Topic Editors

Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Fatigue and Fracture Assessment of Structural Components and Materials

Abstract submission deadline
closed (31 December 2022)
Manuscript submission deadline
closed (31 May 2023)
Viewed by
78221

Topic Information

Dear Colleagues,

Dealing with fracture and fatigue assessments of structural components made of metallic, polymeric, ceramic or composite materials, different approaches have been proposed in the literature. They are usually divided into three subgroups: stress-based, strain-based and energy-based criteria; however, coupled approaches are also widely employed, e.g., stress–energy-based ones. Such approaches are based on analytical/numerical calculations or on experimental derivations. Typical applications include both linear elastic and elasto–plastic materials, plain and notched or cracked components ranging from nano to macro scales and subjected to static or cyclic loadings. Aim of this Topic is to provide an update to the state-of-the-art on these approaches, including coupled criteria. The topics which deserve particular interest are: applications to new advanced materials, such as additive materials; applications to complex and real structures; recent advanced criteria for fracture and fatigue predictions under complex loading conditions, such as mixed mode static loading or multiaxial constant amplitude and variable amplitude/random fatigue loadings.

Prof. Dr. Alberto Campagnolo
Prof. Dr. Alberto Sapora
Topic Editors

Keywords

  • local approach
  • energy-based approach
  • stress-based approach
  • strain-based approach
  • stress–energy coupled approach
  • finite fracture mechanics
  • fracture assessment
  • fatigue assessment
  • crack
  • notch
  • size effects

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Applied Sciences
applsci
2.838 3.7 2011 14.9 Days 2300 CHF
Materials
materials
3.748 4.7 2008 13.9 Days 2300 CHF
Metals
metals
2.695 3.8 2011 16.9 Days 2000 CHF
Polymers
polymers
4.967 5.7 2009 12.4 Days 2400 CHF
Applied Mechanics
applmech
- - 2020 15.4 Days 1000 CHF

Preprints is a platform dedicated to making early versions of research outputs permanently available and citable. MDPI journals allow posting on preprint servers such as Preprints.org prior to publication. For more details about reprints, please visit https://www.preprints.org.

Published Papers (57 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
Article
Employment of Fracture Mechanics Criteria for Accurate Assessment of the Full Set of Elastic Constants of Orthorhombic/Tetragonal Mono-Crystalline YBCO
Appl. Mech. 2023, 4(2), 585-643; https://doi.org/10.3390/applmech4020032 - 08 May 2023
Viewed by 593
Abstract
The effect of elastic constants, cij, on the nature (easy or difficult) of a cleavage system in mono-crystalline YBa2Cu3O7−δ is investigated by employing a novel three-dimensional eigenfunction expansion technique, based in part on the separation of [...] Read more.
The effect of elastic constants, cij, on the nature (easy or difficult) of a cleavage system in mono-crystalline YBa2Cu3O7−δ is investigated by employing a novel three-dimensional eigenfunction expansion technique, based in part on the separation of the thickness variable and partly on a modified Frobenius-type series expansion technique in conjunction with Eshelby–Stroh formalism. Out of the three available, complete sets of elastic constants, only the experimental measurements using resonant ultrasound spectroscopy merit serious attention, despite reported values of c12 and, to a lesser extent, c66 being excessively high. The present investigation considers six through-thickness crack systems weakening orthorhombic mono-crystalline Yttrium barium copper oxide (YBCO) plates. More importantly, the present investigation establishes sufficient conditions for crack path stability/instability, which entail a cleavage system being easy or difficult, i.e., whether a crack would propagate in its original plane/direction or deflect to a different one. This criterion of fracture mechanics is then employed for accurate determination of the full set of elastic constants of superconducting mono-crystalline YBCO. Finally, heretofore unavailable results pertaining to the through-thickness variations of stress intensity factors and energy release rates for a crack corresponding to symmetric and skew-symmetric hyperbolic cosine loads, which also satisfy the boundary conditions on the plate surfaces, bridge a longstanding gap. Full article
Show Figures

Figure 1

Article
Fatigue Crack Growth in a Monocrystal and Its Similarity to Short-Crack Propagation in a Polycrystal of Nickel
Metals 2023, 13(4), 790; https://doi.org/10.3390/met13040790 - 17 Apr 2023
Viewed by 492
Abstract
Short fatigue cracks in polycrystalline materials are very important from both practical and basic aspects, yet they are very difficult to observe. Therefore, it is suggested to emulate some properties of short cracks with long fatigue cracks in monocrystals. Indeed, such experiments in [...] Read more.
Short fatigue cracks in polycrystalline materials are very important from both practical and basic aspects, yet they are very difficult to observe. Therefore, it is suggested to emulate some properties of short cracks with long fatigue cracks in monocrystals. Indeed, such experiments in pure nickel crystals prove that the three peculiar properties of short fatigue cracks in polycrystalline metals are observed in long cracks in monocrystals, i.e., a lower threshold of the stress intensity factor (ΔKI)th, a higher crack propagation rate at low ΔKI regimes, and the fact that different cracks exhibit different growth behaviors. The fatigue experiments in monocrystals reveal interesting details of the slip activity at the front of fatigue cracks, including a selection rule for the active slip systems above and below the crack, the slip behavior under conditions of steep strain gradients, and the activation of a new slip system. Full article
Show Figures

Figure 1

Article
Failure Analysis and Accelerated Test Development for Rotor Magnetic Bridge of Electric Vehicle Drive Motor
Appl. Sci. 2023, 13(8), 4753; https://doi.org/10.3390/app13084753 - 10 Apr 2023
Viewed by 725
Abstract
Motor rotor magnetic bridges operate under multiple physical field loads, such as electromagnetic force, temperature, and centrifugal force. These loads can cause fatigue and aging failure of the bridges, especially when the rotor is operating continuously at high speeds and high temperatures. Therefore, [...] Read more.
Motor rotor magnetic bridges operate under multiple physical field loads, such as electromagnetic force, temperature, and centrifugal force. These loads can cause fatigue and aging failure of the bridges, especially when the rotor is operating continuously at high speeds and high temperatures. Therefore, the failure analysis and accelerated test cycle development of magnetic bridges is a major aspect of their reliability evaluation. This paper studies rotor multi-physics load transfer characteristics and establishes a rotor magnetic bridge failure physical model. A simulation analysis is conducted from the electromagnetic field, thermal field, structural field, and thermomechanical coupling field to determine the risk point load responses and failure-dominant loads. In addition, the accuracy of the simulation model is verified by actual bench tests. Considering the influence on the rotor bridge’s life under the coupling of multiple failure modes, the fatigue failure model under alternating loads and the fatigue aging coupling failure model are established, respectively. Through a damage analysis, the whole life cycle damage targets for both failure modes are determined, and the test condition levels are screened based on the load frequency distribution and damage distribution. The multi-objective optimization method is used to calculate the number of test cycles and finally develop accelerated test cycle conditions that can reproduce multiple failure modes. This research can provide support for rotor bridge reliability design and verification, as well as product quality development. Full article
Show Figures

Figure 1

Article
Energy-Based Fatigue Assessment of Defect-Afflicted Cast Steel Components by Means of a Linear-Elastic Approach
Appl. Sci. 2023, 13(6), 3768; https://doi.org/10.3390/app13063768 - 15 Mar 2023
Cited by 1 | Viewed by 795
Abstract
Cast steel components are affected by manufacturing process-based imperfections, which severely limit their fatigue strength. In this work, the linear-elastic strain energy density concept is applied to assess the fatigue behaviour of bulk defect-afflicted components made of high-strength cast steel alloy G12MnMo7-4+QT. Based [...] Read more.
Cast steel components are affected by manufacturing process-based imperfections, which severely limit their fatigue strength. In this work, the linear-elastic strain energy density concept is applied to assess the fatigue behaviour of bulk defect-afflicted components made of high-strength cast steel alloy G12MnMo7-4+QT. Based on analytical calculations, an energy-based design limit curve is derived which merges experimental results of notched and unnotched small–scale specimens into a statistically proven scatter band. The stress ratio dependency is also investigated. Moreover, a numerical methodology is introduced, which facilitates the energy-based fatigue assessment of complex spatial imperfections on the basis of radiographs. Validation of the established framework utilizing experimental results of defect-afflicted large–scale specimens leads to sound accordance of numerically and experimentally derived fatigue strength values, showing an average deviation of about only eight percent. Full article
Show Figures

