the increasingly accumulated literature, there are continuous promising improvements which are anticipated to lead to portable and implantable devices without the requirement for batteries. Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology)
Show Figures

Figure 1

14 pages, 8513 KiB  
Article
Scalable, Dual-Band Metasurface Array for Electromagnetic Energy Harvesting and Wireless Power Transfer
Micromachines 2022, 13(10), 1712; https://doi.org/10.3390/mi13101712 - 11 Oct 2022
Cited by 6 | Viewed by 1298
Abstract
A dual-band metasurface array is presented in this paper for electromagnetic (EM) energy harvesting in the Wi-Fi band and Ku band. The array consists of metasurface unit cells, rectifiers, and load resistors. The metasurface units within each column are interconnected to establish two [...] Read more.
A dual-band metasurface array is presented in this paper for electromagnetic (EM) energy harvesting in the Wi-Fi band and Ku band. The array consists of metasurface unit cells, rectifiers, and load resistors. The metasurface units within each column are interconnected to establish two channels of energy delivery, enabling the transmission and aggregation of incident power. At the terminals of two channels, a single series diode rectifier and a voltage doubler rectifier are integrated into them to rectify the energy in the Wi-Fi band and the Ku band, respectively. A 7 × 7 prototype of the metasurface array is fabricated and tested. The measured results in the anechoic chamber show that the RF-to-dc efficiencies of the prototype at 2.4 GHz and 12.6 GHz reach 64% and 55% accordingly, when the available incident power at the surface is 3 dBm and 14 dBm, respectively. Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology)
Show Figures

Figure 1

23 pages, 21302 KiB  
Review
Quasi-Zero Stiffness-Based Synchronous Vibration Isolation and Energy Harvesting: A Comprehensive Review
Energies 2022, 15(19), 7066; https://doi.org/10.3390/en15197066 - 26 Sep 2022
Cited by 3 | Viewed by 1882
Abstract
In recent years, the advantages of nonlinearity in vibration isolation and energy harvesting have become increasingly apparent. The quasi-zero stiffness (QZS) of the nonlinear term provided by the negative stiffness element can achieve vibration isolation under low-frequency environments while improving the efficiency of [...] Read more.
In recent years, the advantages of nonlinearity in vibration isolation and energy harvesting have become increasingly apparent. The quasi-zero stiffness (QZS) of the nonlinear term provided by the negative stiffness element can achieve vibration isolation under low-frequency environments while improving the efficiency of energy harvesting. The QZS provides a new research idea for simultaneous vibration isolation and energy harvesting. The main purpose of this paper is to review past research results, summarize possible problems, and discuss trends. After briefly analyzing the basic principle of QZS vibration isolation, the progress of QZS in vibration isolation and energy harvesting in recent years is reviewed. At the same time, main challenges of QZS in realizing synchronous vibration isolation and energy harvesting are also discussed. Finally, according to the existing QZS challenges, the future development trend of QZS is proposed. This paper would provide a quick guide for future newcomers to this field. Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology)
Show Figures

Figure 1

22 pages, 9643 KiB  
Article
Design Optimization of a Rotary Thermomagnetic Motor for More Efficient Heat Energy Harvesting
Energies 2022, 15(17), 6334; https://doi.org/10.3390/en15176334 - 30 Aug 2022
Cited by 2 | Viewed by 1356
Abstract
A rotary thermomagnetic motor that is designed for heat energy harvesting is presented in this paper. The power output, power density, and efficiency of the device is estimated using a mathematical model coupling the heat transfer, magnetic interactions, and rotor dynamics. The design [...] Read more.
A rotary thermomagnetic motor that is designed for heat energy harvesting is presented in this paper. The power output, power density, and efficiency of the device is estimated using a mathematical model coupling the heat transfer, magnetic interactions, and rotor dynamics. The design analysis shows that the efficiency of the device is maximized, when there is a balance between the volume of thermomagnetic material used against the rate of heating and cooling of the material. On the other hand, the power output is determined largely by the size of the rotor, while the power density tends to peak at a particular aspect (length to diameter) ratio of the rotor. It is also observed that a higher rate of cooling leads to more output, especially when this is matched to a similar rate of heat supplied to the thermomagnetic motor. The result from the design optimization points to an ‘optimal’ design configuration and corresponding operating conditions that results in the largest power output, highest power density and best efficiency. After the optimization, it is estimated that the rotary thermomagnetic motor is able to produce up to 88 W of power with a power density of approximately 27 kW/m3 of thermomagnetic material used, while a maximum thermal-to-mechanical energy conversion efficiency of 2.1% is achievable. The results obtained from this design analysis and optimization shows the potential for such a rotary thermomagnetic motor to be implemented at a larger scale for heat energy harvesting application. Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology)
Show Figures

