Topic Editors

Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Via P. Castellino 111, 80131 Naples, Italy
Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via S. Pansini 5, 80131 Napoli, Italy

Bioactive Compounds and Therapeutics: Molecular Aspects, Metabolic Profiles, and Omics Studies

Abstract submission deadline
20 June 2024
Manuscript submission deadline
20 September 2024
Viewed by
6358

Topic Information

Dear Colleagues,

Bioactive compounds can serve as drugs or can inspire novel synthetic structures to be employed for the treatment of numerous human illnesses, including cancer and COVID-19. Natural products and synthetic compounds represent a massive group of biologically active factors with potential roles in medical fields. For example, the antioxidant properties of phytomolecules may have implication as therapeutic agents. Nonetheless, great attention is being devoted to the repositioning of ‘orphan drugs’ and repurposing of existing drugs for novel medical scopes. In this context, dissecting the molecular connections with a treatment and the metabolic response of a system are fundamental aspects to investigate. These strategies allow the identification of pathways related to specific metabolites or proteins with a role in pathogenesis or the discovery of mechanistic insights important to prevent cellular damage and sequelae in patients. Nonetheless, the support offered by the latest state-of-the-art omics technologies can provide a global view on the effects generated by bioactive compounds in health and disease. This Topic will collect experimental outcomes concerning the effects of molecules extracted from natural sources or chemically modified in synthetic/semisynthetic derivatives, with potential effects on human health. The Topic will embrace research papers, reviews, communications, etc. based on in vitro and in vivo molecular and biochemical assays, including biomolecular interactions, antioxidant analyses, proteomic and metabolomic profiling, as well as in silico investigations.

Dr. Giovanni N. Roviello
Dr. Michele Costanzo
Topic Editors

Keywords

  • bioactive compounds
  • metabolomics
  • proteomics
  • synthetic biology
  • systems biology
  • medicinal chemistry
  • phytochemistry

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Biomolecules
biomolecules
5.5 8.3 2011 19.2 Days CHF 2700 Submit
Cells
cells
6.0 9.0 2012 18.8 Days CHF 2700 Submit
International Journal of Molecular Sciences
ijms
5.6 7.8 2000 16.8 Days CHF 2900 Submit
Metabolites
metabolites
4.1 5.3 2011 12.9 Days CHF 2700 Submit
Molecules
molecules
4.6 6.7 1996 13.6 Days CHF 2700 Submit

Preprints is a platform dedicated to making early versions of research outputs permanently available and citable. MDPI journals allow posting on preprint servers such as Preprints.org prior to publication. For more details about reprints, please visit https://www.preprints.org.

Published Papers (7 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
22 pages, 7459 KiB  
Article
Rhododendron chrysanthum’s Primary Metabolites Are Converted to Phenolics More Quickly When Exposed to UV-B Radiation
Biomolecules 2023, 13(12), 1700; https://doi.org/10.3390/biom13121700 - 24 Nov 2023
Viewed by 302
Abstract
The plant defense system is immediately triggered by UV-B irradiation, particularly the production of metabolites and enzymes involved in the UV-B response. Although substantial research on UV-B-related molecular responses in Arabidopsis has been conducted, comparatively few studies have examined the precise consequences of [...] Read more.
The plant defense system is immediately triggered by UV-B irradiation, particularly the production of metabolites and enzymes involved in the UV-B response. Although substantial research on UV-B-related molecular responses in Arabidopsis has been conducted, comparatively few studies have examined the precise consequences of direct UV-B treatment on R. chrysanthum. The ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) methodology and TMT quantitative proteomics are used in this study to describe the metabolic response of R. chrysanthum to UV-B radiation and annotate the response mechanism of the primary metabolism and phenolic metabolism of R. chrysanthum. The outcomes demonstrated that following UV-B radiation, the primary metabolites (L-phenylalanine and D-lactose*) underwent considerable changes to varying degrees. This gives a solid theoretical foundation for investigating the use of precursor substances, such as phenylalanine, to aid plants in overcoming abiotic stressors. The external application of ABA produced a considerable increase in the phenolic content and improved the plants’ resistance to UV-B damage. Our hypothesis is that externally applied ABA may work in concert with UV-B to facilitate the transformation of primary metabolites into phenolic compounds. This hypothesis offers a framework for investigating how ABA can increase a plant’s phenolic content in order to help the plant withstand abiotic stressors. Overall, this study revealed alterations and mechanisms of primary and secondary metabolic strategies in response to UV-B radiation. Full article
Show Figures

