Topic Editors

ESTEC - European Space Research and Technology Centre, Noordwijk aan Zee, The Netherlands
Dr. Ionut Tranca
Energy Technology, Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Advanced Structural Crystals

Abstract submission deadline
closed (31 May 2023)
Manuscript submission deadline
31 August 2023
Viewed by
12287

Topic Information

Dear Colleagues,

Your excellent work has contributed to much progress that has been achieved these days in the broad field of advanced crystals. This interdisciplinary field spreads across multiple technology branches, covering grown semiconductor monocrystals, e.g., by the Czochralski method, the control of nucleation and crystal growth, advanced crystal engineering, modeling and experimental structure determination via the employment of diffraction-based techniques, and high-throughput computational/experimental screening for specific applications. This vast field includes mostly 3D crystals (porous 3D crystals, e.g., zeolites, MOFs, COFs, and co-crystals/clathrates, as well as non-porous ones). Phase change transformations of such crystals have also found multiple technological applications for energy and gas storage. Other advanced topics include liquid crystals, chiral crystals, photonic crystals, and crystallization/crystals in space. This Topic focuses on the progress in advanced crystals in terms of structure determination and prediction/modeling (density functional theory, molecular dynamics, and machine learning), as well as on the investigation of their technologically relevant characteristics and properties.

Dr. Małgorzata Hołyńska
Dr. Ionut Tranca
Topic Editors

Keywords

  • crystal
  • crystal structure
  • crystal growth
  • crystal properties
  • crystal engineering
  • phase change
  • experiment
  • crystal modeling (DFT, MD, and ML)

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Chemistry
chemistry
- - 2019 15 Days 1600 CHF Submit
Compounds
compounds
- - 2021 16.6 Days 1000 CHF Submit
Crystals
crystals
2.670 3.2 2011 11.6 Days 2000 CHF Submit
Materials
materials
3.748 4.7 2008 13.9 Days 2300 CHF Submit
Molecules
molecules
4.927 5.9 1996 13.4 Days 2300 CHF Submit

Preprints is a platform dedicated to making early versions of research outputs permanently available and citable. MDPI journals allow posting on preprint servers such as Preprints.org prior to publication. For more details about reprints, please visit https://www.preprints.org.

Published Papers (13 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
Article
Physico-Chemical Characterization, DFT Modeling and Biological Activities of a New Zn (II) Complex Containing Melamine as a Template
Crystals 2023, 13(5), 746; https://doi.org/10.3390/cryst13050746 - 29 Apr 2023
Viewed by 417
Abstract
Single crystals of a new organic–inorganic hybrid compound (C3H7N6)2[ZnCl4]·H2O was synthesized and characterized by X-ray diffraction at room temperature, FT-IR and FT-Raman spectroscopies, optical absorption and photoluminescence behavior. The title compound [...] Read more.
Single crystals of a new organic–inorganic hybrid compound (C3H7N6)2[ZnCl4]·H2O was synthesized and characterized by X-ray diffraction at room temperature, FT-IR and FT-Raman spectroscopies, optical absorption and photoluminescence behavior. The title compound belongs to the triclinic space group P1¯, and in the crystal structure, the inorganic layers are built from tetrachloridozincate anions [ZnCl4]2− and free water molecules, linked together by O–H···Cl hydrogen bonds and halogen···halogen interactions. In addition, Hirshfeld surfaces and 2D fingerprint plots estimate the weak intermolecular interactions accountable for the generation of crystal packing. The optimized geometry, vibrational frequencies and various thermodynamic parameters of the title compound calculated using density functional theory (DFT) methods are in agreement with the experimental values. The theoretical calculations were performed using the DFT method at WB97XD/Lanl2dz basis set levels and we discussed topological analysis of atoms in molecules (AIM) at the BCP point. A detailed interpretation of the IR and Raman spectra were reported. Additionally, the simulated spectrum satisfactorily coincided with the experimental UV-Visible spectrum. A wide band gap exceeding 4 eV of the synthesized compound was recorded. The photoluminescence (PL) was characterized through two bands successively at 453 and 477 nm. Ultimately, antimicrobial activity and enzymatic inhibition assays of the complex were also investigated through microbial strains, agar diffusion method, minimum inhibitory concentration (MIC) determination, lipase and phospholipase A2 inhibition. Full article
(This article belongs to the Topic Advanced Structural Crystals)
Show Figures

