Topic Editors

1. Department of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece
2. Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
Laboratory of Histology and Embryology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
Laboratory of Food Processing, Faculty of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece

Recent Advances in Application of Essential Oil and other Νatural Εxtracts in Food Industry

Abstract submission deadline
closed (31 December 2023)
Manuscript submission deadline
31 March 2024
Viewed by
30522

Topic Information

Dear Colleagues,

Herbs, spices and plant parts (roots, seeds, leaves, etc) have been widely used since ancient times not only as food preservatives and flavoring agents, but also as part of the traditional medicine in various cultures. Their beneficial effects rely on bioactive compounds, including terpenes, phenols, flavonoids, and tannins which have been associated with potentially antimicrobial, antioxidant, anti-inflammatory and anticancer effects. The growing public’s concern about chemical substances in foods and their turn towards a healthier lifestyle has recently raised the scientific and food industry’s interest for natural compounds. Based on their properties, essential oils and other extracts of natural origin could be exploited in terms of prevention of microbial spoilage, product safety and prolonged shelf life, and potential health effects for the consumers. Thus, the aim of this Topic is to provide readers with an extensive overview of original research articles and review papers, and highlight the recent developments and advancements in application of essential oil and other extracts of natural origin in the food industry.

Dr. Anastasios Nikolaou
Dr. Paula Silva
Dr. Ioanna Mantzourani
Topic Editors

Keywords

  • essential oils
  • natural food extracts
  • food components
  • herbs
  • antimicrobial
  • antioxidant
  • anti-inflammatory
  • antiproliferative

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Antioxidants
antioxidants
7.0 8.8 2012 13.9 Days CHF 2900 Submit
Beverages
beverages
3.5 5.8 2015 18.5 Days CHF 1600 Submit
BioTech
biotech
- 4.4 2012 19.6 Days CHF 1600 Submit
Foods
foods
5.2 5.8 2012 13.1 Days CHF 2900 Submit
Plants
plants
4.5 5.4 2012 15.3 Days CHF 2700 Submit

Preprints.org is a multidiscipline platform providing preprint service that is dedicated to sharing your research from the start and empowering your research journey.

MDPI Topics is cooperating with Preprints.org and has built a direct connection between MDPI journals and Preprints.org. Authors are encouraged to enjoy the benefits by posting a preprint at Preprints.org prior to publication:

