Engineering Hydrogeology Research Related to Mining Activities

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Hydraulics and Hydrodynamics".

Deadline for manuscript submissions: 25 September 2024 | Viewed by 767

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Mine Water Hazards Prevention and Controlling Technology, School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
Interests: hydrogeology; engineering geology; geological disasters research related to mining activities; geothermal resource development; intelligent warning and monitor of geological disasters

E-Mail Website
Guest Editor
1. National Engineering Research Center of Coal Mine Water Hazard Controlling, Beijing 100083, China
2. College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China
Interests: coal mine water hazard controlling; grouting treatment; water exploration and discharge; advanced drainage; water resource protection; roof water disaster control; mine water inrush

Special Issue Information

Dear Colleagues,

Coal mining usually produces a large amount of mine water and causes a series of engineering hydrogeology problems. On the one hand, coal mining causes safety and environmental impact problems, such as groundwater loss and mine water pollution. On the other hand, coal mining causes some water inrush accidents, such as water inrush from separate layers, water inrush from sand and water inrush from coal seam floors. Although many scholars have been rapidly advancing the field by adopting new ideas and concepts, the safety of mining conditions and the groundwater environment in the mining area have been greatly improved, and the technology, processes and materials of mine water prevention and treatment have been greatly developed, but there are still some problems which include the engineering hydrogeological mechanism of water inrush, hydrogeological problems of deep recharge of mine water, intelligent monitoring and early warning of coal mine water disaster, water-preserved coal mining and research on rock dynamics with fluid–structure coupling. Potential topics include, but are not limited to, the following:

  • Mechanism of water inrush;
  • Mine water hazards prevention and controlling technology;
  • Prediction of mine water hazard;
  • New technology of mine water hazard monitoring and early warning;
  • Water-preserved coal mining;
  • Prevention and control of mine water pollution;
  • Mine water reinjection and geological storage;
  • Modeling of groundwater in mining area;
  • Research on rock dynamics with fluid–structure coupling.

Prof. Dr. Wei Qiao
Dr. Yifan Zeng
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • mechanism of water inrush
  • prediction of mine water hazard
  • intelligent warning and monitor of mine water hazard
  • mine water injection and storage
  • mine water reinjection and geological storage
  • mine inflow
  • evolution of groundwater flow field
  • water inrush from separate layer
  • research on rock dynamics with fluid–structure coupling

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 16475 KiB  
Article
Evaluation of the Effects of Pre-Grouting in Combination with Group Holes on the Risk of Water Inrush through Coal Seam Floors
by Shiyuan Tian, Chunfang Gao, Junchao Yue, Peiguo Heng, Shuitao Guo and Xinyi Wang
Water 2024, 16(8), 1160; https://doi.org/10.3390/w16081160 - 19 Apr 2024
Viewed by 475
Abstract
Coal mine pre-grouting is an important means to reduce the risk of coal seam floor water inrush, and the scientific evaluation of its effects is an important basis for the formulation of water control countermeasures and the realization of safe mining. This paper [...] Read more.
Coal mine pre-grouting is an important means to reduce the risk of coal seam floor water inrush, and the scientific evaluation of its effects is an important basis for the formulation of water control countermeasures and the realization of safe mining. This paper takes the Guhanshan Mine 15,051 working face grouting project as the research object and selects the grouting volume, the length of the meter grouting, the dry material value in tons of water, the complexity of faults, and the threat of water inrush at the working face as the index factors with which to evaluate the effectiveness of the grouting. The geological structure is quantified by fractal theory. The subjective, objective, and comprehensive weights of the index factors are determined by the analytic hierarchy process, the CRITIC method, and the combination weighting method. The grouting effect on the working face is quantitatively identified by the fuzzy variable set comprehensive evaluation model, and zoning is carried out. The research shows that the areas with optimal, good, qualified, and poor grouting effect at the 15,051 working face account for 4.66%, 74.34%, 21.00%, and 0% of the working face area, respectively, and the proportion at the level of qualified or above accounts for 100%. The safety results at the 15,051 working face prove that the selected evaluation index factors are representative, the established model is reliable, and the evaluation results are in line with actual conditions. Full article
(This article belongs to the Special Issue Engineering Hydrogeology Research Related to Mining Activities)
Show Figures

Figure 1

Back to TopTop