Figure 1

Article
The Electrodegradation Process in PZT Ceramics under Exposure to Cosmic Environmental Conditions
Molecules 2023, 28(9), 3652; https://doi.org/10.3390/molecules28093652 - 22 Apr 2023
Viewed by 659
Abstract
Long-time electric field action on perovskite piezoelectric ceramic leads to chemical degradation. A new way to accelerate the degradation is the exposure of the ceramic to DC electric fields under a vacuum. A high-quality commercial piezoelectric material based on PbZr1−xTix [...] Read more.
Long-time electric field action on perovskite piezoelectric ceramic leads to chemical degradation. A new way to accelerate the degradation is the exposure of the ceramic to DC electric fields under a vacuum. A high-quality commercial piezoelectric material based on PbZr1−xTixO3 is used to study such impacts. To avoid the influence of ferroelectric properties and possible removal of oxygen and lead oxides during the degradation process, the experiments are in the temperature interval of 500 °C > T > TC. Changes in resistance during the electrodegradation process is an electrically-induced deoxidation, transforming the ceramic into a metallic-like material. This occurs with an extremely low concentration of effused oxygen of 1016 oxygen atoms per 1 cm3. Due to this concentration not obeying the Mott criterion for an isolator-metal transition, it is stated that the removal of oxygen mostly occurs along the grain boundaries. It agrees with the first-principle calculations regarding dislocations with oxygen vacancies. The decrease in resistivity during electrodegradation follows a power law and is associated with a decrease in the dislocation dimension. The observed reoxidation process is a lifeline for the reconstructing (self-healing) properties of electro-degraded ceramics in harsh cosmic conditions. Based on all of these investigations, a macroscopic and nanoscopic model of the electrodegradation is presented. Full article
(This article belongs to the Topic Advanced Structural Crystals)
Show Figures

Figure 1

Article
Crystal Structure of a Chimeric Antigen Receptor (CAR) scFv Domain Rearrangement Forming a VL-VL Dimer
Crystals 2023, 13(4), 710; https://doi.org/10.3390/cryst13040710 - 21 Apr 2023
Viewed by 880
Abstract
Chimeric Antigen Receptor T-cell (CAR-T) immunotherapies are dependent upon designed transmembrane proteins to bind target antigens and stimulate an immune response. The success or failure of these CARs is only partially predictable, yet recent work has highlighted the importance of antigen binding scFvs [...] Read more.
Chimeric Antigen Receptor T-cell (CAR-T) immunotherapies are dependent upon designed transmembrane proteins to bind target antigens and stimulate an immune response. The success or failure of these CARs is only partially predictable, yet recent work has highlighted the importance of antigen binding scFvs driving distinct oligomerization states with varied CAR-T efficacy. Here, we sought to determine the extracellular structure of the anti-CD19 CAR 47G4-CD828Z. Unexpectedly, the resolved crystal structure revealed an IgVL homodimer bound along an inverted VL|VL interface. We found that the VL-VH linker, designed to be cleavage resistant, was cleaved, and the VH and CAR hinge domains were absent from the crystal structure lattice. Molecular Dynamics simulations revealed that the inverted VL|VL interface was more stable than the canonical VL|VL configuration. Our work substantiates the need to interrogate the scFv structure and CAR oligomerization state for optimal CAR-T design. Full article
(This article belongs to the Topic Advanced Structural Crystals)
Show Figures

Figure 1

Article
Ellipsometry Characterisation for the Cd1-xZnxTe1-ySey Semiconductor Used in X-ray and Gamma Radiation Detectors
Crystals 2023, 13(4), 693; https://doi.org/10.3390/cryst13040693 - 18 Apr 2023
Viewed by 444
Abstract
The study of the optical properties of the Cd1-xZnxTe1-ySey (CZTS) crystal provides a clear idea about its response to incident X-ray or gamma radiation. This is important for selecting a proper composition of CZTS to achieve [...] Read more.
The study of the optical properties of the Cd1-xZnxTe1-ySey (CZTS) crystal provides a clear idea about its response to incident X-ray or gamma radiation. This is important for selecting a proper composition of CZTS to achieve superior quality and high-resolution X-ray and gamma radiation detectors at room temperature and reduce their production cost. This article’s novelty is in lowering the cost of the optical and compositional characterisation of CZTS using the ellipsometry technique. The most significant successes achieved are the composition ellipsometry model determination of CZTS based on the Effective Medium Approximation (EMA) substrate of the binary compound CdTe and ZnSe with an oxide layer of CdTe and the experimental verification that the bandgap moves to lower energies with the addition of Se. Full article
(This article belongs to the Topic Advanced Structural Crystals)
Show Figures

