Topic Editors

Department of Science and Technological Innovation, University of Eastern Piedmont, I-15121 Alessandria, Italy
Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, Portici, 80055 Naples, Italy

Tolerance to Drought and Salt Stress in Plants, 2nd volume

Abstract submission deadline
31 October 2025
Manuscript submission deadline
31 December 2025
Viewed by
683

Topic Information

Dear Colleagues,

Following the successful completion of Volume I of “Tolerance to Drought and Salt Stress in Plants” and the great interest shown in this research topic, we are pleased to announce the launch of Volume II.

The current climate change scenario is accelerating degradation, desertification, and salinization, with drought and salinization being major threats to agriculture worldwide. Therefore, elucidating the mechanisms involved in plant stress tolerance is critical to relieving the effects of drought and salt stresses on plant growth. This topic will focus on recent advances in drought and salt tolerance in crop plants. Submissions of original research articles, reviews, mini-reviews, and short communications are welcome.

Prof. Dr. Roberto Barbato
Prof. Dr. Veronica De Micco
Topic Editors

Keywords

  • drought stress
  • salt stress
  • climate change
  • crops
  • plants
  • abiotic stress

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Agriculture
agriculture
3.6 3.6 2011 17.7 Days CHF 2600 Submit
Agronomy
agronomy
3.7 5.2 2011 15.8 Days CHF 2600 Submit
Horticulturae
horticulturae
3.1 2.4 2015 14.7 Days CHF 2200 Submit
International Journal of Plant Biology
ijpb
- 1.1 2010 14.4 Days CHF 1200 Submit
Plants
plants
4.5 5.4 2012 15.3 Days CHF 2700 Submit

Preprints.org is a multidiscipline platform providing preprint service that is dedicated to sharing your research from the start and empowering your research journey.

MDPI Topics is cooperating with Preprints.org and has built a direct connection between MDPI journals and Preprints.org. Authors are encouraged to enjoy the benefits by posting a preprint at Preprints.org prior to publication:

  1. Immediately share your ideas ahead of publication and establish your research priority;
  2. Protect your idea from being stolen with this time-stamped preprint article;
  3. Enhance the exposure and impact of your research;
  4. Receive feedback from your peers in advance;
  5. Have it indexed in Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (1 paper)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
18 pages, 2083 KiB  
Article
Effects of Salt Stress on Salt-Repellent and Salt-Secreting Characteristics of Two Apple Rootstocks
by De Zhang, Zhongxing Zhang and Yanxiu Wang
Plants 2024, 13(7), 1046; https://doi.org/10.3390/plants13071046 - 08 Apr 2024
Viewed by 402
Abstract
The effects of NaCl-induced salinity on biomass allocation, anatomical characteristics of leaves, ion accumulation, salt repellency, and salt secretion ability were investigated in two apple rootstock cultivars (Malus halliana ‘9-1-6’ and Malus baccata), which revealed the physiological adaptive mechanisms of M. [...] Read more.
The effects of NaCl-induced salinity on biomass allocation, anatomical characteristics of leaves, ion accumulation, salt repellency, and salt secretion ability were investigated in two apple rootstock cultivars (Malus halliana ‘9-1-6’ and Malus baccata), which revealed the physiological adaptive mechanisms of M. halliana ‘9-1-6’ in response to salt stress factors. This experiment was conducted in a greenhouse using a nutrient solution pot. Salt stress was simulated by treating the plants with a 100 mM NaCl solution, while 1/2 Hoagland nutrient solution was used as a control (CK) instead of the NaCl solution. The results showed that the two rootstocks responded to salt environments by increasing the proportion of root biomass allocation. According to the stress susceptibility index, ‘9-1-6’ exhibits a lower salt sensitivity index and a higher salt tolerance index. The thickness of the leaf, upper and lower epidermis, palisade tissue, and mesophyll tissue compactness (CTR) of the two rootstocks were significantly decreased, while the thickness of sponge tissue and mesophyll tissue looseness (SR) were significantly increased, and the range of ‘9-1-6’ was smaller than that of M. baccata. With an extension of stress time, the accumulation of Na+ increased significantly, and the accumulation of K+ decreased gradually. The stem and leaves of ‘9-1-6’ showed a lower accumulation of Na+ and a higher accumulation of K+, and the roots displayed a higher ability to reject Na+, as well as young and old leaves showed a stronger ability to secrete Na+. In conclusion, within a certain salt concentration range, the ‘9-1-6’ root part can maintain lower salt sensitivity and a higher root-to-shoot ratio by increasing the proportion of root biomass allocation; the aerial part responds to salt stress through thicker leaves and a complete double-layer fence structure; the roots and stem bases can effectively reduce the transportation of Na+ to the aerial parts, as well as effectively secrete Na+ from the aerial parts through young and old leaves, thereby maintaining a higher K+/Na+ ratio in the aerial parts, showing a strong salt tolerance. Full article
Show Figures

Figure 1

Back to TopTop