Figure 1

Article
The Influence of Fatigue Loading on the Durability of the Conveyor Belt
Appl. Sci. 2023, 13(5), 3277; https://doi.org/10.3390/app13053277 - 03 Mar 2023
Viewed by 974
Abstract
The conveyor belt is by its structure a textile composite. As a load-supporting element of the conveyor, the belt withstands variable loads during its operations. In order to investigate the influence of the level and variability of loading on the life of the [...] Read more.
The conveyor belt is by its structure a textile composite. As a load-supporting element of the conveyor, the belt withstands variable loads during its operations. In order to investigate the influence of the level and variability of loading on the life of the belt, tests were carried out on specimens in laboratory conditions. A testing device was specially designed and made for these tests that enabled precise control and monitoring of the loading as well as number of loading cycles up to fracture. This research provides an overview of the influence of fatigue loading on the fatigue life of the belt. The methodology of the conducted research is explained with a description of important technical parameters of the testing device. A physical experiment and a corresponding numerical simulation using the FEM method were carried out with multiple loading levels of belt specimens. Based on the obtained results, appropriate conclusions were made; at loads less than 70% of the breaking strength, the lifetime of the belt is very long. Attention was drawn to additional influences that could not be covered by the experiment and possible directions for further research were indicated. Full article
Show Figures

Figure 1

Article
Prediction of Effective Elastic and Thermal Properties of Heterogeneous Materials Using Convolutional Neural Networks
Appl. Mech. 2023, 4(1), 287-303; https://doi.org/10.3390/applmech4010016 - 27 Feb 2023
Viewed by 756
Abstract
The aim of this study is to develop a new method to predict the effective elastic and thermal behavior of heterogeneous materials using Convolutional Neural Networks CNN. This work consists first of all in building a large database containing microstructures of two phases [...] Read more.
The aim of this study is to develop a new method to predict the effective elastic and thermal behavior of heterogeneous materials using Convolutional Neural Networks CNN. This work consists first of all in building a large database containing microstructures of two phases of heterogeneous material with different shapes (circular, elliptical, square, rectangular), volume fractions of the inclusion (20%, 25%, 30%), and different contrasts between the two phases in term of Young modulus and also thermal conductivity. The contrast expresses the degree of heterogeneity in the heterogeneous material, when the value of C is quite important (C >> 1) or quite low (C << 1), it means that the material is extremely heterogeneous, while C= 1, the material becomes totally homogeneous. In the case of elastic properties, the contrast is expressed as the ratio between Young’s modulus of the inclusion and that of the matrix (C = EiEm), while for thermal properties, this ratio is expressed as a function of the thermal conductivity of both phases (C = λiλm). In our work, the model will be tested on two values of contrast (10 and 100). These microstructures will be used to estimate the elastic and thermal behavior by calculating the effective bulk, shear, and thermal conductivity values using a finite element method. The collected databases will be trained and tested on a deep learning model composed of a first convolutional network capable of extracting features and a second fully connected network that allows, through these parameters, the adjustment of the error between the found output and the expected one. The model was verified using a Mean Absolute Percentage Error (MAPE) loss function. The prediction results were excellent, with a prediction score between 92% and 98%, which justifies the good choice of the model parameters. Full article
Show Figures

Figure 1

Article
Fatigue Crack Propagation under Christmas Tree Load Pattern
Appl. Sci. 2023, 13(3), 1284; https://doi.org/10.3390/app13031284 - 18 Jan 2023
Viewed by 647
Abstract
Most mechanical components are subject to dynamic loads, which can cause failure in service. This study aims to evaluate the effect of variable amplitude loadings on fatigue crack growth (FCG) in CT specimens produced with the AA2024-T351 aluminum alloy. Specifically, it is intended [...] Read more.
Most mechanical components are subject to dynamic loads, which can cause failure in service. This study aims to evaluate the effect of variable amplitude loadings on fatigue crack growth (FCG) in CT specimens produced with the AA2024-T351 aluminum alloy. Specifically, it is intended to predict the FCG rate when the specimen is subjected to a complex loading pattern, named the “Christmas Tree Spectrum”. Crack growth is simulated by node release, which occurs when the cumulative plastic strain at the crack tip reaches a critical value (110%) that is supposed to be a material property. It is therefore assumed that cyclic plastic deformation is the main damage mechanism. The specimen was subjected to four different load patterns: the 6–60 N low-frequency constant amplitude load (CAL); the 6–21 N high-frequency CAL; the Christmas Tree (15–9) and the Christmas Tree (9–3) patterns. The Christmas Tree 15–9 load pattern is defined by nine increments of +15 N and −9 N followed by eight increments of +9 N and −15 N. The results indicate that the Christmas Tree (15–9) pattern increases crack tip damage relative to the constant amplitude loading. This is attributed to small variations in material hardening, particularly during the unloading phase of the load block. On the other hand, the Christmas Tree (9–3) pattern did not show a significant effect, indicating the importance of the range of small-amplitude cycles. The crack closure phenomenon is usually used explain the effect of loading parameters, but this is an exception. Full article
Show Figures

Figure 1

Article
Fatigue Strength Assessment of an Aluminium Alloy Car Body Using Multiaxial Criteria and Cumulative Fatigue Damage Theory
Appl. Sci. 2023, 13(1), 215; https://doi.org/10.3390/app13010215 - 24 Dec 2022
Viewed by 867
Abstract
With the rapid development of urban rail transit, metro vehicles have become preferred choices for urban transportation. It is important to accurately evaluate the fatigue strength of a car body to ensure subway safety. A new method based on multiaxial stress criteria and [...] Read more.
With the rapid development of urban rail transit, metro vehicles have become preferred choices for urban transportation. It is important to accurately evaluate the fatigue strength of a car body to ensure subway safety. A new method based on multiaxial stress criteria and cumulative fatigue damage theory was proposed for the fatigue strength assessment of welded joints of an aluminium alloy head car body subjected to variable cyclic loads. A local coordinate system was established, according to the geometrical characteristics of the weld. Local stresses perpendicular and parallel to the weld seam were obtained to calculate the stress ratio, stress range, and allowable stress value corresponding to the stress component. Then, the fatigue strength utilization of the joints was estimated to determine whether the fatigue strength of the weld met the design requirements. Moreover, the estimated fatigue life of the car body was predicted with cumulative fatigue damage theory. This method considers both the material utilization degree in multiple stress states and the estimated body fatigue life of the car body. The research results provide a reference and a more comprehensive guarantee for the fatigue strength evaluation of a subway car body’s welded structure to ensure vehicle safety. Full article
Show Figures

Figure 1

Article
Short-Time Fatigue Life Estimation for Heat Treated Low Carbon Steels by Applying Electrical Resistance and Magnetic Barkhausen Noise
Materials 2023, 16(1), 32; https://doi.org/10.3390/ma16010032 - 21 Dec 2022
Viewed by 923
Abstract
Tensile tests and fatigue tests on differently heat-treated low carbon (non- and low-alloy) steels were conducted and accompanied by non-destructive electrical resistometric (ER) and magnetic Barkhausen noise (MBN) measuring devices, in order to establish an improved short-time fatigue life estimation method according to [...] Read more.
Tensile tests and fatigue tests on differently heat-treated low carbon (non- and low-alloy) steels were conducted and accompanied by non-destructive electrical resistometric (ER) and magnetic Barkhausen noise (MBN) measuring devices, in order to establish an improved short-time fatigue life estimation method according to StressLife. MaRePLife (Material Response Partitioning) is the hereby proposed method for calculating S–N curves in the HCF regime, based on the partitioning of material responses acquired during the above-mentioned mechanical tests. The rules were set to make use of the information gathered from pre-conducted tensile tests, which helps to determine the parameters of two load increase tests (LIT) and two constant amplitude tests (CAT). The results of the calculated S–N curves were satisfactory and could be verified by more separately conducted fatigue tests on specimens under different material conditions. Full article
Show Figures