Figure 1

Article
Ligand Modulation on the Various Structures of Three Zinc(II)-Based Coordination Polymers for Antibiotics Degradation
Molecules 2023, 28(7), 2933; https://doi.org/10.3390/molecules28072933 - 24 Mar 2023
Viewed by 695
Abstract
The efficient removal of organic contaminants from wastewater is, nowadays, a prominent area of study due to its biological as well as environmental significance. Antibiotics are now found in wastewater because of their high use, which has become a source of aquatic pollution. [...] Read more.
The efficient removal of organic contaminants from wastewater is, nowadays, a prominent area of study due to its biological as well as environmental significance. Antibiotics are now found in wastewater because of their high use, which has become a source of aquatic pollution. These antibiotics have dangerous implications for people’s health. Hence, effective pharmaceutical removal from wastewater and contaminated water bodies, especially the removal of antibiotics, is of major interest to global research organizations. This is why it is necessary to investigate this class of toxic material in wastewater discharge. We synthesized three different coordination polymers (CPs) in the presence of various assistant carboxylate linkers, namely, [Zn(Hbtc)(dip)]n (1), [Zn4(1,2-bdc)4(dip)4]n (2), and [Zn(1,4-bdc)(dip)]n (3) (3,5-di(1H-imidazol-1-yl)pyridine = dip, 1,3,5-benzenetricarboxylic acid = H3btc, 1,2-benzenedicarboxylic acid = 1,2-H2bdc, and 1,4-benzendicarboxylic acid = 1,4-bdc). These CPs were characterized by using different techniques, including single-crystal X-ray diffraction. The structural studies demonstrated that in 2, there are four Zn(II) centers and both centers are in different coordination environments (Zn2 has distorted tetrahedral geometry, whereas Zn1, Zn3, and Zn4 have square pyramidal geometry). Hirshfeld surfaces analysis revealed that different types of intermolecular interactions (C⋯C, H⋯C, H⋯H, O⋯C, N⋯H, and O⋯H) are present in the synthesized CPs. We examined the different antibiotics, such as metronidazole (MDZ), nitrofurazone (NFZ), dimetridazole (DTZ), sulfasalazine(SLA), and oxytetracycline (OXY), degradation behaviors of the synthesized CPs, which showed remarkable degradation efficiency. 1 showed photocatalytic behavior toward the NFZ antibiotic in an aqueous media. This study also showed that these catalysts are stable and reusable under mild conditions. Full article
(This article belongs to the Topic Advanced Structural Crystals)
Show Figures

Figure 1

Article
Catalytic, Theoretical, and Biological Investigations of Ternary Metal (II) Complexes Derived from L-Valine-Based Schiff Bases and Heterocyclic Bases
Molecules 2023, 28(7), 2931; https://doi.org/10.3390/molecules28072931 - 24 Mar 2023
Viewed by 1096
Abstract
A new series of ternary metal complexes, including Co(II), Ni(II), Cu(II), and Zn(II), were synthesized and characterized by elemental analysis and diverse spectroscopic methods. The complexes were synthesized from respective metal salts with Schiff’s-base-containing amino acids, salicylaldehyde derivatives, and heterocyclic bases. The amino [...] Read more.
A new series of ternary metal complexes, including Co(II), Ni(II), Cu(II), and Zn(II), were synthesized and characterized by elemental analysis and diverse spectroscopic methods. The complexes were synthesized from respective metal salts with Schiff’s-base-containing amino acids, salicylaldehyde derivatives, and heterocyclic bases. The amino acids containing Schiff bases showed promising pharmacological properties upon complexation. Based on satisfactory elemental analyses and various spectroscopic techniques, these complexes revealed a distorted, square pyramidal geometry around metal ions. The molecular structures of the complexes were optimized by DFT calculations. Quantum calculations were performed with the density functional method for which the LACVP++ basis set was used to find the optimized molecular structure of the complexes. The metal complexes were subjected to an electrochemical investigation to determine the redox behavior and oxidation state of the metal ions. Furthermore, all complexes were utilized for catalytic assets of a multi-component Mannich reaction for the preparation of -amino carbonyl derivatives. The synthesized complexes were tested to determine their antibacterial activity against E. coli, K. pneumoniae, and S. aureus bacteria. To evaluate the cytotoxic effects of the Cu(II) complexes, lung cancer (A549), cervical cancer (HeLa), and breast cancer (MCF-7) cells compared to normal cells, cell lines such as human dermal fibroblasts (HDF) were used. Further, the docking study parameters were supported, for which it was observed that the metal complexes could be effective in anticancer applications. Full article
(This article belongs to the Topic Advanced Structural Crystals)
Show Figures

