Topic Editors

Prof. Dr. Jin Liu
School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
College of Construction Engineering, Jilin University, Changchun, China
Dr. Huilin Le
School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
Dr. Yunjian Li
School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China

Slope Erosion Monitoring and Anti-erosion

Abstract submission deadline
31 July 2024
Manuscript submission deadline
31 October 2024
Viewed by
7201

Topic Information

Dear Colleagues,

Soil erosion is a major global problem that generally leads to serious and disastrous consequences with respect to the environment, economy and engineering. The slope erosional process accelerates as it is subjected to the human activities and weak topsoil. As a result, large amounts of fine soil particles and nutrients transported by the runoff from the original land induces a threat to environmental sustainability. Water erosion, as the largest source of global soil erosion, also causes various engineering problems, including road embankment collapses and river bank and slope failures. Worldwide erosion monitoring and anti-erosion efforts should be mounted in view of the high incidence and universality of soil erosion.

The present topic aims to provide a representative and updated collection of research articles and reviews regarding the main processes in slope erosion monitoring and anti-erosion. These studies are expected to address fundamental and applied research questions in the areas of geotechnics, geology engineering, ecology and botany, etc. In order to properly organize this variety of contents, the topic will be joined by the following journals: Sensors, Remote Sensing, Polymers, Nanomaterials and Applied Sciences.

The topic will cover the following subjects and others:

  • Slope stability evaluations;
  • Ecological restoration of slopes;
  • Slope erosion monitoring;
  • Slope stability monitoring;
  • Water and soil loss assessments;
  • Erosion slope restoration.

Prof. Dr. Jin Liu
Dr. Shengyuan Song
Dr. Huilin Le
Dr. Yunjian Li
Topic Editors

Keywords

  • slope
  • slope stability
  • erosion monitoring
  • water and soil loss
  • anti-erosion

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Applied Sciences
applsci
2.7 4.5 2011 16.9 Days CHF 2400 Submit
Geomatics
geomatics
- - 2021 18.6 Days CHF 1000 Submit
Land
land
3.9 3.7 2012 14.8 Days CHF 2600 Submit
Remote Sensing
remotesensing
5.0 7.9 2009 23 Days CHF 2700 Submit
Water
water
3.4 5.5 2009 16.5 Days CHF 2600 Submit

Preprints.org is a multidiscipline platform providing preprint service that is dedicated to sharing your research from the start and empowering your research journey.

MDPI Topics is cooperating with Preprints.org and has built a direct connection between MDPI journals and Preprints.org. Authors are encouraged to enjoy the benefits by posting a preprint at Preprints.org prior to publication:

  1. Immediately share your ideas ahead of publication and establish your research priority;
  2. Protect your idea from being stolen with this time-stamped preprint article;
  3. Enhance the exposure and impact of your research;
  4. Receive feedback from your peers in advance;
  5. Have it indexed in Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (6 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
20 pages, 8322 KiB  
Article
Research on the Improvement of Granite Residual Soil Caused by Fly Ash and Its Slope Stability under Rainfall Conditions
by Bowen Hu, Qizhi Hu, Yiming Liu and Gaoliang Tao
Appl. Sci. 2024, 14(9), 3734; https://doi.org/10.3390/app14093734 - 27 Apr 2024
Viewed by 344
Abstract
Granite residual soil has distinctive engineering characteristics due to its unique properties, and the resulting slopes are less stable and less resistant to rain erosion. The granite residual soil was improved by the addition of 5%, 10%, 15% and 20% fly ash, and [...] Read more.
Granite residual soil has distinctive engineering characteristics due to its unique properties, and the resulting slopes are less stable and less resistant to rain erosion. The granite residual soil was improved by the addition of 5%, 10%, 15% and 20% fly ash, and the effects of fly ash on the intensity index and penetration of granite residual soil were investigated by triaxial strength tests and permeability tests. In combination with scanning electron microscopy measurements, a study of the stability of fly ash-modified granite residual soil slopes by modeling rainfall using the finite element software ABAQUS revealed the following: (1) the permeability coefficients of the residual granitic soils decreased by one order of magnitude when fly ash was added; (2) the improvement in the triaxial strength index of the improved soil was most pronounced when the dosage of fly ash was 15%, so that a dosage of 15% was considered optimal; and (3) numerical simulations concluded that the stability of the slope formed by 15% fly ash-improved soil fill improved significantly relative to the original slope, with the coefficient of safety increasing from 1.06 to 1.42, and the resistance to water seepage also significantly improved. Full article
(This article belongs to the Topic Slope Erosion Monitoring and Anti-erosion)
Show Figures