Figure 1

Article
Microstructure, Tensile, and Fatigue Properties of Large-Scale Austenitic Lightweight Steel
Materials 2022, 15(24), 8909; https://doi.org/10.3390/ma15248909 - 13 Dec 2022
Cited by 2 | Viewed by 843
Abstract
High-Mn lightweight steel, Fe-0.9C-29Mn-8Al, was manufactured using steelmaking, ingot-making, forging, and rolling processes. After the final rolling process, a typical austenite single phase was observed on all sides of the thick plate. The microstructural changes after annealing and aging heat-treatments were observed, using [...] Read more.
High-Mn lightweight steel, Fe-0.9C-29Mn-8Al, was manufactured using steelmaking, ingot-making, forging, and rolling processes. After the final rolling process, a typical austenite single phase was observed on all sides of the thick plate. The microstructural changes after annealing and aging heat-treatments were observed, using optical and transmission electron microscopy. The annealed coupon exhibited a typical austenite single phase, including annealing twins in several grains; the average grain size was 153 μm. After aging heat treatment, κ-carbide was observed within the grains and on the grain boundaries. Additionally, the effect of aging heat treatment on the mechanical properties was analyzed, using a tensile test. The fine κ-carbide that precipitated within the grains in the aged coupon improved the 0.2% offset yield and the tensile stresses, as compared to the as-annealed coupon. To estimate the applicability of high-Mn lightweight steel for low-pressure (LP) steam turbine blades, a low-cycle fatigue (LCF) test was carried out at room temperature. At a total strain amplitude of 0.5 to 1.2%, the LCF life of high-Mn lightweight steel was approximately three times that of 12% Cr steel, which is used in commercial LP steam turbine blades. The LCF behavior of high-Mn lightweight steel followed the Coffin–Manson equation. The LCF life enhancement in the high-Mn lightweight steel results from the planar dislocation gliding behavior. Full article
Show Figures

Figure 1

Article
A Multiaxial Fatigue Damage Model Based on Constant Life Diagrams for Polymer Fiber-Reinforced Laminates
Polymers 2022, 14(22), 4985; https://doi.org/10.3390/polym14224985 - 17 Nov 2022
Viewed by 845
Abstract
In the last decade, fatigue damage models for fiber-reinforced polymer composites have been developed assuming the fracture energy equivalence hypothesis. These models are able to predict a fatigue life of composite laminates, but their identification requires a significant number of off-axial tests for [...] Read more.
In the last decade, fatigue damage models for fiber-reinforced polymer composites have been developed assuming the fracture energy equivalence hypothesis. These models are able to predict a fatigue life of composite laminates, but their identification requires a significant number of off-axial tests for various stress ratios. The present study proposes the stress ratio dependent model, which phenomenologically adopts a decrease in stiffness and residual strength of a unique ply according to experimental constant life diagrams. Hashin, Tsai–Hill, and the maximum stress failure criteria are utilized for damage initiation considering the residual strength of the ply. The obtained results indicate a sufficiency of using S-N curves for UD 0°, UD 45°, and UD 90° for identification of the model. The model was verified by S-N curves for UD 10°, UD 15°, and UD 30° and its applicability was demonstrated for prediction of a fatigue life of composite laminates with an arbitrary lay-up. The model is implemented into ABAQUS finite element software as a user subroutine. Full article
Show Figures

Figure 1

Article
Considering the Effect of Non-Propagating Cracks on Fatigue Limit Prediction in the Critical Distance Method Framework
Appl. Sci. 2022, 12(21), 10994; https://doi.org/10.3390/app122110994 - 30 Oct 2022
Viewed by 808
Abstract
Although the material has developed micro-scale cracks, the micro-cracks stop propagating and transform into non-propagating cracks (NPCs) under fatigue limit loading. The movement of the crack tip position caused by the non-propagating crack will generate a small change in the notch geometry, which [...] Read more.
Although the material has developed micro-scale cracks, the micro-cracks stop propagating and transform into non-propagating cracks (NPCs) under fatigue limit loading. The movement of the crack tip position caused by the non-propagating crack will generate a small change in the notch geometry, which easily triggers the geometric size effect. Since the critical distance method focuses on evaluating the limit of fatigue in terms of the material’s cracking conditions, the present study attempted to develop a notched fatigue analysis model to consider the effect of non-propagating cracks on fatigue limit prediction in the critical distance method framework. The effectiveness and capability of the proposed model were demonstrated by the fatigue experimental data of Q345qD low carbon steel. Full article
Show Figures

Figure 1

Review
Mode I Fatigue of Fibre Reinforced Polymeric Composites: A Review
Polymers 2022, 14(21), 4558; https://doi.org/10.3390/polym14214558 - 27 Oct 2022
Cited by 2 | Viewed by 1625
Abstract
Composites are macroscopic combinations of chemically dissimilar materials preferred for new high-tech applications where mechanical performance is an area of interest. Mechanical apprehensions chiefly include tensile, creep, and fatigue loadings; each loading comprises different modes. Fatigue is cyclic loading correlated with stress amplitude [...] Read more.
Composites are macroscopic combinations of chemically dissimilar materials preferred for new high-tech applications where mechanical performance is an area of interest. Mechanical apprehensions chiefly include tensile, creep, and fatigue loadings; each loading comprises different modes. Fatigue is cyclic loading correlated with stress amplitude and the number of cycles while defining the performance of a material. Composite materials are subject to various modes of fatigue loading during service life. Such loadings cause micro invisible to severe visible damage affecting the material’s performance. Mode I fatigue crack propagates via opening lamina governing a visible tear. Recently, there has been an increasing concern about finding new ways to reduce delamination failure, a life-reducing aspect of composites. This review focuses on mode I fatigue behaviours of various preforms and factors determining failures considering different reinforcements with respect to fibres and matrix failures. Numerical modelling methods for life prediction of composites while subjected to fatigue loading are reviewed. Testing techniques used to verify the fatigue performance of composite under mode I load are also given. Approaches for composites’ life enhancement against mode I fatigue loading have also been summarized, which could aid in developing a well-rounded understanding of mode I fatigue behaviours of composites and thus help engineers to design composites with higher interlaminar strength. Full article
Show Figures

Figure 1

Article
Experimental and Numerical Studies on Fatigue Characteristics of CFRP Shaft Tube
Appl. Sci. 2022, 12(18), 8933; https://doi.org/10.3390/app12188933 - 06 Sep 2022
Viewed by 971
Abstract
Carbon Fiber Reinforced Plastic (CFRP) shaft tube structure is widely applied in different fields, including aerospace, automotive, and wind power. Since CFRP shaft tube is often subjected to bending fatigue loads, it is of great significance to research its bending fatigue characteristics. Because [...] Read more.
Carbon Fiber Reinforced Plastic (CFRP) shaft tube structure is widely applied in different fields, including aerospace, automotive, and wind power. Since CFRP shaft tube is often subjected to bending fatigue loads, it is of great significance to research its bending fatigue characteristics. Because of its unique advantages, such as a smaller size, lighter weight, and the outstanding ability to form a sensor network, the Fiber Bragg Grating (FBG) sensor is very applicable for health monitoring research of composite material structures. Taking the CFRP shaft tube under bending load as the research object, based on the theory of composite material mechanics and applying the research idea of combining simulation analysis and experiment, the fatigue life, residual stiffness, and fatigue damage evolution of CFRP tubes under three-point bending fatigue loading were studied. Moreover, the fatigue characteristics of CFRP tubes under different fatigue loading were analyzed. At the same time, the ultrasonic phased array was used to obtain the fatigue damage evolution rule by scanning and analyzing the damage to the CFRP shaft tube after different fatigue loading times. Through the application of the FBG sensors, the whole process of fatigue evolution of the CFRP shaft tube was fully monitored. Full article
Show Figures

