Topic Editors

Faculty of Food Engineering, Stefan cel Mare University of Suceava, Str. Universității 13, 720229 Suceava, Romania
Analytical Chemistry, Nutrition and Food Sciences Department, University of Alicante, P.O. Box 99, E-03080 Alicante, Spain
Faculty of Food Engineering,Universitatea Stefan cel Mare din Suceava, Suceava, Romania

Advances in Analysis of Flavors and Fragrances: Chemistry, Properties and Applications in Food Quality Improvement

Abstract submission deadline
31 March 2024
Manuscript submission deadline
31 May 2024
Viewed by
7637

Topic Information

Dear Colleagues,

Nowadays, consumers are more attracted to the quality and effectiveness of products that contain natural ingredients. Both flavors and fragrances play an essential role in choosing a food, cosmetic, health, or homecare product. Meanwhile, the flavor and fragrance market was valued at USD 29 billion in 2021 and it is expected to grow to USD 37.3 billion by 2026. Natural flavours are derived from plants (herbs, spices, seeds, fruits, and vegetables), animals (meat, seafood, poultry, eggs, and dairy products), and fermented products, and they are then isolated and concentrated via different methods (distillation, extraction, or cold pressing). Therefore, there is a growing interest in terms of examining how consumers perceive the sensory attributes of food products. The current topic aims to provide an opportunity for researchers to publish their results concerning the analysis of flavors and fragrances in the most suitable journal, thus offering great visibility for their research. The topic welcomes manuscripts regarding any aspects of flavors and fragrances in relation to their chemistry, synthesis mechanisms, identification, stability, encapsulation, and their application in the food industry and other environments.

Dr. Ana Leahu
Prof. Dr. Marìa Soledad Prats Moya
Dr. Cristina Ghinea
Topic Editors

Keywords

  • natural flavors
  • natural fragrances
  • analytical techniques
  • food products
  • chemical compounds
  • volatile organic compounds
  • bioaccessibility/bioavailability
  • processing method
  • sensory analysis
  • consumption preferences

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Beverages
beverages
3.5 5.8 2015 21.5 Days CHF 1600 Submit
Fermentation
fermentation
3.7 3.7 2015 12.9 Days CHF 2600 Submit
Foods
foods
5.2 5.8 2012 15.9 Days CHF 2900 Submit
Molecules
molecules
4.6 6.7 1996 13.6 Days CHF 2700 Submit
Separations
separations
2.6 2.5 2014 12.9 Days CHF 2600 Submit

Preprints is a platform dedicated to making early versions of research outputs permanently available and citable. MDPI journals allow posting on preprint servers such as Preprints.org prior to publication. For more details about reprints, please visit https://www.preprints.org.

Published Papers (10 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
Article
Sensory-Guided Isolation, Identification, and Active Site Calculation of Novel Umami Peptides from Ethanol Precipitation Fractions of Fermented Grain Wine (Huangjiu)
Foods 2023, 12(18), 3398; https://doi.org/10.3390/foods12183398 - 11 Sep 2023
Viewed by 271
Abstract
Huangjiu is rich in low-molecular-weight peptides and has an umami taste. In order for its umami peptides to be discovered, huangjiu was subjected to ultrafiltration, ethanol precipitation, and macroporous resin purification processes. The target fractions were gathered according to sensory evaluation. Subsequently, we [...] Read more.
Huangjiu is rich in low-molecular-weight peptides and has an umami taste. In order for its umami peptides to be discovered, huangjiu was subjected to ultrafiltration, ethanol precipitation, and macroporous resin purification processes. The target fractions were gathered according to sensory evaluation. Subsequently, we used peptidomics to identify the sum of 4158 peptides in most umami fractions. Finally, six novel umami peptides (DTYNPR, TYNPR, SYNPR, RFRQGD, NFHHGD, and FHHGD) and five umami-enhancing peptides (TYNPR, SYNPR, NFHHGD, FHHGD, and TVDGPSH) were filtered via virtual screening, molecular docking, and sensory verification. Moreover, the structure–activity relationship was discussed using computational approaches. Docking analysis showed that all umami peptides tend to bind with T1R1 through hydrogen bonds and hydrophobic forces, which involve key residues HIS71, ASP147, ARG151, TYR220, SER276, and ALA302. The active site calculation revealed that the positions of the key umami residues D and R in the terminal may cause taste differences in identified peptides. Full article
Show Figures