  1. Immediately share your ideas ahead of publication and establish your research priority;
  2. Protect your idea from being stolen with this time-stamped preprint article;
  3. Enhance the exposure and impact of your research;
  4. Receive feedback from your peers in advance;
  5. Have it indexed in Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (12 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
12 pages, 299 KiB  
Article
Effect of Conventional Preservatives and Essential Oils on the Survival and Growth of Escherichia coli in Vegetable Sauces: A Comparative Study
Foods 2023, 12(15), 2832; https://doi.org/10.3390/foods12152832 - 26 Jul 2023
Cited by 1 | Viewed by 907
Abstract
Essential oils have gained attention as natural alternatives to chemical preservatives in food preservation. However, more information is needed regarding consumer acceptance of essential oils in actual food products. This study aimed to compare the effects of conventional preservatives, heat treatment, and essential [...] Read more.
Essential oils have gained attention as natural alternatives to chemical preservatives in food preservation. However, more information is needed regarding consumer acceptance of essential oils in actual food products. This study aimed to compare the effects of conventional preservatives, heat treatment, and essential oils derived from thyme, oregano, and lemongrass on the survival and growth of pathogenic <italic>Escherichia coli</italic> in vegetable sauces. The results demonstrated a gradual decrease in pathogen numbers over time, even in untreated samples. On the fifth day of storage, heat treatment, sodium chloride, and acidification using citric acid (pH 3.2) exhibited reductions of 4.4 to 5.3 log CFU/g compared to the untreated control. Among the essential oils tested, lemongrass essential oil at a concentration of 512 mg/kg demonstrated the most remarkable effectiveness, resulting in a reduction of 1.9 log CFU/g compared to the control. Fifteen days after treatment, the control samples exhibited a contamination rate of 6.2 log CFU/g, while <italic>E. coli</italic> numbers in treated samples with heat, sodium chloride, citric acid (pH 3.2), and lemongrass essential oil (512 mg/kg) were below the detection limits. Additionally, sensory evaluation was conducted to assess the acceptability of the treated samples. The findings provide valuable insights into the potential utilisation of essential oils as natural preservatives in vegetable sauces and their impact on consumer acceptance. Full article
13 pages, 1398 KiB  
Article
Effects of Addition of Tea Polyphenol Palmitate and Process Parameters on the Preparation of High-Purity EPA Ethyl Ester
Foods 2023, 12(5), 975; https://doi.org/10.3390/foods12050975 - 25 Feb 2023
Viewed by 1307
Abstract
High-purity eicosapentaenoic acid (EPA) ethyl ester (EPA-EE) can be produced from an integrated technique consisting of saponification, ethyl esterification, urea complexation, molecular distillation and column separation. In order to improve the purity and inhibit oxidation, tea polyphenol palmitate (TPP) was added before the [...] Read more.
High-purity eicosapentaenoic acid (EPA) ethyl ester (EPA-EE) can be produced from an integrated technique consisting of saponification, ethyl esterification, urea complexation, molecular distillation and column separation. In order to improve the purity and inhibit oxidation, tea polyphenol palmitate (TPP) was added before the procedure of ethyl esterification. Furthermore, through the optimization of process parameters, 2:1 (mass ratio of urea to fish oil, g/g), 6 h (crystallization time) and 4:1 (mass ratio of ethyl alcohol to urea, g/g) were found to be the optimum conditions in the procedure of urea complexation. Distillate (fraction collection), 115 °C (distillation temperature) and one stage (the number of stages) were found to be the optimum conditions for the procedure of molecular distillation. With the addition of TPP and the above optimum conditions, high-purity (96.95%) EPA-EE was finally obtained after column separation. Full article
Show Figures

Figure 1

12 pages, 2280 KiB  
Article
Encapsulation of Benzyl Isothiocyanate with β-Cyclodextrin Using Ultrasonication: Preparation, Characterization, and Antibacterial Assay
Foods 2022, 11(22), 3724; https://doi.org/10.3390/foods11223724 - 20 Nov 2022
Cited by 4 | Viewed by 1875
Abstract
Benzyl isothiocyanate (BITC) is widely utilized in multiple biomedical fields, due to its significant antibacterial properties and low toxicity. However, poor water solubility and pungent odor has limited its application in the food industry. In this study, we first prepared inclusion complexes of [...] Read more.
Benzyl isothiocyanate (BITC) is widely utilized in multiple biomedical fields, due to its significant antibacterial properties and low toxicity. However, poor water solubility and pungent odor has limited its application in the food industry. In this study, we first prepared inclusion complexes of BITC in GLU-β-CD and HP-β-CD using ultrasound, which is able to overcome the hindrance of poor water solubility and high volatility. Then, the BITC-β-CD inclusion complexes were characterized by using high-performance liquid chromatography (HPLC), nuclear magnetic resonance hydrogen spectra (1H-NMR), infrared absorption spectra (IR), and differential scanning calorimetry (DSC) to confirm their stability. Further, the evaluation of antibacterial and antitumor effects of the BITC-β-CD inclusion complexes showed that they had great bactericidal activity against both Escherichia coli and Staphylococcus aureus cells, and also inhibited the growth of HepG2 cells in vitro. In addition, our results indicated that BITC-β-CD complexes were able to inhibit the growth of S. aureus in broccoli juice and extend the shelf life of broccoli juice, demonstrating the potential of β-cyclodextrin to improve the stability and controlled release of BITC. Taken together, our results show that BITC-β-CD complexes have good potential for application in the food industry. Full article
Show Figures