Figure 1

Article
Numerical Study of the Impact of Shot Peening on the Tooth Root Fatigue Performances of Gears Using Critical Plane Fatigue Criteria
Appl. Sci. 2022, 12(16), 8245; https://doi.org/10.3390/app12168245 - 18 Aug 2022
Cited by 1 | Viewed by 986
Abstract
Gears are one of the the most widespread mechanical components and their design is supported by standard calculation methods. Among all the possible failure modes of gears, tooth root bending is the most critical and could lead to catastrophic failures. In this regard, [...] Read more.
Gears are one of the the most widespread mechanical components and their design is supported by standard calculation methods. Among all the possible failure modes of gears, tooth root bending is the most critical and could lead to catastrophic failures. In this regard, different surface treatments could be exploited to improve the gear strength. Among them, shot peening is the most common. The aim of this study is to evaluate the effectiveness of shot peening on improving the tooth root bending resistance. This is achieved by exploiting the Finite Element Method (FEM) in combination with advanced multiaxial fatigue criterion based on the critical plane concept. A standard Single Tooth Bending Fatigue test was reproduced numerically via FEM. Beside the wrought gears, shot peened ones were also simulated. The state of stress induced by the shot peening was obtained numerically by simulating the surface treatment itself with non-linear dynamic analyses. The results have shown quantitatively how the residual stresses promote an improvement in the resistance and how the local hardening could lead to different early paths of nucleation and propagation of cracks on the tooth fillet. Full article
Show Figures

Figure 1

Article
Modeling of Multiple Fatigue Cracks for the Aircraft Wing Corner Box Based on Non-ordinary State-based Peridynamics
Metals 2022, 12(8), 1286; https://doi.org/10.3390/met12081286 - 30 Jul 2022
Viewed by 1118
Abstract
In the current research, we propose a novel non-ordinary state-based peridynamics (PD) fatigue model for multiple cracks’ initiation and growth under tension–tension fatigue load. In each loading cycle, the fatigue loading is redistributed throughout the peridynamic solid body, leading to progressive fatigue damage [...] Read more.
In the current research, we propose a novel non-ordinary state-based peridynamics (PD) fatigue model for multiple cracks’ initiation and growth under tension–tension fatigue load. In each loading cycle, the fatigue loading is redistributed throughout the peridynamic solid body, leading to progressive fatigue damage formation and expansion in an autonomous fashion. The proposed fatigue model parameters are first verified by a 3D numerical solution, and then, the novel model is used to depict the widespread fatigue damage evolution of the aircraft wing corner box. The modified constitutive damage model has been implemented into the peridynamic framework. Furthermore, the criteria and processes from multiple initiations to propagation are discussed in detail. It was found that the computational results obtained from the PD fatigue model were consistent with those from the test data. The angular errors of multiple cracks are within 2.66% and the number of cycles errors are within 15%. A comparison of test data and computational results indicates that the fatigue model can successfully capture multiple crack formations and propagation, and other behaviors of aluminum alloy material. Full article
Show Figures

Figure 1

Article
Fatigue Crack Arrest Induced by Localized Compressive Deformation
Materials 2022, 15(13), 4553; https://doi.org/10.3390/ma15134553 - 28 Jun 2022
Cited by 1 | Viewed by 952
Abstract
The localized compressive deformation (LCD) effect generated by an indentation process at the crack tip on the fatigue crack growth of the 7075-T651 aluminum alloy is reported. Eccentrically loaded single-edge crack tension specimens (ESE(T)) were pre-cracked at a crack length of about 20 [...] Read more.
The localized compressive deformation (LCD) effect generated by an indentation process at the crack tip on the fatigue crack growth of the 7075-T651 aluminum alloy is reported. Eccentrically loaded single-edge crack tension specimens (ESE(T)) were pre-cracked at a crack length of about 20 mm by applying a constant amplitude fatigue loading. Subsequently, the LCD process was performed by using a semi-spherical indenter with a radius of 16 mm to compress the crack tip zone at different forces (5.0, 7.0, 12.5, 13.5, 15.5 kN), applied on the opposite surfaces of the specimens. The fatigue cracking process was continued on the compressed samples until an overall crack length of about 30 mm was obtained. The compressive load and the number of delayed cycles is discussed in terms of crack length and crack tip opening displacement (CTOD). A direct relationship between the compressive force induced by the LCD process and the delay of the crack propagation due to the crack arrest was observed. This effect became evident at a compressive force of 5.0 kN, where the crack propagation was arrested for about 9000 cycles in comparison with the non-LCD sample. However, when the force increased, the crack arrest also increased. The crack was considered to be completely arrested at a compressive load of 15.5 kN, since the crack did not grow after the application of more than 3 × 106 cycles. Full article
Show Figures

Figure 1

Article
Fatigue Factor Assessment and Life Prediction of Concrete Based on Bayesian Regularized BP Neural Network
Materials 2022, 15(13), 4491; https://doi.org/10.3390/ma15134491 - 25 Jun 2022
Cited by 3 | Viewed by 1103
Abstract
Concrete tensile properties usually govern the fatigue cracking of structural components such as bridge decks under repetitive loading. A fatigue life reliability analysis of commonly used ordinary cement concrete is desirable. As fatigue is affected by many interlinked factors whose effect is nonlinear, [...] Read more.
Concrete tensile properties usually govern the fatigue cracking of structural components such as bridge decks under repetitive loading. A fatigue life reliability analysis of commonly used ordinary cement concrete is desirable. As fatigue is affected by many interlinked factors whose effect is nonlinear, a unanimous consensus on the quantitative measurement of these factors has not yet been achieved. Benefiting from its unique self-learning ability and strong generalization capability, the Bayesian regularized backpropagation neural network (BR-BPNN) was proposed to predict concrete behavior in tensile fatigue. A total of 432 effective data points were collected from the literature, and an optimal model was determined with various combinations of network parameters. The average relative impact value (ARIV) was constructed to evaluate the correlation between fatigue life and its influencing parameters (maximum stress level Smax, stress ratio R, static strength f, failure probability P). ARIV results were compared with other factor assessment methods (weight equation and multiple linear regression analyses). Using BR-BPNN, S-N curves were obtained for the combinations of R = 0.1, 0.2, 0.5; f = 5, 6, 7 MPa; P = 5%, 50%, 95%. The tensile fatigue results under different testing conditions were finally compared for compatibility. It was concluded that Smax had the most significant negative effect on fatigue life; and the degree of influence of R, P, and f, which positively correlated with fatigue life, decreased successively. ARIV was confirmed as a feasible way to analyze the importance of parameters and could be recommended for future applications. It was found that the predicted logarithmic fatigue life agreed well with the test results and conventional data fitting curves, indicating the reliability of the BR-BPNN model in predicting concrete tensile fatigue behavior. These probabilistic fatigue curves could provide insights into fatigue test program design and fatigue evaluation. Since the overall correlation coefficient between the prediction and experimental results reached 0.99, the experimental results of plain concrete under flexural tension, axial tension, and splitting tension could be combined in future analyses. Besides utilizing the valuable fatigue test data available in the literature, this work provided evidence of the successful application of BR-BPNN on concrete fatigue prediction. Although a more accurate and comprehensive method was derived in the current study, caution should still be exercised when utilizing this method. Full article
Show Figures

Figure 1

Article
On the Influence of the Initial Shear Damage to the Cyclic Deformation and Damage Mechanism
Metals 2022, 12(7), 1072; https://doi.org/10.3390/met12071072 - 23 Jun 2022
Cited by 1 | Viewed by 1139
Abstract
The accuracy and precision of lifetime predictions for cyclically loaded technical components are still lacking. One of the main reasons for the discrepancy between the calculated life time and experimental results is that it is not yet possible to create a model capable [...] Read more.
The accuracy and precision of lifetime predictions for cyclically loaded technical components are still lacking. One of the main reasons for the discrepancy between the calculated life time and experimental results is that it is not yet possible to create a model capable of describing the microstructural damage process that occurs in the tested material and to subsequently incorporate this model into the calculation. All of the presently available research results recognize that the growth of microcracks is significantly influenced by the microstructure of the material. In order to take into account the influence of the microstructure on the damage process, research on the very early fatigue damage is carried out. The results are obtained from tension and torsion fatigue testing. For this purpose, the surfaces of the tested specimens are carefully observed to discover and analyze microcracks, which are classified according to their orientation. Moreover, the mechanisms of crack initiation and propagation are major points of interest. Through a mix of mechanical and metallurgical points of view, calculations and multi-level FEA modeling are carried out to gain a better understanding of the properties of the phases. The simulation is based on continuum mechanics, which considers the positions and mechanical metallurgy, which account for each constituent character’s failure laws. It is concluded that both the experimental and computational approaches conform, showing that such an approach is indeed a necessity and should become a trend in the near future. Statistically, microcracks under tension modes are highest at 45° (approximately 30%), while under torsion they are highest at 0° (approximately 20%) with respect to the sample orientation. The influence of the microstructure is explained via the finite element analysis. Full article
Show Figures