Figure 1

Article
Temperature−Dependent Raman Scattering Investigation on vdW Epitaxial PbI2/CrOCl Heterostructure
Crystals 2023, 13(1), 104; https://doi.org/10.3390/cryst13010104 - 06 Jan 2023
Viewed by 1014
Abstract
Van der Waals (vdW) epitaxial growth provides an efficient strategy to prepare heterostructures with atomically and electronically sharp interfaces. Herein, PbI2 was in situ thermally deposited onto exfoliated thin−layered CrOCl nanoflakes in high vacuum to fabricate vdW PbI2/CrOCl heterostructures. Optical [...] Read more.
Van der Waals (vdW) epitaxial growth provides an efficient strategy to prepare heterostructures with atomically and electronically sharp interfaces. Herein, PbI2 was in situ thermally deposited onto exfoliated thin−layered CrOCl nanoflakes in high vacuum to fabricate vdW PbI2/CrOCl heterostructures. Optical microscopy, atomic force microscopy, X−ray diffraction, and temperature−dependent Raman spectroscopy were used to investigate the structural properties and phonon behaviors of the heterostructures. The morphology of PbI2 films on the CrOCl substrate obviously depended on the substrate temperature, changing from hemispherical granules to 2D nanoflakes with flat top surfaces. In addition, anomalous blueshift of the Ag1 and Au2 modes as the temperature increased in PbI2/CrOCl heterostructure was observed for the first time. Our results provide a novel material platform for the vdW heterostructure and a possible method for optimizing heterostructure growth behaviors. Full article
(This article belongs to the Topic Advanced Structural Crystals)
Show Figures

Figure 1

Article
One-Dimensional Photonic Crystal with a Defect Layer Utilized as an Optical Filter in Narrow Linewidth LED-Based Sources
Crystals 2023, 13(1), 93; https://doi.org/10.3390/cryst13010093 - 04 Jan 2023
Cited by 2 | Viewed by 986
Abstract
A one-dimensional photonic crystal (1DPhC) with a defect layer is utilized as an optical filter in a simple realization of narrow linewidth LED-based sources. The 1DPhC comprising TiO2 and SiO2 layers is characterized by two narrow defect mode resonances within the [...] Read more.
A one-dimensional photonic crystal (1DPhC) with a defect layer is utilized as an optical filter in a simple realization of narrow linewidth LED-based sources. The 1DPhC comprising TiO2 and SiO2 layers is characterized by two narrow defect mode resonances within the 1DPhC band gap, or equivalently, by two peaks in the normal incidence transmittance spectrum at wavelengths of 625.4 nm and 697.7 nm, respectively. By combining the optical filter with LEDs, the optical sources are employed in interferometry experiments, and the defect mode resonances of a Lorentzian profile with linewidths of 1.72 nm and 1.29 nm, respectively, are resolved. In addition, a simple way to tune the resonances by changing the angle of incidence of light on the optical filter is demonstrated. All-dielectric optical filters based on 1DPhCs with a defect layer and combined with LEDs thus represent an effective alternative to standard coherent sources, with advantages including narrow spectral linewidths and variable output power, with an extension to tunable sources. Full article
(This article belongs to the Topic Advanced Structural Crystals)
Show Figures