Figure 1

Article
Dynamics of Physicochemical Properties, Flavor, and Microbial Communities of Salt-Free Bamboo Shoots during Natural Fermentation: Correlation between Microorganisms and Metabolites
Fermentation 2023, 9(8), 733; https://doi.org/10.3390/fermentation9080733 - 06 Aug 2023
Cited by 1 | Viewed by 664
Abstract
Sour bamboo shoot is a Chinese fermented vegetable with unique flavors and is favored by local consumers. In this study, at different fermentation times, the texture of bamboo shoots and the changing rules of pH, titratable acid (TA), reduced sugar, and nitrite in [...] Read more.
Sour bamboo shoot is a Chinese fermented vegetable with unique flavors and is favored by local consumers. In this study, at different fermentation times, the texture of bamboo shoots and the changing rules of pH, titratable acid (TA), reduced sugar, and nitrite in bamboo shoot fermentation broth were explored. Headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to investigate the dominant aroma compounds. 16S rRNA high-throughput sequencing technology (HTS) was employed to investigate the core microbial communities. The results show that the chewiness, fracturability, hardness, and pH decreased, while TA increased during the 60-day fermentation. The contents of reducing sugar and nitrite peaked on the 14th day of fermentation and then decreased. A total of 80 volatile compounds were detected during sour bamboo shoot fermentation, with 2,4-Di-tert-butylphenol having the highest concentration. Among them, 12 volatile compounds (VIP ≥ 1) were identified as characteristic aroma substances of sour bamboo shoots. The dominant bacterial phyla in sour bamboo shoots were Firmicutes and Proteobacteria, while Bacillus and Acinetobacter were the dominant genus. Correlation analysis showed that Firmicutes exhibited a positive correlation with 3,6-Nonadien-1-ol, (E,Z)-, Oxalic acid, isobutyl hexyl ester, and (-)-O-Acetylmalic anhydride, whereas Bacillus exhibited a negative correlation with Silanediol, dimethyl-, and Oxime-, methoxy-phenyl-. A detailed picture of the microbial community of fermented bamboo shoots has been provided by this study, and it may provide insight into the Chinese traditional fermented vegetable microbial structure. Full article
Show Figures

Figure 1

Article
Time-Series Sensory Analysis Provided Important TI Parameters for Masking the Beany Flavor of Soymilk
Foods 2023, 12(14), 2752; https://doi.org/10.3390/foods12142752 - 19 Jul 2023
Viewed by 527
Abstract
The aim of this study is to provide a new perspective on the development of masking agents by examining the application of their time-series sensory profiles. The analysis of the relationship between 14 time-intensity (TI) parameters and the beany flavor masking ability of [...] Read more.
The aim of this study is to provide a new perspective on the development of masking agents by examining the application of their time-series sensory profiles. The analysis of the relationship between 14 time-intensity (TI) parameters and the beany flavor masking ability of 100 flavoring materials indicate that the values of AreaInc, DurDec, and AreaDec, TI parameters related to the flavor release in the increasing and decreasing phases, were significantly higher in the top 10 masking score materials than in the bottom 10 materials. In addition to individual analysis, machine learning analysis, which can derive complex rules from large amounts of data, was performed. Machine learning-based principal component analysis and cluster analysis of the flavoring materials presented AreaInc and AreaDec as TI parameters contributing to the classification of flavor materials and their masking ability. AreaDec was suggested to be particularly important for the beany flavor masking in the two different analyses: an effective masking can be achieved by focusing on the TI profiles of flavor materials. This study proposed that time-series profiles, which are mainly used for the understanding of the sensory characteristics of foods, can be applied to the development of masking agents. Full article
Show Figures