Figure 1

Article
Detecting Broken Strands in Transmission Lines Based on Pulsed Eddy Current
Metals 2022, 12(6), 1014; https://doi.org/10.3390/met12061014 - 15 Jun 2022
Cited by 2 | Viewed by 1374
Abstract
High-voltage transmission lines are the main facilities for power transmission, and they are mainly composed of aluminum conductor steel-reinforced (ACSR). Over long-term outdoor use, overhead transmission lines will encounter lightning strikes, chemical pollutant corrosion, deicing, wind vibration, and other external forces. This often [...] Read more.
High-voltage transmission lines are the main facilities for power transmission, and they are mainly composed of aluminum conductor steel-reinforced (ACSR). Over long-term outdoor use, overhead transmission lines will encounter lightning strikes, chemical pollutant corrosion, deicing, wind vibration, and other external forces. This often results in a series of potential failures, such as breakage, for the strands. In order to ensure the safe operation of the power grid and avoid fatal accidents, such as line breaks, it is necessary to identify and repair line faults. Among them, the main basis for the regular detection and replacement of high-voltage transmission lines is whether a broken strand defect appears. In this paper, a type of pulsed eddy current (PEC) sensor is developed to detect the broken strand defect in transmission lines. The simulation and experimental results showed that the designed PEC sensor could effectively and accurately identify the fault. Full article
Show Figures

Figure 1

Article
Experimental Investigation of Shale Tensile Failure under Thermally Conditioned Linear Fracturing Fluid (LFF) System and Reservoir Temperature Controlled Conditions
Polymers 2022, 14(12), 2417; https://doi.org/10.3390/polym14122417 - 14 Jun 2022
Cited by 1 | Viewed by 1323
Abstract
Linear fracturing fluid (LFF) provides viscosity driven benefits of proppant suspensibility and fluid loss control, and with the use of a breaker agent, flowback recovery can be greatly enhanced. Shale tensile strength is critical in the prediction of fracture initiation and propagation, but [...] Read more.
Linear fracturing fluid (LFF) provides viscosity driven benefits of proppant suspensibility and fluid loss control, and with the use of a breaker agent, flowback recovery can be greatly enhanced. Shale tensile strength is critical in the prediction of fracture initiation and propagation, but its behavior under the interaction with LFF at reservoir temperature conditions remains poorly understood. This necessitated an in-depth investigation into the tensile strengths of Eagle Ford and Wolfcamp shales under thermally conditioned LFF and reservoir temperature controlled conditions. Brazilian Indirect Tensile Strength (BITS) testing was carried out for the quantitative evaluation of shale tensile strength, followed by extensive failure pattern classifications and surface crack length analysis. The thermally conditioned LFF saturation of shale samples led to average tensile strength (ATS) increases ranging from 26.33–51.33% for Wolfcamp. Then, for the Eagle Ford samples, ATS increases of 3.94 and 6.79% and decreases of 3.13 and 15.35% were recorded. The exposure of the samples to the temperature condition of 90 °C resulted in ATS increases of 24.46 and 33.78% for Eagle Ford and Wolfcamp shales, respectively. Then, for samples exposed to 220 °C, ATS decreases of 6.11 and 5.32% were respectively recorded for Eagle Ford and Wolfcamp shales. The experimental results of this research will facilitate models’ development towards tensile strength predictions and failure pattern analysis and quantifications in the LFF driven hydraulic fracturing of shale gas reservoirs. Full article
Show Figures

Graphical abstract

Article
Environmental Stress Cracking of High-Density Polyethylene Applying Linear Elastic Fracture Mechanics
Polymers 2022, 14(12), 2415; https://doi.org/10.3390/polym14122415 - 14 Jun 2022
Cited by 6 | Viewed by 3045
Abstract
The crack propagation rate of environmental stress cracking was studied on high-density polyethylene compact tension specimens under static loading. Selected environmental liquids are distilled water, 2 wt% aqueous Arkopal N100 solution, and two model liquid mixtures, one based on solvents and one on [...] Read more.
The crack propagation rate of environmental stress cracking was studied on high-density polyethylene compact tension specimens under static loading. Selected environmental liquids are distilled water, 2 wt% aqueous Arkopal N100 solution, and two model liquid mixtures, one based on solvents and one on detergents, representing stress cracking test liquids for commercial crop protection products. The different surface tensions and solubilities, which affect the energetic facilitation of void nucleation and craze development, are studied. Crack growth in surface-active media is strongly accelerated as the solvents induce plasticization, followed by strong blunting significantly retarding both crack initiation and crack propagation. The crack propagation rate for static load as a function of the stress intensity factor within all environments is found to follow the Paris–Erdogan law. Scanning electron micrographs of the fracture surface highlight more pronounced structures with both extensive degrees of plasticization and reduced crack propagation rate, addressing the distinct creep behavior of fibrils. Additionally, the limitations of linear elastic fracture mechanisms for visco-elastic polymers exposed to environmental liquids are discussed. Full article
Show Figures

Figure 1

Article
Oxidation Damage Evolution in Low-Cycle Fatigue Life of Niobium-Stabilized Austenitic Stainless Steel
Materials 2022, 15(12), 4073; https://doi.org/10.3390/ma15124073 - 08 Jun 2022
Cited by 1 | Viewed by 1233
Abstract
Austenitic stainless steel is a vital material in various industries, with excellent heat and corrosion resistance, and is widely used in high-temperature environments as a component for internal combustion engines of transportation vehicles or power plant piping. These components or structures are required [...] Read more.
Austenitic stainless steel is a vital material in various industries, with excellent heat and corrosion resistance, and is widely used in high-temperature environments as a component for internal combustion engines of transportation vehicles or power plant piping. These components or structures are required to be durable against severe load conditions and oxidation damage in high-temperature environments during their service life. In this regard, in particular, oxidation damage and fatigue life are very important influencing factors, while existing studies have focused on materials and fracture behavior. In order to ensure the fatigue life of austenitic stainless steel, therefore, it is necessary to understand the characteristics of the fracture process with microstructural change including oxidation damage according to the temperature condition. In this work, low-cycle fatigue tests were performed at various temperatures to determine the oxidation damage together with the fatigue life of austenitic stainless steel containing niobium. The characteristics of oxidation damage were analyzed through microstructure observations including scanning electron microscope, energy-dispersive X-ray spectroscopy, and the X-ray diffraction patterns. In addition, a unified low-cycle fatigue life model coupled with the fracture mechanism-based lifetime and the Neu-Sehitoglu model for considering the influence of damage by oxidation was proposed. After the low-cycle fatigue tests at temperatures of 200–800 °C and strain amplitudes of 0.4% and 0.5%, the accuracy of the proposed model was verified by comparing the test results with the predicted fatigue life, and the validity by using the oxidation damage parameters for Mar-M247 was confirmed through sensitivity analysis of the parameters applied in the oxidation damage model. As a result, the average thickness of the oxide layer and the penetration length of the oxide intrusion were predicted with a mean error range of 14.7% and 13%, respectively, and the low-cycle fatigue life was predicted with a ±2 factor accuracy at the measurement temperatures under all experimental conditions. Full article
Show Figures