Graphical abstract

21 pages, 1278 KiB  
Review
The Wine Industry By-Products: Applications for Food Industry and Health Benefits
Antioxidants 2022, 11(10), 2025; https://doi.org/10.3390/antiox11102025 - 14 Oct 2022
Cited by 17 | Viewed by 4720
Abstract
Each year, 20 million tons of wine by-products are generated, corresponding to 30% of the total quantity of vinified grapes. Wine by-products are a source of healthy bioactive molecules, such as polyphenols and other molecules (pigments, fibers, minerals, etc.). The abundance of bioactive [...] Read more.
Each year, 20 million tons of wine by-products are generated, corresponding to 30% of the total quantity of vinified grapes. Wine by-products are a source of healthy bioactive molecules, such as polyphenols and other molecules (pigments, fibers, minerals, etc.). The abundance of bioactive compounds assures a promising future for nutritional foodstuff production. Wine by-products can be used to fortify aromatized waters and infusions, bread, pasta, dairy products, alcohol, sugary beverages, and processed foods. These innovative products are part of the Mediterranean diet and are of great interest to both human and environmental health. Pre-clinical studies show that consumption of food produced with wine by-products or with their extracts attenuates the inflammatory state and increases antioxidant status. As such, wine by-products provide protective effects against the underlying pathophysiological hallmarks of some chronic diseases such as atherosclerosis, diabetes, hypertension, obesity, and cancer. However, the poor bioavailability warrants further investigation on how to optimize the efficacy of wine by-products, and more clinical trials are also needed. The scientific evidence has validated the uses of the dietary nature of wine by-products and has helped to promote their use as a functional food to prevent chronic human diseases. Full article
Show Figures

Figure 1

12 pages, 1317 KiB  
Article
Preliminary Assessment of Repellency and Toxicity of Essential Oils against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) on Stored Organic Corn Grains
Foods 2022, 11(18), 2907; https://doi.org/10.3390/foods11182907 - 19 Sep 2022
Cited by 5 | Viewed by 2237
Abstract
Insect infestation of cereal grains during post-harvest storage not only causes significant grain loss, but also reduces grain quality and makes grains more susceptible to mold infection. Synthetic pesticides are banned from being used in organic grain storage setting due to their high [...] Read more.
Insect infestation of cereal grains during post-harvest storage not only causes significant grain loss, but also reduces grain quality and makes grains more susceptible to mold infection. Synthetic pesticides are banned from being used in organic grain storage setting due to their high toxicity. The main insect damaging stored corn grains is maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). The purpose of this study was to evaluate insect repellency and insecticidal potentials of some generally recognized as safe (GRAS) essential oils (EOs) (including cinnamon, clove, thyme, oregano, and orange terpene oils) at concentrations of 1–20% against the maize weevil using an olfactometer and a simulated fumigation method, respectively. The olfactory tests show that cinnamon oil had the highest repellency (90%) to the weevils among the EOs tested. The insecticidal activity study indicates that maize weevil mortality increased with EO concentration and storage time with cinnamon, clove, and thyme oils being more effective. No weevil death was observed at 1% EOs; weevil mortality was 3.3–36% at 5%, which varied with the type of EO and storage time. At 10% or higher concentrations, all tested EO showed comparable or higher insecticidal activity than pirimiphos methyl-positive control at its recommended concentration (5 mg/kg corn). No significant increase in weevil mortality was observed with further increase in EO concentration, with exceptions of oregano oil and thyme oil. The highest weevil mortality levels were observed at week 7 for 15% cinnamon oil (100%) and eugenol (100%), followed by 20% thyme oil (93%). The study indicates that some EOs have great potential to serve as synthetic insecticide alternatives to protect organic corn grains from maize weevil damage during storage. This is important to food security, safety and environmental health. Full article
Show Figures

Figure 1

17 pages, 2655 KiB  
Article
Design of Functional Powdered Beverages Containing Co-Microcapsules of Sacha Inchi P. huayllabambana Oil and Antioxidant Extracts of Camu Camu and Mango Skins
Antioxidants 2022, 11(8), 1420; https://doi.org/10.3390/antiox11081420 - 22 Jul 2022
Cited by 4 | Viewed by 2336
Abstract
Sacha inchi Plukenetia huayllabambana oil (SIPHO) was co-microencapsulated, by spray drying using gum arabic as a coating material, with antioxidant extracts of camu camu (Myrciaria dubia (HBK) McVaugh) (CCSE) and mango (Mangifera indica) (MSE) skins obtained by ultrasound–microwave-assisted extraction (UMAE). [...] Read more.
Sacha inchi Plukenetia huayllabambana oil (SIPHO) was co-microencapsulated, by spray drying using gum arabic as a coating material, with antioxidant extracts of camu camu (Myrciaria dubia (HBK) McVaugh) (CCSE) and mango (Mangifera indica) (MSE) skins obtained by ultrasound–microwave-assisted extraction (UMAE). The physicochemical characteristics of the microcapsules, such as, particle size, morphology, and moisture, as well as the encapsulation efficiency, the fatty acid composition, and oxidative stability, were determined in order to select the best formulation for the design of functional powdered beverages. The formulation with the highest amounts of ω3 acids and polyphenols was used to prepare a functional powdered beverage that contained ω3 (52.74%), antioxidant activity (324.80 mg AAE/100 g powder), and acceptable sensory attributes. Full article
Show Figures

