Topic Editors

National Institute for Agricultural and Veterinary Research (INIAV), 2005-048 Santarém, Portugal
Prof. Dr. Pedro Manuel Aponte
Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito (USFQ), Quito 170157, Ecuador

Application of Reproductive and Genomic Biotechnologies for Livestock Breeding and Selection

Abstract submission deadline
20 January 2025
Manuscript submission deadline
20 March 2025
Viewed by
2015

Topic Information

Dear Colleagues,

The worldwide demand for animal-derived products will increase dramatically in the next 30 years due to global population growth. Therefore, a comprehensive understanding of animal breeding through reproduction performance and genomic selection will be of the utmost importance to satisfy the growing food demand. In view of this, combining assisted reproductive techniques (ARTs) and genetic/genomic molecular tools (GMTs) for animal selection will play a key role in improving and maximizing animal production systems' efficiency. This Topic aims to present original research and/or reviews related to ARTs and GMTs. All studies on factors affecting livestock performance with a particular focus on reproduction management, health control, longevity improvement, and welfare practices based on ART- and GMT-derived results are welcome. Furthermore, we encourage studies that contribute significantly to further advancing these fields and those based on ARTs, such as in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), in vitro/in vivo embryo production (IVP), embryo transfer (ET), controlled ovarian hyperstimulation (superovulation), gamete sex determination, artificial insemination (AI), gamete cryopreservation, nuclear transfer/cloning, stem cells technologies (SCTs), etc. Moreover, contributions focused on complementary techniques for ARTs, including DNA isolation and analysis (DIA), polymerase chain reaction (PCR/rtPCR), DNA sequencing, recombinant plasmids, gene cloning, transgenesis, Southern blotting, single-nucleotide polymorphism (SNPs), genome-wide association studies (GWASs), etc., are welcome as well.

 

Potential subtopics of interest include (but are not limited to) the following:

  • Research surrounding the reproductive basis of important fertility traits;
  • Application of ARTs to genetic resources for increasing reproductive/productive performance traits;
  • Studies on reproduction–nutrition interaction and efficient reproductive and production traits;
  • Research on genes implicated in reproductive and production traits;
  • Sequencing research surrounding breeding and genetics;
  • Studies on reproduction–health control interaction and efficient production traits;
  • Research on biodiversity protection programs, germplasm banking, and ex situ preservation;
  • Studies on reproduction–welfare practices and efficient production traits;
  • Interactions between reproduction–environment (climate) and impact on reproductive and production traits;
  • Research on reproduction–longevity interactions for increasing fertility and productivity traits.

We look forward to receiving your contributions.

Prof. Dr. Manuel García-Herreros

Prof. Dr. Pedro M. Aponte

Topic Editors

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Agriculture
agriculture
3.408 3.1 2011 18.6 Days 2000 CHF Submit
Animals
animals
3.231 2.7 2011 17 Days 1800 CHF Submit
Dairy
dairy
- - 2020 26.8 Days 1000 CHF Submit
Genes
genes
4.141 5.0 2010 16.7 Days 2400 CHF Submit
International Journal of Molecular Sciences
ijms
6.208 6.9 2000 15.9 Days 2500 CHF Submit
Veterinary Sciences
vetsci
2.518 2.6 2014 16.7 Days 1900 CHF Submit

Preprints is a platform dedicated to making early versions of research outputs permanently available and citable. MDPI journals allow posting on preprint servers such as Preprints.org prior to publication. For more details about reprints, please visit https://www.preprints.org.