Figure 1

Article
The Influence of Heat Input on the Formation of Fatigue Cracks for High-Strength Steels Resistant to Low Temperatures
Metals 2022, 12(6), 929; https://doi.org/10.3390/met12060929 - 28 May 2022
Cited by 2 | Viewed by 983
Abstract
Welding is one of the most widely used metal joining techniques. However, improper technique and handling may lead to weld defects. Cracks that occur during the exploitation of the welded joints in places of increased stress concentration are called fatigue cracks. In our [...] Read more.
Welding is one of the most widely used metal joining techniques. However, improper technique and handling may lead to weld defects. Cracks that occur during the exploitation of the welded joints in places of increased stress concentration are called fatigue cracks. In our previous study, we suggested that lowering the stress concentration in the zone of the weld face may prevent surface cracks in butt-welded joints. Here, we further examined how welding heat input and external factors can be controlled to minimize the occurrence of fatigue cracks on welded joints. The fatigue cracks analyzed in this study occurred during the exploitation and are a consequence of the increased stress concentration at the toe of the weld. We performed twenty-four welding experiments comprising the following four welding conditions: torch angle, number of cover passes, length of electrode stick-out, and shielding gas (two environments were used). Stress concentration factors and heat input were determined via experimental data. The results suggested that higher heat input is associated with a lower risk of developing fatigue cracks. Thus, we concluded that fatigue cracks could be minimized by increasing the arc voltage and current while also reducing the welding speed. Full article
Show Figures

Figure 1

Article
Study on the Influence of Selected Fabrics and Stitching on the Strength of Upholstery Covers
Materials 2022, 15(11), 3854; https://doi.org/10.3390/ma15113854 - 28 May 2022
Cited by 1 | Viewed by 1203
Abstract
So far, no coherent and comprehensive method has been elaborated allowing investigation of tensile strength of upholstery seams dedicated to upholstered furniture. Producers of this type of furniture are interested in the assessment of the quality of upholstery material joints, which seems to [...] Read more.
So far, no coherent and comprehensive method has been elaborated allowing investigation of tensile strength of upholstery seams dedicated to upholstered furniture. Producers of this type of furniture are interested in the assessment of the quality of upholstery material joints, which seems to be particularly important for ensuring the appropriate quality of products. Therefore, the objective of this research was to investigate the influence of the type of material used and the direction of the fabric cut on the strength of upholstery covers. Static tensile testing of selected upholstery fabric samples was performed, and an attempt was made to identify the most optimal fabric–seam joints. It was stated as a conclusion that the fabric tensile strength was the highest for Secret 10 fabric. In addition, the strength of upholstery covers is not influenced by the direction of the fabric die cut. For each fabric, a different configuration is preferable, as shown by results (Power 13: A-B, Secret 10: B-B, Soft 10: A-A). The method, implemented for upholstered furniture, allows for an objective assessment of the strength of upholstery covers and the selection of the most advantageous fabric–seam combination for future furniture designs. Full article
Show Figures

Figure 1

Article
Experiment and Numerical Simulation of Damage Progression in Transparent Sandwich Structure under Impact Load
Materials 2022, 15(11), 3809; https://doi.org/10.3390/ma15113809 - 27 May 2022
Cited by 2 | Viewed by 1033
Abstract
Crack initiation and propagation is a long-standing difficulty in solid mechanics, especially for elastic brittle materials. A new type of transparent sandwich structure, with a magnesium–aluminum spinel ceramic glass as the outer structure, was proposed in this paper. Its dynamic response was studied [...] Read more.
Crack initiation and propagation is a long-standing difficulty in solid mechanics, especially for elastic brittle materials. A new type of transparent sandwich structure, with a magnesium–aluminum spinel ceramic glass as the outer structure, was proposed in this paper. Its dynamic response was studied by high-speed impact experiments and numerical simulations of peridynamics under impact loads, simultaneously. In the experiments, a light gas cannon was used to load the projectile to 180 m/s, and the front impacted the transparent sandwich structure. In the numerical simulations, the discontinuous Galerkin peridynamics method was adopted to investigate the dynamic response of the transparent sandwich structure. We found that both the impact experiments and the numerical simulations could reproduce the crack propagation process of the transparent sandwich structure. The radial cracks and circumferential cracks of the ceramic glass layer and the inorganic glass layer were easy to capture. Compared with the experiments, the numerical simulations could easily observe the damage failure of every layer and the splashing of specific fragments of the transparent sandwich structure. The ceramic glass layer and the inorganic glass layer absorbed the most energy in the impact process, which is an important manifestation of the impact resistance of the transparent sandwich structure. Full article
Show Figures

Figure 1

Article
Reinforcement Design of the Support Frame of a Petrochemical Heater
Appl. Sci. 2022, 12(10), 5107; https://doi.org/10.3390/app12105107 - 19 May 2022
Cited by 1 | Viewed by 821
Abstract
In this paper, we investigated the operating security of the support frame of a petrochemical heater under the action of a strong wind. When the fatigue limit was exceeded, the support frame was damaged. We monitored the heater before reinforcement and then applied [...] Read more.
In this paper, we investigated the operating security of the support frame of a petrochemical heater under the action of a strong wind. When the fatigue limit was exceeded, the support frame was damaged. We monitored the heater before reinforcement and then applied the finite element method to analyze and compare nine different kinds of reinforcement methods for the support frame. From the results of the finite element analysis, fatigue failure of the support frame before reinforcement occurred at locations where the computed stresses from the finite element analysis were large, thus partially justifying the adequacies of the present analysis methods and results. Among the nine reinforcement methods, we suggest case 9 to reinforce a support frame so that its operating security under the action of a strong wind can be improved. At the end of this paper, several future studies are suggested, including verification of the reinforcement for the support frame and the establishment of the system for automatic stress monitoring and analysis. Full article
Show Figures

Figure 1

Article
The Mechanical Behavior of a Screwless Morse Taper Implant–Abutment Connection: An In Vitro Study
Materials 2022, 15(9), 3381; https://doi.org/10.3390/ma15093381 - 08 May 2022
Cited by 2 | Viewed by 1431
Abstract
The use of screwless Morse taper implant–abutment connections (IAC) might facilitate the clinician’s work by eliminating the mechanical complications associated with the retention screw. The aim of this study is to evaluate the effect of artificial chewing on the long-term stability of screwless [...] Read more.
The use of screwless Morse taper implant–abutment connections (IAC) might facilitate the clinician’s work by eliminating the mechanical complications associated with the retention screw. The aim of this study is to evaluate the effect of artificial chewing on the long-term stability of screwless Morse taper IACs. Thirty-two implant abutments restored with an upper central incisor zirconia crown were used and divided into four groups according to the implant–abutment assembling manner (C1,H: screw retained (20 Ncm); C2: tapped; or C3: torqued (20 Ncm; the screws were removed before the dynamic loading)). All specimens were subjected to a cyclic loading (98 N) for 10 million chewing cycles. The survived samples were exposed to a pull-off force until failure/disassembling of the connection. All the samples revealed a 100% survival. Regarding the pull-off test, the screw-retained internal hexagonal IAC revealed significantly higher resistance to failure/disassembling (769.6 N) than screwless conical IACs (171.6 N–246 N) (p < 0.0001). The retention forces in the Morse taper groups were not significantly different (p > 0.05). The screw-retained hexagonal IAC showed the highest retention stability. The screw preload/retention in the conical IAC was lost over time in the group where the screws were kept in place during loading. Nevertheless, the screwless Morse taper IACs were stable for an extended service time and might represent a valid form of treatment for single-tooth replacement. Full article
Show Figures

Figure 1

Article
Contact Characteristics and Tribological Properties of the Weaving Surface of Mn-Cu and Fe-Zn Damping Alloys
Materials 2022, 15(9), 3303; https://doi.org/10.3390/ma15093303 - 05 May 2022
Viewed by 1084
Abstract
In this paper, laser texturing is performed on the surface of Mn-Cu and Fe-Zn damping alloys and the tribological properties of the samples with various surface weaves under dry-sliding conditions are investigated. The results show that the surface weave parameters affect the size [...] Read more.
In this paper, laser texturing is performed on the surface of Mn-Cu and Fe-Zn damping alloys and the tribological properties of the samples with various surface weaves under dry-sliding conditions are investigated. The results show that the surface weave parameters affect the size of the contact surface and change the number of micro-convex bodies at the contact interface. This leads to changes in the tangential damping of the contact and further affects the magnitude of the friction coefficient. Additionally, the damping properties significantly affect the wear mechanism and make it more prone to adhesive wear. Full article
Show Figures