Figure 1

21 pages, 8880 KiB  
Article
Unravelling Effects of Rosemary (Rosmarinus officinalis L.) Extract on Hepatic Fat Accumulation and Plasma Lipid Profile in Rats Fed a High-Fat Western-Style Diet
Metabolites 2023, 13(9), 974; https://doi.org/10.3390/metabo13090974 - 27 Aug 2023
Viewed by 841
Abstract
The objective of the study was to investigate the preventive effect on obesity-related conditions of rosemary (Rosmarinus officinalis L.) extract (RE) in young, healthy rats fed a high-fat Western-style diet to complement the existing knowledge gap concerning the anti-obesity effects of RE [...] Read more.
The objective of the study was to investigate the preventive effect on obesity-related conditions of rosemary (Rosmarinus officinalis L.) extract (RE) in young, healthy rats fed a high-fat Western-style diet to complement the existing knowledge gap concerning the anti-obesity effects of RE in vivo. Sprague Dawley rats (71.3 ± 0.46 g) were fed a high-fat Western-style diet (WD) or WD containing either 1 g/kg feed or 4 g/kg feed RE for six weeks. A group fed standard chow served as a negative control. The treatments did not affect body weight; however, the liver fat percentage was reduced in rats fed RE, and NMR analyses of liver tissue indicated that total cholesterol and triglycerides in the liver were reduced. In plasma, HDL cholesterol was increased while triglycerides were decreased. Rats fed high RE had significantly increased fasting plasma concentrations of Glucagon-like peptide-1 (GLP-1). Proteomics analyses of liver tissue showed that RE increased enzymes involved in fatty acid oxidation, possibly associated with the higher fasting GLP-1 levels, which may explain the improvement of the overall lipid profile and hepatic fat accumulation. Furthermore, high levels of succinic acid in the cecal content of RE-treated animals suggested a modulation of the microbiota composition. In conclusion, our results suggest that RE may alleviate the effects of consuming a high-fat diet through increased GLP-1 secretion and changes in microbiota composition. Full article
Show Figures

Graphical abstract

13 pages, 2178 KiB  
Article
Novel Quinazoline Derivative Induces Differentiation of Keratinocytes and Enhances Skin Barrier Functions against Th2 Cytokine-Mediated Signaling
Molecules 2023, 28(16), 6119; https://doi.org/10.3390/molecules28166119 - 18 Aug 2023
Viewed by 647
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disease characterized by pruritic lesions and skin barrier dysfunction. In this study, we evaluated the effect of a quinazoline derivative, SH-340, on TSLP expression and signaling in human primary keratinocytes. Our results demonstrated that SH-340 [...] Read more.
Atopic dermatitis (AD) is a common inflammatory skin disease characterized by pruritic lesions and skin barrier dysfunction. In this study, we evaluated the effect of a quinazoline derivative, SH-340, on TSLP expression and signaling in human primary keratinocytes. Our results demonstrated that SH-340 significantly increased factors for differentiation and skin barrier function including KRT1, KRT2, KRT10, IVL, LOR, CLDN1, OVOL1, and FLG, whereas it inhibited TSLP expression in a dose-dependent manner, both at the mRNA and protein levels. Furthermore, SH-340 was found to inhibit the phosphorylation of STAT6, a downstream signaling molecule of IL-4 and IL-13, in keratinocytes. These findings suggest that SH-340 may suppress TSLP expression by inhibiting the IL-4/IL-13-STAT6 signaling pathway. Finally, SH-340 may potentially contribute to both the alleviation of inflammation and the restoration of skin barrier function. Full article
Show Figures