Graphical abstract

Article
Insights into the Flavor Differentiation between Two Wild Edible Boletus Species through Metabolomic and Transcriptomic Analyses
Foods 2023, 12(14), 2728; https://doi.org/10.3390/foods12142728 - 18 Jul 2023
Viewed by 846
Abstract
Despite the popularity of wild edible mushrooms due to their delectable flavor and nutritional value, the mechanisms involved in regulating and altering their taste remain underexplored. In this study, we analyzed the metabolome and transcriptome of Boletus brunneissimus (B. brunneissimus) and Leccinum extremiorientale [...] Read more.
Despite the popularity of wild edible mushrooms due to their delectable flavor and nutritional value, the mechanisms involved in regulating and altering their taste remain underexplored. In this study, we analyzed the metabolome and transcriptome of Boletus brunneissimus (B. brunneissimus) and Leccinum extremiorientale (L. extremiorientale), two Boletus species collected from different environments. Using UHPLC-MS, we annotated 644 peaks and identified 47 differential metabolites via OPLS-DA analysis. Eight of these were related to flavor, including L-Aspartic acid, Glycine, D-Serine, L-Serine, L-Histidine, Tryptophan, L-Isoleucine, Isoleucine, and alpha-D-Glucose. These differential metabolites were mainly concentrated in amino acid metabolism pathways. Transcriptome analysis revealed differential genes between B. brunneissimus and L. extremiorientale, which were enriched in protein processing in the endoplasmic reticulum, as well as differential genes of the same Boletus species in different environments that were enriched in the ribosome pathway. The combination of metabolome and transcriptome analyses highlighted Glycine, L-Serine, and L-Aspartic acid as the key compounds responsible for the differences between the two Boletus species. Using the O2PLS model and Pearson’s coefficient, we identified key genes that modulate the differences in metabolites between the two species. These results have significant implications for the molecular breeding of flavor in edible mushrooms. Full article
Show Figures

Figure 1

Article
A Study of Key Aroma Compounds in Hurood Cheese and Their Potential Correlations with Lactic Acid Bacteria
Fermentation 2023, 9(7), 670; https://doi.org/10.3390/fermentation9070670 - 17 Jul 2023
Viewed by 745
Abstract
Hurood cheese (namely Hurood) is a traditional acid-coagulated cheese in China. This work investigated key aroma compounds and their potential correlations with dominant species of Hurood sampled from three distinct geographical origins. Key aroma compounds were determined according to Gas chromatography–mass spectrometry (GC–MS), [...] Read more.
Hurood cheese (namely Hurood) is a traditional acid-coagulated cheese in China. This work investigated key aroma compounds and their potential correlations with dominant species of Hurood sampled from three distinct geographical origins. Key aroma compounds were determined according to Gas chromatography–mass spectrometry (GC–MS), gas chromatography–olfactometry (GC–O), and relative odor active values (ROAVs) analyses. In addition, 16S rDNA sequencing was used to identify the dominant species. Furthermore, Pearson correlation analysis was used to determine the potential relationships between key aroma compounds and dominant species. A total of 31 key aroma compounds were identified in the Hurood samples from three regions. Lactobacillus paracasei, Lactobacillus crispatus, and Leuconostoc citreum were found to be significantly correlated with the key aroma compounds (p < 0.05) and were identified as the core species. This study shows the link between the presence of presumptive functional core microbes and the unique aroma profiles of this traditional dairy product. Full article
Show Figures

Graphical abstract

Article
Comparative Analysis of Volatile Flavor Compounds in Strongly Flavored Baijiu under Two Different Pit Cap Sealing Processes
Foods 2023, 12(13), 2579; https://doi.org/10.3390/foods12132579 - 01 Jul 2023
Viewed by 639
Abstract
The solid-state fermentation process of strongly flavored Baijiu is complicated by the co-fermentation of many different microorganisms in the fermentation pools. The traditional fermentation pools of strong flavor Baijiu are sealed with mud, and this sealed-pit mud is not easy to maintain; therefore, [...] Read more.
The solid-state fermentation process of strongly flavored Baijiu is complicated by the co-fermentation of many different microorganisms in the fermentation pools. The traditional fermentation pools of strong flavor Baijiu are sealed with mud, and this sealed-pit mud is not easy to maintain; therefore, the pit cap is prone to cracks and to caving in. The destruction of the sealed-pit mud may lead to instability in the composition and an abundance of microorganisms in the fermentation process that results in fluctuations of product quality. Thus, the production method of replacing the mud cap with a new steel cap is gradually attracting the attention of scientific and technical workers in the industry. However, so far, there have been relatively few reports on the use of steel lids for sealing pits for fermentation and brewing. In this study, the volatile flavor components of 270 Baijiu samples from mud-sealing and steel-sealing pits of a Chinese Baijiu distillery were studied qualitatively and quantitatively using Gas Chromatography–Mass Spectrometry (Abbreviated as GC-MS). Our statistical methods included Hierarchical Cluster Analysis (Abbreviated as HCA), Principal Component Analysis (Abbreviated as PCA), and Discriminant Analysis (Abbreviated as DA). A statistical analysis was carried out on the yield of strongly flavored Baijiu, and we made a comprehensive evaluation of the Baijiu produced under the two pit-sealing modes with regard to flavor and economic efficiency. The yield of strong flavored Baijiu was 6.7% higher with steel-sealing pits compared with mud-sealing pits. Cluster analysis categorized the strongly flavored Baijiu samples into two categories initially: (1) samples produced using mud-sealing pits and (2) samples using steel-sealing pits. Our analysis also indicated that the 28 compounds used for quantification were selected correctly. Surprising to the experimental staff, the overall score for the steel-sealing pits was greater than that of the mud-sealing pits based on PCA. Using DA, the prediction results were 100% accurate. In summary, through a comparative analysis of the flavor and yield, which are the two main factors that affect the quality of Baijiu in a distillery, and systematic combination at both experimental and theoretical levels, the differences between the Baijiu production by steel-sealing and the traditional mud-sealing were clear. Regardless of the impact of age, the detectable flavor components of Baijiu from the mud-steeling pits were very consistent with those of the steel-sealing pits in terms of richness or concentration. However, steel-sealing pits were significantly superior to mud-sealing pits with respect to output, consistency in quality, and cost (human and economic) savings. Full article
Show Figures