Figure 1

26 pages, 8270 KiB  
Article
Slope Deformation Mechanisms and Stability Assessment under Varied Conditions in an Iron Mine Waste Dump
by Zhongao Yang, Xiaohua Ding, Xin Liu, Abdoul Wahab, Zhongchen Ao, Ya Tian, Van Son Bang, Zhaoxi Long, Guodong Li and Penglin Ma
Water 2024, 16(6), 846; https://doi.org/10.3390/w16060846 - 15 Mar 2024
Viewed by 942
Abstract
The instability of geological slopes in mining environments poses a significant challenge to the safety and efficiency of operations. Waste Dump#2 at the Ziluoyi Iron Mine in China is a notable case study that highlights the challenges associated with sizable base slopes and [...] Read more.
The instability of geological slopes in mining environments poses a significant challenge to the safety and efficiency of operations. Waste Dump#2 at the Ziluoyi Iron Mine in China is a notable case study that highlights the challenges associated with sizable base slopes and large step heights. To address hidden hazards in the mine and the above issues, an inclusive investigation is carried out to examine the physical and mechanical properties of the soil–rock slope through indoor testing and analyze the deformation mechanisms of the slope using numerical simulations, taking various factors into account. The study reveals that the stability of Waste Dump#2 is deeply affected by weight, groundwater conditions, earthquake loading, and rainfall. To this end, the cohesion and internal friction parameters of the soil–rock slope are first determined through direct shear tests, which show a cohesion of 6.215 kPa at the top of the slope and an internal friction angle of 34.12°. By adopting GEO-SLOPE, 3D Mine, and AutoCAD software, stability calculations of the slope are performed, which give stability coefficients of 1.547 under normal conditions, 1.276 in rainfall, and 1.352 in seismic conditions. These results meet safety standards and ensure the safe and efficient operation of the mine. Full article
(This article belongs to the Topic Slope Erosion Monitoring and Anti-erosion)
Show Figures

Figure 1

20 pages, 6883 KiB  
Article
Sediment Barriers’ Performance in the Laboratory: Evaluation of Clogging and Filtration Characteristics in Geotextiles Subjected to Discharge Cycles
by Vitor Yudi Góes Adachi, Joan Steven Flores Rodríguez, Mariana Ferreira Benessiuti Motta, Gabriel Orquizas Mattielo Pedroso, Luis Rogerio de Oliveira Hein and Emerson Felipe Félix
Water 2024, 16(1), 107; https://doi.org/10.3390/w16010107 - 27 Dec 2023
Viewed by 848
Abstract
This research aims to assess the clogging process of geotextiles within silt fences. For that purpose, the filtering efficiency, flow rate, and clogging of three geotextiles (GTX-1, GTX-2, and GTX-3) employing two distinct soils and under three sediment discharge cycles were investigated. The [...] Read more.
This research aims to assess the clogging process of geotextiles within silt fences. For that purpose, the filtering efficiency, flow rate, and clogging of three geotextiles (GTX-1, GTX-2, and GTX-3) employing two distinct soils and under three sediment discharge cycles were investigated. The analysis adhered to the American standard D5141-11 and, as further analyses, qualitative and quantitative inspections were conducted through microscopic images of the materials. The results showed greater clogging of the nonwoven geotextile, GTX-1, with higher retention efficiency (approximately 100%) and better turbidity removal for both soils, equal to a reduction of around 94%. For GTX-2, a woven geotextile with a larger pore opening, less intense clogging and lower retention efficiency were observed after the third discharge; the average was 96% for both soils. GTX-3, a woven geotextile with a smaller apparent opening, exhibited a behavior similar to GTX-1: as the number of cycles increased, the material experienced more clogging and higher retention efficiency for soil 1 (approximately 98.5%). Based on these findings, it can be inferred that the discharge cycles impact the tested geotextiles in diverse ways and, therefore, the selection of the material should be contingent on project requirements. Full article
(This article belongs to the Topic Slope Erosion Monitoring and Anti-erosion)
Show Figures

Figure 1

17 pages, 7852 KiB  
Article
Comparison of Sampling and Grid Methods for Regional Soil Erosion Assessment
by Zhijia Gu, Shaomin Cao, Ao Li, Qiang Yi, Shuang Li and Panying Li
Land 2023, 12(9), 1703; https://doi.org/10.3390/land12091703 - 31 Aug 2023
Viewed by 853
Abstract
To control soil erosion, the intensity, area, and distribution of regional soil erosion must be determined to accurately plan and implement corresponding soil conservation measures. Therefore, regional soil erosion assessment has received extensive attention worldwide. At present, a sampling survey approach and full-coverage [...] Read more.
To control soil erosion, the intensity, area, and distribution of regional soil erosion must be determined to accurately plan and implement corresponding soil conservation measures. Therefore, regional soil erosion assessment has received extensive attention worldwide. At present, a sampling survey approach and full-coverage grid-based calculation are mainly applied in regional soil erosion assessment. The quantitative evaluation of the entire region depends on the quality of the data source. Furthermore, owing to the greatness of the evaluation object, the difficulty of data acquisition, the high cost, and poor usability, the present approach is bound to be at the expense of data accuracy, spatial resolution, time resolution, etc. The sampling survey approach can obtain high-precision data of soil erosion factors. Therefore, it can accurately quantify soil erosion in a field investigation unit. However, the sampling method, sampling density, and extrapolation methods have a significant impact on regional soil erosion assessments. This study considers the case of Baiquan County in the rolling hills of Northeast China as an example. Regional soil erosion evaluation using sampling survey and grid computing were compared. The impact of the data source accuracy on the soil erosion assessment was also quantitatively evaluated. The results of grid method showed a phenomenon of large rates of soil erosion and the ratio of the soil erosion area (the share of areas above the mild level), which were overestimated by 20% and 6%, respectively. A digital elevation model (DEM) with a resolution of 30 m can be used for soil erosion evaluation in plain areas, but that with the same resolution in hilly areas has insufficient calculation accuracy and provides large errors. The grid method can be adopted when land use and soil conservation measures are accurate. Otherwise, the sampling method is recommended. Interpolation of the ratio of the soil erosion area in the survey unit based on land use can better evaluate regional soil erosion. Full article
(This article belongs to the Topic Slope Erosion Monitoring and Anti-erosion)
Show Figures