Published Papers (4 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
Article
Phenotypic Characterization of Creole Cattle in the Andean Highlands Using Bio-Morphometric Measures and Zoometric Indices
Animals 2023, 13(11), 1843; https://doi.org/10.3390/ani13111843 (registering DOI) - 01 Jun 2023
Viewed by 174
Abstract
Several Creole cattle biotypes can be found in the Andean highlands, and most of them are considered as being in risk of extinction. The main aim of the present study was to perform a phenotypic characterization of the Creole cattle in the Andean [...] Read more.
Several Creole cattle biotypes can be found in the Andean highlands, and most of them are considered as being in risk of extinction. The main aim of the present study was to perform a phenotypic characterization of the Creole cattle in the Andean highlands using bio-morphometric measures and zoometric indices. Individuals from three different biotypes (Black ‘Negro’ (n = 57), Colour-Sided ‘Callejón’ (n = 20), and Brindle ‘Atigrado’ (n = 18)) from an experimental research center located in the Peruvian highlands were enrolled in the study. In total, seventeen morphometric parameters were evaluated and ten zoometric indices were calculated in each biotype. To test the relationship between biometric traits, correlation analyses were carried out between morphometric parameters. Differences were observed regarding different morphometric variables such as head length (HL) and rump length (RL) among cattle biotypes (p ≤ 0.05). The coefficient of variation (CV; %) regarding different morphometric parameters ranged between 11.32 for neck length (NL) and 3.63 for height at withers (HaW), which indicated low–moderate variability among morphometric variables. Differences were observed in the longitudinal pelvic index (LPI) when different zoometric indices were compared among biotypes (p ≤ 0.05). The CV regarding different zoometric indices, which ranged between 10.78 for the cephalic index (CEI) and 5.05 for LPI, indicated low variability among indices. No differences were observed in any other morphometric parameter or zoometric index among cattle biotypes or genders (p > 0.05). Finally, multiple correlations were observed between morphometric variables (p ≤ 0.05). In conclusion, it was determined that Peruvian Andean Creole cattle can be considered as a dairy-related biotype with a slight tendency for beef production (dual-purpose). The great homogeneity regarding zoometric characteristics among biotypes and genders may indicate that the Andean Creole cattle have been maintained quite isolated, avoiding the genetic influence of other foreign breeds. Finally, the phenotypic characterization including bio-morphometric measurements and zoometric indices obtained from the different Creole bovine biotypes is crucial in order to begin different conservation programs to preserve cattle breeds in the Peruvian Andean highlands. Full article
Show Figures

Figure 1

Review
ADAMTS Proteases: Importance in Animal Reproduction
Genes 2023, 14(6), 1181; https://doi.org/10.3390/genes14061181 - 29 May 2023
Viewed by 245
Abstract
Many reproductive physiological processes, such as folliculogenesis, ovulation, implantation, and fertilization, require the synthesis, remodeling, and degradation of the extracellular matrix (ECM). The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin Motifs) family genes code for key metalloproteinases in the remodeling process of different [...] Read more.
Many reproductive physiological processes, such as folliculogenesis, ovulation, implantation, and fertilization, require the synthesis, remodeling, and degradation of the extracellular matrix (ECM). The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin Motifs) family genes code for key metalloproteinases in the remodeling process of different ECM. Several genes of this family encode for proteins with important functions in reproductive processes; in particular, ADAMTS1, 4, 5 and 9 are genes that are differentially expressed in cell types and the physiological stages of reproductive tissues. ADAMTS enzymes degrade proteoglycans in the ECM of the follicles so that the oocytes can be released and regulate follicle development during folliculogenesis, favoring the action of essential growth factors, such as FGF-2, FGF-7 and GDF-9. The transcriptional regulation of ADAMTS1 and 9 in preovulatory follicles occurs because of the gonadotropin surge in preovulatory follicles, via the progesterone/progesterone receptor complex. In addition, in the case of ADAMTS1, pathways involving protein kinase A (PKA), extracellular signal regulated protein kinase (ERK1/2) and the epidermal growth factor receptor (EGFR) might contribute to ECM regulation. Different Omic studies indicate the importance of genes of the ADAMTS family from a reproductive aspect. ADAMTS genes could serve as biomarkers for genetic improvement and contribute to enhance fertility and animal reproduction; however, more research related to these genes, the synthesis of proteins encoded by these genes, and regulation in farm animals is needed. Full article
Show Figures