Figure 1

Article
Nitrogen Structure Determination in Treated Fancy Diamonds via EPR Spectroscopy
Crystals 2022, 12(12), 1775; https://doi.org/10.3390/cryst12121775 - 07 Dec 2022
Viewed by 1343
Abstract
Color induction in nitrogen-contaminated diamonds was carried out via various procedures that involve irradiation, thermal treatments (annealing), and more. These treatments affect vacancy defect production and atom orientation centers in the diamond lattice. Natural diamonds underwent color enhancement treatments in order to produce [...] Read more.
Color induction in nitrogen-contaminated diamonds was carried out via various procedures that involve irradiation, thermal treatments (annealing), and more. These treatments affect vacancy defect production and atom orientation centers in the diamond lattice. Natural diamonds underwent color enhancement treatments in order to produce green, blue, and yellow fancy diamonds. The aim of this study was to follow the changes occurring during the treatment, mainly by EPR spectroscopy, which is the main source for the determination of the effect of paramagnetic centers (carbon-centered radicals) on the color centers produced via the treatments, but also via visual assessment, fluorescence, UV-vis, and FTIR spectroscopy. The results indicate that diamonds containing high levels of nitrogen contamination are associated with high carbon-centered radical concentrations. Four paramagnetic center structures (N1, N4, and P2/W21) were generated by the treatment. It is suggested that the N4 structure correlates with the formation of blue color centers, whereas yellow color centers are attributed to the presence of N1 species. While to produce blue and yellow colors, a thermal treatment is needed after irradiation, for treated green diamonds, no thermal treatment is needed (only irradiation). Full article
(This article belongs to the Topic Advanced Structural Crystals)
Show Figures

Figure 1

Article
Investigation of Energy Levels of Small Vacancy Clusters in Proton Irradiated Silicon by Laplace Photoinduced Transient Spectroscopy
Crystals 2022, 12(12), 1703; https://doi.org/10.3390/cryst12121703 - 24 Nov 2022
Viewed by 647
Abstract
Laplace photoinduced transient spectroscopy has been applied to determine the electronic properties and concentrations of deep traps in high purity n-type silicon irradiated with high fluences of 23-MeV protons. From the temperature dependence of thermal emission rates of excess charge carriers obtained [...] Read more.
Laplace photoinduced transient spectroscopy has been applied to determine the electronic properties and concentrations of deep traps in high purity n-type silicon irradiated with high fluences of 23-MeV protons. From the temperature dependence of thermal emission rates of excess charge carriers obtained by the analysis of the photocurrent relaxation waveforms measured at temperatures of 30–320 K, eight deep traps with activation energies ranging from 255 to 559 meV have been resolved. The dependence of these trap’s concentrations on the proton fluence are demonstrated for the fluence values ranging from 1 × 1014 to 5 × 1015 neq/cm2. In comparison to the previously reported results of theoretical and experimental studies on the electronic properties of small vacancy clusters in irradiated silicon, we tentatively attribute four detected traps with activation energies of 255, 367, 405, and 512 meV to the energy levels related to the 2−/− charge state changes of divacancy (V2), trivacancy (V3), tetravacancy (V4), and pentavacancy (V5), respectively. Simultaneously, we propose the attribution of four deep traps with higher activation energies of 415, 456, 526, and 559 meV to the energy levels related to the −/0 charge state changes of these small vacancy clusters, respectively. Full article
(This article belongs to the Topic Advanced Structural Crystals)
Show Figures

Figure 1

Article
New Bi-Nuclear Nickel(II) Complex-Based Salen Schiff Base: Synthesis, Crystal Structure, Spectroscopic, Thermal, and Electrical Investigations
Chemistry 2022, 4(4), 1193-1207; https://doi.org/10.3390/chemistry4040080 - 01 Oct 2022
Viewed by 1388
Abstract
In this study, a new bi-nuclear nickel complex [Ni2HL2(EtOH)2](Cl)(EtOH) of a Schiff base ligand, 2-[3-[2-hydroxybenzylideneamino]propyliminomethyl]phenol, was synthesized and characterized using UV/Vis, IR, HRMS, and TGA/DTA analysis. The molecular structure of the obtained complex was corroborated by the [...] Read more.
In this study, a new bi-nuclear nickel complex [Ni2HL2(EtOH)2](Cl)(EtOH) of a Schiff base ligand, 2-[3-[2-hydroxybenzylideneamino]propyliminomethyl]phenol, was synthesized and characterized using UV/Vis, IR, HRMS, and TGA/DTA analysis. The molecular structure of the obtained complex was corroborated by the single crystal X-ray diffraction technique. It was found in the complex that two molecules of the ligand coordinate with two nickel atoms through azomethine-N and phenoxy-O, resulting in 6-coordinate distorted octahedral geometry, in which two ethanol molecules occupy the axial positions. The dielectric and electrical properties of the obtained samples were studied by impedance spectroscopy at different frequencies (from 1 Hz to 1 MHz) in the temperature range 298–343 K. It is found that the electrical conductivity of the Ni(II) complex is lower than that of the free ligand H2L, suggesting that the complexation traps the charge carriers contained in the ligand. Full article
(This article belongs to the Topic Advanced Structural Crystals)
Show Figures