Figure 1

18 pages, 11954 KiB  
Article
Study on Roof Instability Effect and Bearing Characteristics of Hydraulic Support in Longwall Top Coal Caving
by Qingliang Zeng, Zhaoji Li, Lirong Wan and Dejian Ma
Appl. Sci. 2023, 13(14), 8102; https://doi.org/10.3390/app13148102 - 11 Jul 2023
Cited by 1 | Viewed by 761
Abstract
In longwall top coal caving (LTCC), due to the fracture and migration of top coal, the roof will break and collapse, which causes serious impact damage to hydraulic support. Therefore, we aimed to reveal the relationship between the roof instability effect and the [...] Read more.
In longwall top coal caving (LTCC), due to the fracture and migration of top coal, the roof will break and collapse, which causes serious impact damage to hydraulic support. Therefore, we aimed to reveal the relationship between the roof instability effect and the bearing characteristics of hydraulic support in the LTCC face. Based on the occurrence conditions of the 08 mining area in the Shilawusu Coal Mine, the instability model of the upper immediate roof was established, and the working resistance of hydraulic support was derived. Secondly, the dynamic coupling model of roof-top coal-hydraulic support was established in LS-DYNA, and the crushing degree of top coal and the bearing characteristics of the hydraulic support in different roof instability fields were analyzed. The results show that the main factors affecting the working resistance of hydraulic support are the fracture position of the upper immediate roof, the acting force of the lower immediate roof, and the distribution of the gangue in the goaf. The rotary instability of the upper immediate roof at the coal wall brings serious impact effects, resulting in fractures in front of the coal wall and a large amount of crushed coal concentrated at the front end of the canopy. The crushing degree of top coal significantly impacts the canopy, especially the back end of the canopy and the hinged pin shaft, which is prone to bending fracture. The research results can provide references and experience for the stability control of roof strata and the structural optimization of hydraulic support. Full article
(This article belongs to the Topic Slope Erosion Monitoring and Anti-erosion)
Show Figures

Figure 1

19 pages, 35460 KiB  
Article
Advancing Erosion Control Analysis: A Comparative Study of Terrestrial Laser Scanning (TLS) and Robotic Total Station Techniques for Sediment Barrier Retention Measurement
by Junshan Liu, Robert A. Bugg and Cort W. Fisher
Geomatics 2023, 3(2), 345-363; https://doi.org/10.3390/geomatics3020019 - 26 Apr 2023
Cited by 1 | Viewed by 2506
Abstract
Sediment Barriers (SBs) are crucial for effective erosion control, and understanding their capacities and limitations is essential for environmental protection. This study compares the accuracy and effectiveness of Terrestrial Laser Scanning (TLS) and Robotic Total Station (RTS) techniques for quantifying sediment retention in [...] Read more.
Sediment Barriers (SBs) are crucial for effective erosion control, and understanding their capacities and limitations is essential for environmental protection. This study compares the accuracy and effectiveness of Terrestrial Laser Scanning (TLS) and Robotic Total Station (RTS) techniques for quantifying sediment retention in SBs. To achieve this, erosion tests were conducted in a full-scale testing apparatus with TLS and RTS methods to collect morphological data of sediment retention surfaces before and after each experiment. The acquired datasets were processed and integrated into a Building Information Modeling (BIM) platform to create Digital Elevation Models (DEMs). These were then used to calculate the volume of accumulated sediment upstream of the SB system. The results indicated that TLS and RTS techniques could effectively measure sediment retention in a full-scale testing environment. However, TLS proved to be more accurate, exhibiting a standard deviation of 0.41 ft3 in contrast to 1.94 ft3 for RTS and more efficient, requiring approximately 15% to 50% less time per test than RTS. The main conclusions of this study highlight the benefits of using TLS over RTS for sediment retention measurement and provide valuable insights for improving erosion control strategies and sediment barrier design. Full article
(This article belongs to the Topic Slope Erosion Monitoring and Anti-erosion)
Show Figures

Figure 1

Back to TopTop