Advances in Endemic and Emerging Viral Diseases in Livestock

A special issue of Viruses (ISSN 1999-4915). This special issue belongs to the section "Animal Viruses".

Deadline for manuscript submissions: 1 October 2024 | Viewed by 6564

Special Issue Editors


E-Mail Website
Guest Editor
Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
Interests: emerging viruses with veterinary relevance; virome; diagnostic of viral infections; pathogenesis; immune responses to viral infections
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
Interests: host responses to infections; disease biomarkers; protection to bacterial and viral infections of livestock
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Viral diseases are responsible for significant economic losses in livestock production worldwide and pose a constant threat to food security. Understanding viral pathogenesis and host immune responses is critical for developing and refining appropriate diagnostic methods and vaccines. The surveillance and characterization of emerging viral pathogens are also essential. Therefore, the scope of this comprehensive veterinary virology topic is related to advances in the pathogenesis, immune responses, vaccinology, and detection of endemic and emerging viral diseases in ruminant livestock species and swine.

Dr. Fernando Vicosa Bauermann
Dr. Mayara Maggioli
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Viruses is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Related Special Issue

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 4318 KiB  
Article
The Accumulation of Phenyllactic Acid Impairs Host Glutamine Metabolism and Inhibits African Swine Fever Virus Replication: A Novel Target for the Development of Anti-ASFV Drugs
by Junfei Dai, Xusheng Ma, Ashenafi Kiros Wubshet, Qian Li, Xiaofen Shang, Zhikuan Luo, Jianan Liu, Zhiyu Li, Mingxia Li, Yujie Song, Lijun Guo, Jie Zhang and Haixue Zheng
Viruses 2024, 16(3), 449; https://doi.org/10.3390/v16030449 - 13 Mar 2024
Viewed by 821
Abstract
African swine fever (ASF) is a highly contagious and hemorrhagic disease caused by infection with the African swine fever virus (ASFV), resulting in a mortality rate of up to 100%. Currently, there are no effective treatments and commercially available vaccines for ASF. Therefore, [...] Read more.
African swine fever (ASF) is a highly contagious and hemorrhagic disease caused by infection with the African swine fever virus (ASFV), resulting in a mortality rate of up to 100%. Currently, there are no effective treatments and commercially available vaccines for ASF. Therefore, it is crucial to identify biochemicals derived from host cells that can impede ASFV replication, with the aim of preventing and controlling ASF. The ASFV is an acellular organism that promotes self-replication by hijacking the metabolic machinery and biochemical resources of host cells. ASFV specifically alters the utilization of glucose and glutamine, which are the primary metabolic sources in mammalian cells. This study aimed to investigate the impact of glucose and glutamine metabolic dynamics on the rate of ASFV replication. Our findings demonstrate that ASFV infection favors using glutamine as a metabolic fuel to facilitate self-replication. ASFV replication can be substantially inhibited by blocking glutamine metabolism. The metabolomics analysis of the host cell after late-stage ASFV infection revealed a significant disruption of normal glutamine metabolic pathways due to the abundant expression of PLA (phenyllactic acid). Pretreatment with PLA also inhibited ASFV proliferation and glutamine consumption following infection. The metabolomic analysis also showed that PLA pretreatment greatly slowed down the metabolism of amino acids and nucleotides that depend on glutamine. The depletion of these building blocks directly hindered the replication of ASFV by decreasing the biosynthetic precursors produced during the replication of ASFV’s progeny virus. These findings provide valuable insight into the possibility of pursuing the development of antiviral drugs against ASFV that selectively target metabolic pathways. Full article
(This article belongs to the Special Issue Advances in Endemic and Emerging Viral Diseases in Livestock)
Show Figures