Graphical abstract

Article
Eucalyptus globulus Extract-Assisted Fabrication of Copper Oxide/Zinc Oxide Nanocomposite for Photocatalytic Applications
Crystals 2022, 12(8), 1153; https://doi.org/10.3390/cryst12081153 - 16 Aug 2022
Viewed by 877
Abstract
In this work, we report the engineering of sub 30 nm nanoparticles of copper oxide (CuO) and Zinc oxide (ZnO) and their nanocomposite, using a green method, to degrade an organic dye (methyl orange) that is responsible for water pollution. The plant extract [...] Read more.
In this work, we report the engineering of sub 30 nm nanoparticles of copper oxide (CuO) and Zinc oxide (ZnO) and their nanocomposite, using a green method, to degrade an organic dye (methyl orange) that is responsible for water pollution. The plant extract of Eucalyptus globulus was used as a capping and stabilizing agent, as it is non-toxic, easy to use, and affordable. The percent purity and composition of the samples were found using Energy Dispersive Spectroscopy (EDS), which confirmed the formation of 75% CuO nanoparticles, 77.81% ZnO nanoparticles, and 77.34% ZnO/CuO nanocomposite in respective samples. Morphological analysis was achieved using Scanning Electron Microscopy (SEM). FTIR investigations revealed that the vibrations of CuO and ZnO nanoparticles and CuO/ZnO nanocomposite were observed at 568 cm−1, 617.9 cm−1, and 475 cm−1, respectively. The bandgap of the synthesized CuO and ZnO nanoparticles, and ZnO/CuO nanocomposite was analyzed using Diffuse Reflectance Spectroscopy (DRS), and found to be 3.36 eV, 1.83 eV, and 1.48 eV, respectively. Best photocatalytic activity confirmed that favorable conditions for the maximum degradation of methyl orange are at pH 12 and 0.02 g of the photocatalyst is required. Full article
(This article belongs to the Topic Advanced Structural Crystals)
Show Figures

Figure 1

Article
Molecular Insights into the Effect of Nitrogen Bubbles on the Formation of Tetrahydrofuran Hydrates
Molecules 2022, 27(15), 4945; https://doi.org/10.3390/molecules27154945 - 03 Aug 2022
Cited by 1 | Viewed by 1050
Abstract
In this work, a molecular dynamics simulation was conducted to study the microscopic mechanism of how nitrogen bubbles affect the formation of THF hydrates at the molecular level. The results obtained reveal that the nitrogen bubble can promote the formation of THF hydrates. [...] Read more.
In this work, a molecular dynamics simulation was conducted to study the microscopic mechanism of how nitrogen bubbles affect the formation of THF hydrates at the molecular level. The results obtained reveal that the nitrogen bubble can promote the formation of THF hydrates. In the system with a nitrogen bubble, more THF-filled cages were generated, and the crystal structure was more orderly. The promotion of nitrogen bubbles on hydrate crystallization comes from the dissolution of nitrogen molecules. Some of dissolved nitrogen molecules can be enclosed in small hydrate cages near the nitrogen bubble, which can serve as stable sites for hydrate crystal growth, resulting in the fact that THF-filled cages connected with N2-filled cages are much more stable and have a long lifetime. The results in this work can help to understand the promotion effect of micro- and nano-air bubbles on the crystallization of THF hydrates. Full article
(This article belongs to the Topic Advanced Structural Crystals)
Show Figures

Figure 1

Back to TopTop