Figure 1

Article
Exploring the Aroma Fingerprint of Various Chinese Pear Cultivars through Qualitative and Quantitative Analysis of Volatile Compounds Using HS-SPME and GC×GC-TOFMS
Molecules 2023, 28(12), 4794; https://doi.org/10.3390/molecules28124794 - 15 Jun 2023
Viewed by 636
Abstract
To comprehensively understand the volatile compounds and assess the aroma profiles of different types of Pyrus ussuriensis Maxim. Anli, Dongmili, Huagai, Jianbali, Jingbaili, Jinxiangshui, and Nanguoli were detected via headspace solid phase microextraction (HS-SPME) coupled with two-dimensional gas chromatography/time-of-flight mass spectrometry (GC×GC-TOFMS). The [...] Read more.
To comprehensively understand the volatile compounds and assess the aroma profiles of different types of Pyrus ussuriensis Maxim. Anli, Dongmili, Huagai, Jianbali, Jingbaili, Jinxiangshui, and Nanguoli were detected via headspace solid phase microextraction (HS-SPME) coupled with two-dimensional gas chromatography/time-of-flight mass spectrometry (GC×GC-TOFMS). The aroma composition, total aroma content, proportion and number of different aroma types, and the relative quantities of each compound were analyzed and evaluated. The results showed that 174 volatile aroma compounds were detected in various cultivars, mainly including esters, alcohols, aldehydes, and alkenes: Jinxiangshui had the highest total aroma content at 2825.59 ng/g; and Nanguoli had the highest number of aroma species detected at 108. The aroma composition and content varied among pear varieties, and the pears could be divided into three groups based on principal component analysis. Twenty-four kinds of aroma scents were detected; among them, fruit and aliphatic were the main fragrance types. The proportions of aroma types also varied among different varieties, visually and quantitatively displaying changes of the whole aroma of the different varieties of pears brought by the changes in aroma composition. This study contributes to further research on volatile compound analysis, and provides useful data for the improvement of fruit sensory quality and breeding work. Full article
Show Figures

Graphical abstract

Article
New Insight into the Substrate Selectivity of Bovine Milk γ-glutamyl Transferase via Structural and Molecular Dynamics Predictions
Molecules 2023, 28(12), 4657; https://doi.org/10.3390/molecules28124657 - 09 Jun 2023
Viewed by 1280
Abstract
Bovine milk γ-glutamyltransferase (BoGGT) can produce γ-glutamyl peptides using L-glutamine as a donor substrate, and the transpeptidase activity is highly dependent on both γ-glutamyl donors and acceptors. To explore the molecular mechanism behind the donor and acceptor substrate preferences for BoGGT, molecular docking [...] Read more.
Bovine milk γ-glutamyltransferase (BoGGT) can produce γ-glutamyl peptides using L-glutamine as a donor substrate, and the transpeptidase activity is highly dependent on both γ-glutamyl donors and acceptors. To explore the molecular mechanism behind the donor and acceptor substrate preferences for BoGGT, molecular docking and molecular dynamic simulations were performed with L-glutamine and L-γ-glutamyl-p-nitroanilide (γ-GpNA) as donors. Ser450 is a crucial residue for the interactions between BoGGT and donors. BoGGT forms more hydrogen bonds with L-glutamine than γ-GpNA, promoting the binding affinity between BoGGT and L-glutamine. Gly379, Ile399, and Asn400 are crucial residues for the interactions between the BoGGT intermediate and acceptors. The BoGGT intermediate forms more hydrogen bonds with Val-Gly than L-methionine and L-leucine, which can promote the transfer of the γ-glutamyl group from the intermediate to Val-Gly. This study reveals the critical residues responsible for the interactions of donors and acceptors with the BoGGT and provides a new understanding of the substrate selectivity and catalytic mechanism of GGT. Full article
Show Figures