Figure 1

15 pages, 2138 KiB  
Article
Production of Innovative Essential Oil-Based Emulsion Coatings for Fungal Growth Control on Postharvest Fruits
Foods 2022, 11(11), 1602; https://doi.org/10.3390/foods11111602 - 29 May 2022
Cited by 3 | Viewed by 2197
Abstract
This work assessed the antimicrobial potential of natural essential oils (EOs) from cinnamon (CEO), zataria (ZEO), and satureja (SEO), applied natively or as coatings against Penicillium expansum and Botrytis cinerea during both in vitro and in vivo (on apple fruits) experiments. The induced [...] Read more.
This work assessed the antimicrobial potential of natural essential oils (EOs) from cinnamon (CEO), zataria (ZEO), and satureja (SEO), applied natively or as coatings against Penicillium expansum and Botrytis cinerea during both in vitro and in vivo (on apple fruits) experiments. The induced inhibitory effect towards fungal growth, as a function of both EO type and concentration (75–1200 μL/L), was preliminarily investigated to select the most suitable EO for producing bacterial cellulose nanocrystals (BCNCs)/fish gelatin (GelA)-based emulsions. CEO and ZEO exhibited the best performances against P. expansum and B. cinerea, respectively. None of the pristine EOs completely inhibited the fungal growth and “disease severity”, properly quantified via size measurements of lesions formed on fruit surfaces. As compared to pristine CEO, coating emulsions with variable CEO concentration (75–2400 µL/L) curbed lesion spreading on apples, owing to the controlled CEO release during a 21-day temporal window. The strongest effect was displayed by BCNCs/GelA-CEO emulsions at the highest CEO concentration, upon which lesions on fruit skins were barely detectable. This work demonstrated the capability of EOs embedded in BCNCs/GelA-based nanocapsules to efficiently slow down microbial spoilage on postharvest fruits, thus offering viable opportunities for developing innovative antimicrobial packaging systems. Full article
Show Figures

Figure 1

24 pages, 4896 KiB  
Article
Antibacterial Activity and Mechanism of Polygonum orientale L. Essential Oil against Pectobacterium carotovorum subsp. carotovorum
Foods 2022, 11(11), 1585; https://doi.org/10.3390/foods11111585 - 28 May 2022
Cited by 6 | Viewed by 2123
Abstract
Infected by Pectobacterium carotovorum subsp. carotovorum (Pcc), the quality of Chinese cabbage could severely decline. Using chemical bactericides to control Pcc could cause food safety problems. Thus, we investigated the optimum extraction conditions, antibacterial activity, chemical compounds and antibacterial mechanism of Polygonum orientale [...] Read more.
Infected by Pectobacterium carotovorum subsp. carotovorum (Pcc), the quality of Chinese cabbage could severely decline. Using chemical bactericides to control Pcc could cause food safety problems. Thus, we investigated the optimum extraction conditions, antibacterial activity, chemical compounds and antibacterial mechanism of Polygonum orientale L. essential oil (POEO) against Pcc in order to search a new way to control Pcc. The optimum extraction conditions of POEO (soaking time 2.6 h, extraction time 7.7 h and ratio of liquid to solid 10.3 mL/g) were optimized by response surface methodology. The minimum inhibitory concentration (MIC) of POEO against Pcc was 0.625 mg/mL. The control efficiency of protective activity of POEO against Pcc was 74.67~92.67%, and its curative activity was 76.00~93.00%. Then, 29 compounds were obtained by GC-MS; the prime compounds of POEO were phytol, phytone, n-pentacosane, 1-octen-3-ol and β-ionone. It was verified that, compared with control samples, POEO destroyed cell morphology. It increased surface potential, increased hydrophobicity, damaged cell walls, destroyed the integrity and permeability of cell membrane, reduced membrane potential (MP), and changed membrane protein conformation. It inhibited the activities of pyruvate kinase (PK), succinate dehydrogenase (SDH) and adenosine triphosphatase (ATPase). Briefly, the results of this study demonstrate that POEO showed effective inhibitory activity against Pcc, thus POEO could have potential application in controlling Pcc. Full article
Show Figures