Figure 1

15 pages, 2557 KiB  
Review
Research Progress of Takeda G Protein-Coupled Receptor 5 in Metabolic Syndrome
Molecules 2023, 28(15), 5870; https://doi.org/10.3390/molecules28155870 - 04 Aug 2023
Cited by 2 | Viewed by 878
Abstract
Bile acids are acknowledged as signaling molecules involved in metabolic syndrome. The Takeda G protein-coupled receptor 5 (TGR5) functions as a significant bile acid receptor. The accumulated evidence suggests that TGR5 involves lipid homeostasis, glucose metabolism, and inflammation regulation. In line with this, [...] Read more.
Bile acids are acknowledged as signaling molecules involved in metabolic syndrome. The Takeda G protein-coupled receptor 5 (TGR5) functions as a significant bile acid receptor. The accumulated evidence suggests that TGR5 involves lipid homeostasis, glucose metabolism, and inflammation regulation. In line with this, recent preclinical studies also demonstrate that TGR5 plays a significant role in the generation and progression of metabolic syndrome, encompassing type 2 diabetes mellitus, obesity, atherosclerosis, and non-alcoholic fatty liver disease (NAFLD). In this review, we discuss the role of TGR5 in metabolic syndrome, illustrating the underlying mechanisms and therapeutic targets. Full article
Show Figures

Graphical abstract

19 pages, 6514 KiB  
Article
Mucosal Metabolomic Signatures in Chronic Colitis: Novel Insights into the Pathophysiology of Inflammatory Bowel Disease
Metabolites 2023, 13(7), 873; https://doi.org/10.3390/metabo13070873 - 23 Jul 2023
Cited by 1 | Viewed by 853
Abstract
Inflammatory bowel diseases (IBD) involve complex interactions among genetic factors, aberrant immune activation, and gut microbial dysbiosis. While metabolomic studies have focused on feces and serum, fewer investigations have examined the intestinal mucosa despite its crucial role in metabolite absorption and transport. The [...] Read more.
Inflammatory bowel diseases (IBD) involve complex interactions among genetic factors, aberrant immune activation, and gut microbial dysbiosis. While metabolomic studies have focused on feces and serum, fewer investigations have examined the intestinal mucosa despite its crucial role in metabolite absorption and transport. The goals of this study were twofold: to test the hypothesis that gut microbial dysbiosis from chronic intestinal inflammation leads to mucosal metabolic alterations suitable for therapeutic targeting, and to address gaps in metabolomic studies of intestinal inflammation that have overlooked the mucosal metabolome. The chronic DSS colitis was induced for five weeks in 7–9-week-old wild-type C57BL/6J male mice followed by microbial profiling with targeted 16srRNA sequencing service. Mucosal metabolite measurements were performed by Metabolon (Morrisville, NC). The data were analyzed using the bioinformatic tools Pathview, MetOrigin, and Metaboanalyst. The novel findings demonstrated increases in several host- and microbe-derived purine, pyrimidine, endocannabinoid, and ceramide metabolites in colitis. Origin analysis revealed that microbial-related tryptophan metabolites kynurenine, anthranilate, 5-hydroxyindoleacetate, and C-glycosyltryptophan were significantly increased in colon mucosa during chronic inflammation and strongly correlated with disease activity. These findings offer new insights into the pathophysiology of IBD and provide novel potential targets for microbial-based therapeutics. Full article
Show Figures