Figure 1

Article
Multi-Scale Approach of HCF Taking into Account Plasticity and Damage: Application to LPBF Materials
Appl. Mech. 2022, 3(2), 544-559; https://doi.org/10.3390/applmech3020032 - 29 Apr 2022
Viewed by 1362
Abstract
Laser additive manufacturing enables economical production of complex lightweight structures. To realize the potential benefits of additive manufacturing technology in industrial applications, the fatigue performance of parts additively manufactured materials must be modelized. The aim of this paper is to present a new [...] Read more.
Laser additive manufacturing enables economical production of complex lightweight structures. To realize the potential benefits of additive manufacturing technology in industrial applications, the fatigue performance of parts additively manufactured materials must be modelized. The aim of this paper is to present a new modeling approach combining plasticity and damage, and appropriate for as-built Laser-Powder Bed Fusion (LPBF) structures. The model presented is an extension of the Dang Van criterion, including damage, defined as porosity in the case of LPBF. Attention is focused on the integration of damage in a fatigue criterion using the concept of elastic shakedown. Finally, the case of 316L will illustrate the results of the model by fatigue tests with deterministic defects. Full article
Show Figures

Figure 1

Article
Prediction of Fracture Behavior of 6061 Aluminum Alloy Based on GTN Model
Materials 2022, 15(9), 3212; https://doi.org/10.3390/ma15093212 - 29 Apr 2022
Cited by 3 | Viewed by 1387
Abstract
To determine the Gurson-Tvergaard-Needleman (GTN)damage model parameters of 6061 aluminum alloy after secondary heat treatment, the uniaxial tensile test was carried out on the aluminum alloy circular arc specimen, and the mechanical properties parameters and the load-displacement curve of aluminum alloy tube were [...] Read more.
To determine the Gurson-Tvergaard-Needleman (GTN)damage model parameters of 6061 aluminum alloy after secondary heat treatment, the uniaxial tensile test was carried out on the aluminum alloy circular arc specimen, and the mechanical properties parameters and the load-displacement curve of aluminum alloy tube were obtained. With the help of the finite element reverse method, scanning electron microscope and a orthogonal test method, the GTN damage model parameters (f0, fN, fC, and fF) were calibrated, and their values were 0.004535, 0.04, 0.1, and 0.2135, respectively. Then the shear specimen and notch specimen were designed to verify the damage model, the results show that the obtained GTN damage model parameters can effectively predict the fracture failure of 6061 aluminum alloy after secondary heat treatment during the tensile process. Full article
Show Figures

Figure 1

Article
Random Vibration Fatigue Analysis Using a Nonlinear Cumulative Damage Model
Appl. Sci. 2022, 12(9), 4310; https://doi.org/10.3390/app12094310 - 24 Apr 2022
Cited by 2 | Viewed by 1410
Abstract
The paper’s content allowed us to determine the fatigue life of a component that is being subjected to a random vibration environment. Its estimation is performed in the frequency domain with loading frequencies being closer to the system’s natural frequency. From loads’ amplitude [...] Read more.
The paper’s content allowed us to determine the fatigue life of a component that is being subjected to a random vibration environment. Its estimation is performed in the frequency domain with loading frequencies being closer to the system’s natural frequency. From loads’ amplitude and their interaction effect, we derive a nonlinear damage model to cumulate the generated fatigue damage. The exponent value of 0.4 from the Manson–Halford curve damage model was replaced by a vibration bending stress relation that considers the effect and interaction of loads. The analysis is performed from a progressive accelerated vibration spectrum to predict the fatigue life estimation. From this accelerated scenario, the accelerated coefficients and cumulated damage are both determined. The proposed nonlinear model is based on the following facts: (1) vibration and bending stress σvb values are obtained from the response acceleration of power spectral density (PSD) applied and (2) the model can be applied to any mechanical component analysis where the corresponding acceleration responses Ares and the dynamic load factor σdynamic  values are known. The steps to determine the expected fatigue damage accumulation D by using the curve damage are given. Full article
Show Figures

Figure 1

Article
Performance Evaluation of Sandwich Structures Printed by Vat Photopolymerization
Polymers 2022, 14(8), 1513; https://doi.org/10.3390/polym14081513 - 08 Apr 2022
Cited by 6 | Viewed by 2005
Abstract
Additive manufacturing such as vat photopolymerization allows to fabricate intricate geometric structures than conventional manufacturing techniques. However, the manufacturing of lightweight sandwich structures with integrated core and facesheet is rarely fabricated using this process. In this study, photoactivatable liquid resin was used to [...] Read more.
Additive manufacturing such as vat photopolymerization allows to fabricate intricate geometric structures than conventional manufacturing techniques. However, the manufacturing of lightweight sandwich structures with integrated core and facesheet is rarely fabricated using this process. In this study, photoactivatable liquid resin was used to fabricate sandwich structures with various intricate core topologies including the honeycomb, re-entrant honeycomb, diamond, and square by a vat photopolymerization technique. Uniaxial compression tests were performed to investigate the compressive modulus and strength of these lightweight structures. Sandwich cores with the diamond structure exhibited superior compressive and weight-saving properties whereas the re-entrant structures showed high energy absorption capacity. The fractured regions of the cellular cores were visualized by scanning electron microscopy. Elastoplastic finite element analyses showed the stress distribution of the sandwich structures under compressive loading, which are found to be in good agreement with the experimental results. Dynamic mechanical analysis was performed to compare the behavior of these structures under varying temperatures. All the sandwich structures exhibited more stable thermomechanical properties than the solid materials at elevated temperatures. The findings of this study offer insights into the superior structural and thermal properties of sandwich structures printed by a vat photopolymerization technique, which can benefit a wide range of engineering applications. Full article
Show Figures

Figure 1

Article
Load-Carrying Capacity of Double-Shear Bolted Connections with Slotted-In Steel Plates in Squared and Round Timber Based on the Experimental Testing, European Yield Model, and Linear Elastic Fracture Mechanics
Materials 2022, 15(8), 2720; https://doi.org/10.3390/ma15082720 - 07 Apr 2022
Cited by 8 | Viewed by 1953
Abstract
Nowadays, the use of timber as a building material is gaining more prominence. When designing timber structures, it is necessary to pay increased attention to the design of their connections. The commonly used connections are dowel-type connections, which are often used in combination [...] Read more.
Nowadays, the use of timber as a building material is gaining more prominence. When designing timber structures, it is necessary to pay increased attention to the design of their connections. The commonly used connections are dowel-type connections, which are often used in combination with steel plates slotted into cut-outs in timber members. The presented paper deals with the behavior of double-shear bolted connections of squared timber and round timber with slotted-in steel plates. Several variants of connections with different distances between the fastener and the loaded end were selected for the experimental testing. A total of six types of test specimens were made from spruce timber, for which their selected physical properties were determined and evaluated before the experimental testing. Test specimens of bolted connections were first tested in tension parallel to the grain until failure under quasi-static loading. The connections were broken by splitting. Ductile failure preceded brittle failure. The actual load-carrying capacities were lowest for the lowest end distance. The load-carrying capacities for the middle and the longest end distances were comparable. The results of the experiments were then used for comparison with calculation procedures according to the standard for the design of timber structures and with calculations according to the theory of linear elastic fracture mechanics. The experiments and the analytical models were supported by a simple numerical analysis based on the finite element method. Full article
Show Figures

Figure 1

Article
Evaluating the Residual Stress and Its Effect on the Quasi-Static Stress in Polyethylene Pipes
Polymers 2022, 14(7), 1458; https://doi.org/10.3390/polym14071458 - 03 Apr 2022
Cited by 2 | Viewed by 1637
Abstract
Residual stress is generated during the production process. It can significantly affect the mechanical performance of pressurized polymer pipes. In this paper, six polyethylene (PE) pipes, including three high-density PEs (HDPE) and three medium-density PEs (MDPE) provided by different suppliers, were tested using [...] Read more.
Residual stress is generated during the production process. It can significantly affect the mechanical performance of pressurized polymer pipes. In this paper, six polyethylene (PE) pipes, including three high-density PEs (HDPE) and three medium-density PEs (MDPE) provided by different suppliers, were tested using a one-slit-ring method to measure the residual stress distribution along the hoop direction. Finite element (FE) simulation and mechanical testing were also employed in an iteration process to obtain the mechanical parameters of the six PE pipes. For the same PE pipe code from different suppliers, the results show that the magnitude of the residual hoop stress can be very different, resulting in different mechanical behaviors. In addition, the results are proposed to explain the scenario that was reported previously, i.e., the different critical quasi-static stress (the time-independent stress) levels of the PE pipes with the same pipe code. Since the quasi-static stress is expected to dominate the long-term behavior of the PE pipes, it is of great importance to carefully consider the effect of the residual stress on the determination of the quasi-static stress. Full article
Show Figures