Figure 1

14 pages, 13422 KiB  
Article
Insights into the Composition and Antibacterial Activity of Amomum tsao-ko Essential Oils from Different Regions Based on GC-MS and GC-IMS
Foods 2022, 11(10), 1402; https://doi.org/10.3390/foods11101402 - 12 May 2022
Cited by 9 | Viewed by 2163
Abstract
Chemical components are one of the most significant traits and attributes of plant tissues, and lead to their different functions. In this study, the composition of Amomun tsao-ko essential oils (AEOs) from different regions was first determined by a combination of gas chromatography–mass [...] Read more.
Chemical components are one of the most significant traits and attributes of plant tissues, and lead to their different functions. In this study, the composition of Amomun tsao-ko essential oils (AEOs) from different regions was first determined by a combination of gas chromatography–mass spectrometry (GC-MS) and gas chromatography–ion mobility spectrometry (GC-IMS). In total, 141 compounds were identified, of which terpenes and aldehydes were the main groups. Orthogonal partial least square discriminant analysis (OPLS-DA) distinguished the samples from different regions clearly, and the main differences were terpenes, aldehydes, and esters. Meanwhile, AEOs showed strong antibacterial activity against Staphylococcus aureus (S. aureus), and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) reached 0.20 mg/mL and 0.39–0.78 mg/mL, respectively. From correlation analysis, 1,8-cineole, (E)-dec-2-enal, citral, α-pinene, and α-terpineol were determined to be the potential antibacterial compounds. This study provides the basis for the variety optimization of A. tsao-ko and its application as a natural food preservative. Full article
Show Figures

Graphical abstract

17 pages, 2746 KiB  
Article
Preparation, Morphology and Release of Goose Liver Oil Microcapsules
Foods 2022, 11(9), 1236; https://doi.org/10.3390/foods11091236 - 26 Apr 2022
Cited by 5 | Viewed by 1965
Abstract
Goose liver oil (GLO) microcapsules were prepared by konjac glucomannan (KGM) and soybean protein isolate (SPI) for the first time as wall materials. The GLO could be effectively encapsulated, with an encapsulation efficiency of 83.37%, when the ratio of KGM to SPI was [...] Read more.
Goose liver oil (GLO) microcapsules were prepared by konjac glucomannan (KGM) and soybean protein isolate (SPI) for the first time as wall materials. The GLO could be effectively encapsulated, with an encapsulation efficiency of 83.37%, when the ratio of KGM to SPI was 2.9:1, the concentration of the KGM-SPI composite gel layer was 6.28% and the ratio of the GLO to KGM-SPI composite gel layer was 1:6. Fourier transform infrared spectroscopy and X-ray diffraction methods showed electrostatic interactions between KGM and SPI molecules and the formation of hydrogen bonds between the GLO and KGM-SPI wall components. The results of scanning electron microscopy showed a smooth spherical surface morphology of the microcapsules with a dense surface and no cracks. The confocal laser scanning microscopy showed that the microcapsules were homogeneous inside and no coalescence occurred. The encapsulated GLO has a significantly higher thermal and oxidative stability compared to free GLO. In the in vitro digestion experiment, 85.2% of the microcapsules could travel through gastric juice, and 75.2% could be released in the intestinal region. These results suggested that microcapsules prepared by KGM-SPI might be used as a carrier for the controlled release of GLO and could microencapsulate various oil-soluble nutrients in food products. Full article
Show Figures