Graphical abstract

Article
Exploring the Characteristic Aroma Components of Traditional Fermented Koumiss of Kazakh Ethnicity in Different Regions of Xinjiang by Combining Modern Instrumental Detection Technology with Multivariate Statistical Analysis Methods for Odor Activity Value and Sensory Analysis
Foods 2023, 12(11), 2223; https://doi.org/10.3390/foods12112223 - 31 May 2023
Viewed by 675
Abstract
To investigate the characteristic aromatic compounds, present in the traditional fermented koumiss of the Kazakh ethnic group in different regions of Xinjiang, GC-IMS, and GC-MS were used to analyze the volatile compounds in koumiss from four regions. A total of 87 volatile substances [...] Read more.
To investigate the characteristic aromatic compounds, present in the traditional fermented koumiss of the Kazakh ethnic group in different regions of Xinjiang, GC-IMS, and GC-MS were used to analyze the volatile compounds in koumiss from four regions. A total of 87 volatile substances were detected, and esters, acids, and alcohols were found to be the main aroma compounds in koumiss. While the types of aroma compounds in koumiss were similar across different regions, the differences in their concentrations were significant and displayed clear regional characteristics. The fingerprint spectrum of GC-IMS, combined with PLS-DA analysis, indicates that eight distinctive volatile compounds, including ethyl butyrate, can be utilized to distinguish between different origins. Additionally, we analyzed the OVA value and sensory quantification of koumiss in different regions. We found that aroma components such as ethyl caprylate and ethyl caprate, which exhibit buttery and milky characteristics, were prominent in the YL and TC regions. In contrast, aroma components such as phenylethanol, which feature a floral fragrance, were more prominent in the ALTe region. The aroma profiles of koumiss from the four regions were defined. These studies provide theoretical guidance for the industrial production of Kazakh koumiss products. Full article
Show Figures

Figure 1

Article
The Impact of Fermentation Temperature and Cap Management on Selected Volatile Compounds and Temporal Sensory Characteristics of Grenache Wines from the Central Coast of California
Molecules 2023, 28(10), 4230; https://doi.org/10.3390/molecules28104230 - 22 May 2023
Viewed by 820
Abstract
Grenache wines from the Central Coast of California were subjected to different alcoholic fermentation temperature regimes (Cold, Cold/Hot, Hot) and cap management protocols, namely, punch down (PD), or no punch down (No PD), to determine the effect of these practices on the color, [...] Read more.
Grenache wines from the Central Coast of California were subjected to different alcoholic fermentation temperature regimes (Cold, Cold/Hot, Hot) and cap management protocols, namely, punch down (PD), or no punch down (No PD), to determine the effect of these practices on the color, aroma, and the retronasal and mouthfeel sensory characteristics of the resulting wines. Descriptive analysis (n = 8, line scale rating 0–15) results indicated that the combination of a hot fermentation temperature and no punch downs led to a significantly higher intensity in perceived color saturation (7.89) and purple hue (8.62). A two-way analysis of variance (ANOVA) showed that cap management was significantly more impactful on the perception of orthonasal aromas than fermentation temperature. The reduction aroma was significantly higher in No PD wines (5.02) compared to PD wines (3.50), while rose and hot aromas had significantly higher intensity perception for PD wines (5.18, 6.80) than for No PD wines (6.80, 6.14). Conversely, analysis of selected volatile compounds indicated that fermentation temperature was more impactful than cap management regime. Cold/Hot wines had higher concentrations of important esters such as ethyl hexanoate (650 µg/L) and isoamyl acetate (992 µg/L). Cold wines had a higher concentration of β-damascenone (0.719 µg/L). TCATA evaluation (n = 8) indicated that Cold/Hot PD wines had a significantly higher citation proportion of fruit flavor (1.0) and velvet astringency perception (0.80) without significant reduction flavors. Finally, the present study represents a contribution with the main volatile compounds (e.g., β-damascenone and esters in the Cold and Cold/Hot fermented wines, respectively; hexanol in PD wines, which may be potentially responsible for a hot mouthfeel), and sensory characteristics (red fruit, tropical fruit, white pepper, and rose) of Grenache wines grown in the Mediterranean climate of the Central Coast of California. Full article
Show Figures

Graphical abstract

Back to TopTop