Figure 1

Article
Overexpression of DGAT2 Regulates the Differentiation of Bovine Preadipocytes
Animals 2023, 13(7), 1195; https://doi.org/10.3390/ani13071195 - 29 Mar 2023
Viewed by 558
Abstract
Triacylglycerols (TAGs) are a major component of intramuscular fat. Diacylglycerol O-acyltransferase 2(DGAT2) expression determines the rate of TAG synthesis. The purpose of this study was to investigate the role of DGAT2 in the differentiation of Yanbian cattle preadipocytes and lipid metabolism-related [...] Read more.
Triacylglycerols (TAGs) are a major component of intramuscular fat. Diacylglycerol O-acyltransferase 2(DGAT2) expression determines the rate of TAG synthesis. The purpose of this study was to investigate the role of DGAT2 in the differentiation of Yanbian cattle preadipocytes and lipid metabolism-related signalling pathways. Bovine preadipocytes were infected with overexpression and interfering adenovirus vectors of DGAT2. The effects on the differentiation of Yanbian cattle preadipocytes were examined using molecular and transcriptomic techniques, including differentially expressed genes (DEGs) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis. DGAT2 overexpression significantly increased (p < 0.05) intracellular TAG, adiponectin, and lipid droplet (LD) contents. Moreover, it upregulated (p < 0.05) peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α, and fatty acid binding protein 4 mRNA expression. In contrast, DGAT2 knockdown reduced intracellular TAG and LD content and downregulated (p < 0.05) C/EBPβ, mannosyl (alpha-1,3-)-glycoproteinbeta-1,2-N-acetylglucosaminyltransferase, lipin 1,1-acylglycerol-3-phosphate O-acyltransferase 4, and acetyl-CoA carboxylase alpha mRNA expression. Between DGAT2-overexpressing preadipocytes and normal cells, 208 DEGs were identified, including 106 upregulated and 102 downregulated genes. KEGG pathway analysis revealed DEGs mainly enriched in PPAR signalling and AMP-activated protein kinase pathways, cholesterol metabolism, and fatty acid biosynthesis. These results demonstrated that DGAT2 regulated preadipocyte differentiation and LD and TAG accumulation by mediating the expression of adipose differentiation-, lipid metabolism-, and fatty acid synthesis-related genes. Full article
Show Figures

Figure 1

Communication
A Comprehensive Strategy Combining Feature Selection and Local Optimization Algorithm to Optimize the Design of Low-Density Chip for Genomic Selection
Agriculture 2023, 13(3), 614; https://doi.org/10.3390/agriculture13030614 - 03 Mar 2023
Viewed by 601
Abstract
Design of low-density SNP chips provides an opportunity for wide application of genomic selection at lower cost. A novel strategy referred to as the “block-free” method is proposed in this study to select a subset of SNPs from a high-density chip to form [...] Read more.
Design of low-density SNP chips provides an opportunity for wide application of genomic selection at lower cost. A novel strategy referred to as the “block-free” method is proposed in this study to select a subset of SNPs from a high-density chip to form a low-density panel. In this method, Feature Selection using a Feature Similarity (FSFS) algorithm was first performed to remove highly correlated SNPs, and then a Multiple-Objective, Local-Optimization (MOLO) algorithm was used to pick SNPs for the low-density panel. Two other commonly used methods called the “uniform” method and the “block-based” method were also implemented for comparison purposes. A real pig dataset with 7967 individuals from three breeds containing 43,832 SNPs was used for comparison of the methods. In terms of genotype imputation accuracy and genomic prediction accuracy, our strategy was superior in most cases when the densities were lower than 1K. The genotype imputation accuracy from the low-density chip compared to the original high-density chip was higher than 90% in all pig breeds as the density increased to 1K. In addition, the accuracies of predicted genomic breeding values (GEBV) calculated using the imputed panel were nearly 90% of estimates from the original chip for all traits and breeds. Our strategy is effective to design low-density chips by making full use of information of close relationships for genomic selection in animals and plants. Full article
Show Figures

Figure 1

Back to TopTop