Figure 1

18 pages, 7324 KiB  
Article
Effect of Lentinan on Lipid Oxidation and Quality Change in Goose Meatballs during Cold Storage
Foods 2022, 11(7), 1055; https://doi.org/10.3390/foods11071055 - 06 Apr 2022
Cited by 7 | Viewed by 2062
Abstract
The effects of different concentrations of lentinan (LNT) (0, 0.5, 1, 2 and 4%) on the oxidation characteristics and physicochemical properties of goose meatballs were investigated during different cold storage (4 °C) stages (3, 7 and 12 days). After adding LNT, the thiobarbituric [...] Read more.
The effects of different concentrations of lentinan (LNT) (0, 0.5, 1, 2 and 4%) on the oxidation characteristics and physicochemical properties of goose meatballs were investigated during different cold storage (4 °C) stages (3, 7 and 12 days). After adding LNT, the thiobarbituric acid reactive substances (TBARS) and total volatile base nitrogen (TVB-N) of goose meatballs significantly decreased compared to the LNT-free sample during cold storage, which indicated that LNT can inhibit the fat oxidation and the release of nitrogenous substances. Meanwhile, the presence of LNT makes microstructure of the goose meatball samples become denser during the whole storage time. The headspace solid phase microextraction gas chromatography-mass spectrometry (SPME-GC-MC) results showed that the proportion of aldehydes in the 4% LNT group reached 0 during storage, suggesting that high LNT concentration inhibits the formation of oxidized products in meat products. The sensory evaluation showed that the addition of LNT improved the color, appearance, flavor, and overall acceptance of goose meatballs, and the 2% LNT group had the highest score in overall acceptance. In summary, the addition of LNT could delay lipid oxidation and improve the quality of goose meatballs during cold storage. Full article
Show Figures

Figure 1

13 pages, 772 KiB  
Article
Plant Extract and Essential Oil Application against Food-Borne Pathogens in Raw Pork Meat
Foods 2022, 11(6), 861; https://doi.org/10.3390/foods11060861 - 18 Mar 2022
Cited by 9 | Viewed by 3675
Abstract
Herbal and plant extracts are being applied for a wide range of foods against different types of food-borne pathogens. In the present study, ethanolic and aqueous extracts (2% w/v) from cranberry (Vaccinium macrocarpon) and pomegranate (Punica granatum [...] Read more.
Herbal and plant extracts are being applied for a wide range of foods against different types of food-borne pathogens. In the present study, ethanolic and aqueous extracts (2% w/v) from cranberry (Vaccinium macrocarpon) and pomegranate (Punica granatum L.) plants were applied alone or in combination with two essential oils (thyme and oregano in a concentration of 0.150 μg/g) in pork meatballs and their antimicrobial activity was estimated. The extracts exhibited promising results (aqueous and ethanolic extracts of pomegranate and cranberry in a food-compatible concentration of 2% w/v) were applied to raw pork meatball production and their antimicrobial activity was recorded versus Enterobacteriaceae, total mesophilic bacteria, yeasts/molds, Staphylococcus spp., Pseudomonas spp. and lactic acid bacteria (LAB). The outcome demonstrated that meatballs containing aqueous extracts of pomegranate were more resistant to spoilage compared to all the other samples since they were preserved for more days. The chemical profiles of plant extracts were determined through LC-QTOF/MS and the chemical composition of the essential oils applied was determined with the use of GC/MS in order to identify the substances involved in the observed antimicrobial activity. Phenolic acids (quinic acid, chlorogenic acid), monoterpenes (p-cymene, carvacrol, thymol, limonene), organic acids (citric acid) and phenols were the main constituents found in the plant extracts and essential oils applied. These extracts of plant origin could be used as natural preservatives in meat products, even in low concentrations. Full article
Show Figures

Figure 1

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Journal: Antioxidants or Plants
Title:
Antioxidant activity of medicinal plants and herbs of North Aegean, Greece
Authors: Poulios E, Psara E, Vasios GK, Antasouras G, Papandreou D, Giaginis C
Affiliation: Department of Food Science and Nutrition, School of Environment, University of the Aegean, GR81400 Myrina, Limnos, Greece

Back to TopTop