Graphical abstract

Article
Effect of Temperatures and Moisture Content on the Fracture Properties of Engineered Cementitious Composites (ECC)
Materials 2022, 15(7), 2604; https://doi.org/10.3390/ma15072604 - 01 Apr 2022
Cited by 2 | Viewed by 1303
Abstract
This research will help to improve our understanding of the fracture properties of ECC at low temperatures (long-term low temperatures, freeze–thaw) and evaluate the safety properties of ECC under low-temperature conditions. Three levels of saturation (saturated, semi-saturated, and dry), four target temperatures (20, [...] Read more.
This research will help to improve our understanding of the fracture properties of ECC at low temperatures (long-term low temperatures, freeze–thaw) and evaluate the safety properties of ECC under low-temperature conditions. Three levels of saturation (saturated, semi-saturated, and dry), four target temperatures (20, 0, −20, and −60 °C), and the effect of the coupled of the two on the mode I fracture properties of ECC were investigated. Then, we compared and analyzed the fracture properties of ECC loaded at 20 and −20 °C, after different freeze–thaw cycles (25, 50, 100 cycles), which were compared with saturated specimens without freeze–thaw at the four target temperatures to analyze the differences in low-temperature and freeze–thaw failure mechanisms. Temperatures and saturation have a significant effect on the fracture properties. Low temperatures and freeze–thaw treatments both decreased the nominal fracture energy of ECC. Distinct differences in matrix and fiber-matrix interface damage mechanisms have been discovered. Low temperatures treatment transforms ECC from a ductile to a brittle fracture mode. However, even after 100 freeze–thaw cycles, it remains ductile fractured. This study complements the deficiencies of ECC in low-temperature theoretical and experimental applications, and it sets the stage for a broad range of ECC applications. Full article
Show Figures

Figure 1

Article
Experimental and Statistical Study of the Fracture Mechanism of Sn96.5Ag3Cu0.5 Solder Joints via Ball Shear Test
Materials 2022, 15(7), 2455; https://doi.org/10.3390/ma15072455 - 26 Mar 2022
Cited by 2 | Viewed by 1432
Abstract
Ball shear testing is an efficient approach to investigate the mechanical reliability of solder joints at the structural level. In the present study, a series of low-speed ball shear tests were conducted to study the deformation and fracture characteristics of Sn96.5Ag3Cu0.5 solder joints [...] Read more.
Ball shear testing is an efficient approach to investigate the mechanical reliability of solder joints at the structural level. In the present study, a series of low-speed ball shear tests were conducted to study the deformation and fracture characteristics of Sn96.5Ag3Cu0.5 solder joints at continuous speeds from 10 μm/s to 200 μm/s. In order to account for randomness, the quantity of tests was repeated for each shear rate. The relationship between mechanical properties and shear speeds was calculated in detail via effective statistical analysis. In addition, by utilizing SEM imaging and ingredient analysis the interfacial effect and fracture mechanism of solder balls were obtained and their fracture mode classified into two types, viz., bulk fracture and interface fracture. Furthermore, by means of statistical analysis and approximate calculation it was proven that bulk fracture balls have greater adhesive powers and reliability compared with interface fracture balls. Full article
Show Figures

Figure 1

Article
The Influence of Service Temperature and Thickness on the Tensile Properties of Thin T2 Copper Sheets
Materials 2022, 15(7), 2341; https://doi.org/10.3390/ma15072341 - 22 Mar 2022
Viewed by 1221
Abstract
Thin T2 copper sheets with nine different thicknesses were employed in uniaxial tensile tests to investigate the influence of service temperature and thickness on their tensile properties. A total of 33 groups of tensile samples were separately tested at 20 °C, 100 °C, [...] Read more.
Thin T2 copper sheets with nine different thicknesses were employed in uniaxial tensile tests to investigate the influence of service temperature and thickness on their tensile properties. A total of 33 groups of tensile samples were separately tested at 20 °C, 100 °C, 150 °C, 200 °C, and 250 °C to obtain their elongation and their tensile and yield strengths. The change laws of the tensile properties of the investigated T2 copper were analyzed using different fitting functions. The main results show that both sheet thickness and temperature have an important influence on the tensile properties of T2 copper. As the sheet thickness increased, the tensile and yield strengths of the tested materials first increased rapidly, then decreased sharply, and finally stabilized. As the temperature increased, the tensile strength increased linearly while the yield strength decreased linearly. The relationships between the elongation and the sheet thickness and temperature were exponential and polynomial functions, respectively. TtRm, TtRel, and Ttδ empirical formulas were proposed and established to predict the tensile properties of the investigated T2 copper sheet, and the predictive models exhibited solid accuracy. Full article
Show Figures

Figure 1

Article
Research on Fatigue Life Prediction Method of Key Component of Turning Mechanism Based on Improved TCD
Metals 2022, 12(3), 506; https://doi.org/10.3390/met12030506 - 16 Mar 2022
Cited by 1 | Viewed by 1380
Abstract
The main objective of this paper is to accurately obtain fatigue life prediction for the key components of a turning mechanism using the improved theory of critical distances (TCD). The irregularly shaped rotating arm is the central stressed part of the turning mechanism, [...] Read more.
The main objective of this paper is to accurately obtain fatigue life prediction for the key components of a turning mechanism using the improved theory of critical distances (TCD). The irregularly shaped rotating arm is the central stressed part of the turning mechanism, which contains notches. It has been found that TCD achieves good results in predicting the fatigue strength or fatigue life of notched components with regular shape but is less commonly used for notched components with irregular shape. Therefore, TCD was improved and applied broadly to predict the fatigue life of an irregularly shaped rotating arm. Firstly, the notch depth and structure net width parameters were introduced into the low-order and low-accuracy classical TCD function to obtain a novel stress function with high computational efficiency and high accuracy, whereas the stress concentration factor was introduced to modify the length of critical distance. Secondly, the improved TCD was used to predict the fatigue strength of notched components with regular shape, and its accuracy was demonstrated by a fatigue experiment. Finally, the improved TCD was applied to predict the fatigue life of an irregularly shaped rotating arm. The deviation between prediction results and experimental results is less than 18%. The results demonstrate that the improved TCD can be applied effectively and accurately to predict the fatigue life of key components of turning mechanisms. Full article
Show Figures

Figure 1

Article
Simulation Study on Coil of Biomass Carbonization Kettle
Materials 2022, 15(6), 2152; https://doi.org/10.3390/ma15062152 - 15 Mar 2022
Viewed by 1321
Abstract
The damage and failure of coiling tube in biomass carbonization kettle due to the long-term operation was discussed. According to the actual structure of the carbonization kettle, a three-dimensional model was established, and the temperature field was simulated based on the given design [...] Read more.
The damage and failure of coiling tube in biomass carbonization kettle due to the long-term operation was discussed. According to the actual structure of the carbonization kettle, a three-dimensional model was established, and the temperature field was simulated based on the given design parameters. The results show that the temperature distribution is stable during 440~450 °C, and the relative error with the actual temperature 449.2 °C, which is about 0.78%. The tensile specimens made of 20G steel, the common material of the coil, was placed in a tubular furnace, and the real heat treatment conditions were simulated with mixed gas and water vapor. After that, the uniaxial tensile test was carried out on MTS testing machine. The obtained physical parameters such as yield strength and elastic modulus were substituted into the numerical temperature field model to obtain the stress field model. The simulation results indicate that during the initial ventilation of the equipment, the coil compressed with the maximum stress of 8.3 MPa at the bending point of the second and fourth laps and partial failure was prone to occur, which is consistent with the actual coil failure result. Full article
Show Figures

Figure 1