Special Issue "Soil-Groundwater Pollution Investigations"

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Soil and Water".

Deadline for manuscript submissions: 20 December 2023 | Viewed by 1357

Special Issue Editors

School of Water Resources and Environment, China University of Geosciences, Beijing, China
Interests: groundwater monitoring; groundwater dynamic variations; groundwater anomaly identification; groundwater response to crustal deformation and earthquakes; hydrogeological parameters variations; groundwater-surface water interactions
Special Issues, Collections and Topics in MDPI journals
Center for Hydrogeology and Environmental Geology Survey, China Geological Survey, Baoding, China
Interests: soil and groundwater pollution; geogenic trace elements in soil and groundwater; CO2 geological sequestration and risk assessment; geothermal energy exploration; utilization and environmental impact
School of Environmental Science and Engineering, Qingdao University, Qingdao, China
Interests: groundwater pollution; water quality evaluation; contaminations transport and transformation; water-rock interaction; in-situ pyrolysis of oil shale and the influences on deep fliuds geochemistry
School of Water Resources and Environment, China University of Geosciences, Beijing, China
Interests: hydrobiogeochemical processes in hyporheic zone; soil and groundwater pollution; stable and radioactive isotopes tracing; solute transport simulation; basin hydrogeochemical processes; pollution risk

Special Issue Information

Dear Colleagues,

Soil and groundwater pollution have been a global issue with regard to ecological-environment security and human health risk. Pollution in soil and groundwater is often very closely interlinked. Water infiltration reaches the aquifer through the soil, which could bring contaminants to the soil or leach the soil contaminants into groundwater. Both groundwater and soil pollution could pose the great threats to water quality and ecosystem security. More and more researchers suggest that the investigation into pollution in groundwater and soil should be integrated. Insights from soil-groundwater pollution investigations can benefit its systemic prevention and control.

The purpose of this Special Issue is to bring together broad views on investigation methods, transport mechanisms, and treatment of soil-groundwater pollution for various kinds of pollutants at varied spatial and temporal scales. Research areas may include (but are not limited to) the following: the characterization of soil/groundwater pollution at various scales (e.g., site and regional scale) using effective investigation methods (field investigation, experiments, and simulation); the identification and apportionment of pollution sources; the transport and reactive processes of contaminants in soil, groundwater, and the soil-groundwater interface under dynamic hydrological conditions; the hydrobiogeochemical processes associated with the migration and transformation of contaminants; pollution in the soil and groundwater near the river/lake/wetland affected by surface water-groundwater interaction; the evaluation of water quality under natural and anthropogenic influences and the associated risks to the ecological environment and human health; and the theoretical treatment and remediation engineering of contaminated soil-groundwater. In this Special Issue, original research articles and reviews are welcome.

Prof. Dr. Guangcai Wang
Prof. Dr. Dongguang Wen
Dr. Shuya Hu
Dr. Liao Fu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • the investigation methods of soil/groundwater pollution
  • contaminants transport and transformation
  • pollution under surface water-groundwater interaction conditions
  • water quality evaluation
  • assessment of ecological environment and human health risks
  • treatment and remediation of contaminated soil-groundwater

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Study on the Release Law of Phenol during Water-Oil Shale Interaction Process
Water 2023, 15(11), 2017; https://doi.org/10.3390/w15112017 - 26 May 2023
Viewed by 300
Abstract
Oil shale, as a reserve resource of conventional energy, has gradually attracted attention. However, water-rock interactions occur during in-situ shale oil extraction, and pollutants generated during this process can contaminate surrounding geological formations and groundwater environments. This article focuses on phenol produced by [...] Read more.
Oil shale, as a reserve resource of conventional energy, has gradually attracted attention. However, water-rock interactions occur during in-situ shale oil extraction, and pollutants generated during this process can contaminate surrounding geological formations and groundwater environments. This article focuses on phenol produced by water-rock interactions and investigates the release behavior of phenol under different reaction temperatures and times, as well as how total organic carbon (TOC), total petroleum hydrocarbons (TPH), and pore size changes affect phenol. The study found that the release concentration of phenol increased with the increase in reaction temperature, reaction time, and the average pore size of the mineral. In addition, with the increase of TOC and TPH concentrations, the concentration of phenol also increased continuously. Full article
(This article belongs to the Special Issue Soil-Groundwater Pollution Investigations)
Show Figures

Figure 1

Article
Impact of Inorganic Solutes’ Release in Groundwater during Oil Shale In Situ Exploitation
Water 2023, 15(1), 172; https://doi.org/10.3390/w15010172 - 31 Dec 2022
Cited by 1 | Viewed by 769
Abstract
Oil shale can produce oil and shale gas by heating the oil shale at 300–500 °C. The high temperature and the release of organic matter can change the physical and mechanical properties of rocks and make the originally tight impervious layer become a [...] Read more.
Oil shale can produce oil and shale gas by heating the oil shale at 300–500 °C. The high temperature and the release of organic matter can change the physical and mechanical properties of rocks and make the originally tight impervious layer become a permeable layer under in situ exploitation conditions. To realize the potential impact of the in situ exploitation of oil shale on groundwater environments, a series of water–rock interaction experiments under different temperatures was conducted. The results show that, with the increase of the reaction temperature, the anions and cations in the aqueous solution of oil shale, oil shale–ash, and the surrounding rock show different trends, and the release of anions and cations in the oil shale–ash solution is most affected by the ambient temperature. The hydrochemical type of oil shale–ash solution is HCO3-SO4-Na-K at 80 °C and 100 °C, which changes the water quality. The main reasons are that (1) the high temperature (≥80 °C) can promote the dissolution of FeS in oil shale and (2) the porosity of oil shale increases after pyrolysis, making it easier to react with water. This paper is an important supplement to the research on the impact of the in situ exploitation of oil shale on the groundwater environment. Therefore, the impacts of in situ mining on groundwater inorganic minerals should be taken into consideration when evaluating in situ exploitation projects of oil shale. Full article
(This article belongs to the Special Issue Soil-Groundwater Pollution Investigations)
Show Figures

Figure 1

Back to TopTop