Figure 1

19 pages, 5409 KiB  
Article
Design of a V-Twin with Crank-Slider Mechanism Wind Energy Harvester Using Faraday’s Law of Electromagnetic Induction for Powering Small Scale Electronic Devices
Energies 2022, 15(17), 6215; https://doi.org/10.3390/en15176215 - 26 Aug 2022
Cited by 2 | Viewed by 1824
Abstract
The maintenance of wireless sensor networks involves challenges such as the periodic replacement of batteries or energy sources in remote locations that are often inaccessible. Therefore, onboard energy harvesting solutions can provide a viable alternative. Experimental energy harvesting from fluid flow, specifically from [...] Read more.
The maintenance of wireless sensor networks involves challenges such as the periodic replacement of batteries or energy sources in remote locations that are often inaccessible. Therefore, onboard energy harvesting solutions can provide a viable alternative. Experimental energy harvesting from fluid flow, specifically from air flow, is typically restricted to a rotor and stator design or a model that strikes a piezoelectric. On the other hand, energy harvesting from mechanical vibrations routinely uses the linear motion of a magnet passing through a coil or vibrating piezoelectric elements. In this paper, we propose a novel V-twin harvester design that converts wind energy from a rotational input into the linear motion of a magnet inside a coil via a crank-slider mechanism. This design allows for high performance with a smoother voltage output when compared to a reference rotor/stator harvester design or piezoelectric method. At 0.5 Hz, a single crank-slider generated a voltage of 0.176 Vpp with an output power of 0.147 mW, whereas the reference harvester generated 0.14 mW at 1.0 Hz with a 0.432 Vpp. A single crank-slider operating at regulated frequencies of 0.5, 1, 2, and 3 Hz, with a stroke length of 50 mm and a generated continuous power of 0.147, 0.452, 2.00, and 4.48 mW, respectively. We found that under ambient wind speeds of 3.4 and 4.1 m/s the V-twin formation with the optimized configuration, in which the coils and loads were both connected in series, generated 27.0 and 42.2 mW, respectively. Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology)
Show Figures

Figure 1

17 pages, 7831 KiB  
Article
An Investigation on Energy Harvesting Behavior of an Array Piezoelectric Coupled Disc Damper
Micromachines 2022, 13(8), 1244; https://doi.org/10.3390/mi13081244 - 02 Aug 2022
Viewed by 1013
Abstract
In order to make full use of the vibration energy in the process of attenuating vibration, an array piezoelectric coupled disc damper is developed, which works by converting part vibration energy into electrical energy. The piezoelectric damper is made of a pair of [...] Read more.
In order to make full use of the vibration energy in the process of attenuating vibration, an array piezoelectric coupled disc damper is developed, which works by converting part vibration energy into electrical energy. The piezoelectric damper is made of a pair of piezoelectric coupled discs built in a case cylinder. Its energy harvesting behavior is studied by a series of forced-vibration experiments and simulations. The influences of some factors, such as the excitation frequency, substrate thickness, the size of the piezoelectric patch, the paste form of the piezoelectric patch and the load resistance, on the energy harvesting behavior of the damper are analyzed and concluded. The experimental results show that the maximum peak-to-peak voltage and average power from one piezoelectric patch with an inner diameter of 35 mm, an outer diameter of 80 mm, and a thickness of 1 mm can reach up to 163 V and 161 mW, respectively. This research provides a practical piezoelectric damper attenuating harmful vibration by converting them into useful electric power, and the corresponding theoretical models are derived to predict its electrical output. Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology)
Show Figures

Figure 1

Back to TopTop