Figure 1

18 pages, 2539 KiB  
Article
Identification of Small Molecules Affecting the Secretion of Therapeutic Antibodies with the Retention Using Selective Hook (RUSH) System
Cells 2023, 12(12), 1642; https://doi.org/10.3390/cells12121642 - 16 Jun 2023
Viewed by 1097
Abstract
Unlocking cell secretion capacity is of paramount interest for the pharmaceutical industry focused on biologics. Here, we leveraged retention using a selective hook (RUSH) system for the identification of human osteosarcoma U2OS cell secretion modulators, through automated, high-throughput screening of small compound libraries. [...] Read more.
Unlocking cell secretion capacity is of paramount interest for the pharmaceutical industry focused on biologics. Here, we leveraged retention using a selective hook (RUSH) system for the identification of human osteosarcoma U2OS cell secretion modulators, through automated, high-throughput screening of small compound libraries. We created a U2OS cell line which co-expresses a variant of streptavidin addressed to the lumen-facing membrane of the endoplasmic reticulum (ER) and a recombinant anti-PD-L1 antibody. The heavy chain of the antibody was modified at its C-terminus, to which a furin cleavage site, a green fluorescent protein (GFP), and a streptavidin binding peptide (SBP) were added. We show that the U2OS cell line stably expresses the streptavidin hook and the recombinant antibody bait, which is retained in the ER through the streptavidin–SBP interaction. We further document that the addition of biotin to the culture medium triggers the antibody release from the ER, its trafficking through the Golgi where the GFP-SBP moiety is clipped off, and eventually its release in the extra cellular space, with specific antigen-binding properties. The use of this clone in screening campaigns led to the identification of lycorine as a secretion enhancer, and nigericin and tyrphostin AG-879 as secretion inhibitors. Altogether, our data support the utility of this approach for the identification of agents that could be used to improve recombinant production yields and also for a better understanding of the regulatory mechanism at work in the conventional secretion pathway. Full article
Show Figures

Figure 1

21 pages, 3669 KiB  
Article
Ginsentide TP1 Protects Hypoxia-Induced Dysfunction and ER Stress-Linked Apoptosis
Cells 2023, 12(10), 1401; https://doi.org/10.3390/cells12101401 - 16 May 2023
Cited by 2 | Viewed by 1321
Abstract
Hypoxia-induced vascular endothelial dysfunction (VED) is a significant contributor to several severe human diseases, including heart disease, stroke, dementia, and cancer. However, current treatment options for VED are limited due to the lack of understanding of the underlying disease mechanisms and therapeutic leads. [...] Read more.
Hypoxia-induced vascular endothelial dysfunction (VED) is a significant contributor to several severe human diseases, including heart disease, stroke, dementia, and cancer. However, current treatment options for VED are limited due to the lack of understanding of the underlying disease mechanisms and therapeutic leads. We recently discovered a heat-stable microprotein in ginseng, called ginsentide TP1, that has been shown to reduce vascular dysfunction in cardiovascular disease models. In this study, we use a combination of functional assays and quantitative pulsed SILAC proteomics to identify new proteins synthesized in hypoxia and to show that ginsentide TP1 provides protection for human endothelial cells against hypoxia and ER stress. Consistent with the reported findings, we also found that hypoxia activates various pathways related to endothelium activation and monocyte adhesion, which in turn, impairs nitric oxide (NO) synthase activity, reduces the bioavailability of NO, and increases the production of reactive oxygen species that contribute to VED. Additionally, hypoxia triggers endoplasmic reticulum stress and initiates apoptotic signaling pathways associated with cardiovascular pathology. Treatment with ginsentide TP1 reduced surface adhesion molecule expression, prevented activation of the endothelium and leukocyte adhesion, restored protein hemostasis, and reduced ER stress to protect against hypoxia-induced cell death. Ginsentide TP1 also restored NO signaling and bioavailability, reduced oxidative stress, and protected endothelial cells from endothelium dysfunction. In conclusion, this study shows that the molecular pathogenesis of VED induced by hypoxia can be mitigated by treatment with ginsentide TP1, which could be one of the key bioactive compounds responsible for the “cure-all” effect of ginseng. This research may lead to the development of new therapies for cardiovascular disorders. Full article
Show Figures

Figure 1

Back to TopTop