Figure 1

15 pages, 2137 KiB  
Article
Evolution of Endogenous Retroviruses in the Subfamily of Caprinae
by Ali Shoaib Moawad, Fengxu Wang, Yao Zheng, Cai Chen, Ahmed A. Saleh, Jian Hou and Chengyi Song
Viruses 2024, 16(3), 398; https://doi.org/10.3390/v16030398 - 04 Mar 2024
Viewed by 755
Abstract
The interest in endogenous retroviruses (ERVs) has been fueled by their impact on the evolution of the host genome. In this study, we used multiple pipelines to conduct a de novo exploration and annotation of ERVs in 13 species of the Caprinae subfamily. [...] Read more.
The interest in endogenous retroviruses (ERVs) has been fueled by their impact on the evolution of the host genome. In this study, we used multiple pipelines to conduct a de novo exploration and annotation of ERVs in 13 species of the Caprinae subfamily. Through analyses of sequence identity, structural organization, and phylogeny, we defined 28 ERV groups within Caprinae, including 19 gamma retrovirus groups and 9 beta retrovirus groups. Notably, we identified four recent and potentially active groups prevalent in the Caprinae genomes. Additionally, our investigation revealed that most long noncoding genes (lncRNA) and protein-coding genes (PC) contain ERV-derived sequences. Specifically, we observed that ERV-derived sequences were present in approximately 75% of protein-coding genes and 81% of lncRNA genes in sheep. Similarly, in goats, ERV-derived sequences were found in approximately 74% of protein-coding genes and 75% of lncRNA genes. Our findings lead to the conclusion that the majority of ERVs in the Caprinae genomes can be categorized as fossils, representing remnants of past retroviral infections that have become permanently integrated into the genomes. Nevertheless, the identification of the Cap_ERV_20, Cap_ERV_21, Cap_ERV_24, and Cap_ERV_25 groups indicates the presence of relatively recent and potentially active ERVs in these genomes. These particular groups may contribute to the ongoing evolution of the Caprinae genome. The identification of putatively active ERVs in the Caprinae genomes raises the possibility of harnessing them for future genetic marker development. Full article
(This article belongs to the Special Issue Advances in Endemic and Emerging Viral Diseases in Livestock)
Show Figures

Figure 1

13 pages, 2263 KiB  
Article
Immune Responses to Influenza D Virus in Calves Previously Infected with Bovine Viral Diarrhea Virus 2
by Fernando Vicosa Bauermann, Shollie Falkenberg, Jennifer M. Rudd, Cristina Mendes Peter, Ingryd Merchioratto, Jerry W. Ritchey, John Gilliam, Jared Taylor, Hao Ma and Mayara Fernanda Maggioli
Viruses 2023, 15(12), 2442; https://doi.org/10.3390/v15122442 - 16 Dec 2023
Viewed by 806
Abstract
Bovine viral diarrhea virus (BVDV) induces immunosuppression and thymus depletion in calves. This study explores the impact of prior BVDV-2 exposure on the subsequent immune response to influenza D virus (IDV). Twenty 3-week-old calves were divided into four groups. Calves in G1 and [...] Read more.
Bovine viral diarrhea virus (BVDV) induces immunosuppression and thymus depletion in calves. This study explores the impact of prior BVDV-2 exposure on the subsequent immune response to influenza D virus (IDV). Twenty 3-week-old calves were divided into four groups. Calves in G1 and G3 were mock-treated on day 0, while calves in G2 and G4 received BVDV. Calves in G1 (mock) and G2 (BVDV) were necropsied on day 13 post-infection. IDV was inoculated on day 21 in G3 calves (mock + IDV) and G4 (BVDV + IDV) and necropsy was conducted on day 42. Pre-exposed BVDV calves exhibited prolonged and increased IDV shedding in nasal secretions. An approximate 50% reduction in the thymus was observed in acutely infected BVDV calves (G2) compared to controls (G1). On day 42, thymus depletion was observed in two calves in G4, while three had normal weight. BVDV-2-exposed calves had impaired CD8 T cell proliferation after IDV recall stimulation, and the α/β T cell impairment was particularly evident in those with persistent thymic atrophy. Conversely, no difference in antibody levels against IDV was noted. BVDV-induced thymus depletion varied from transient to persistent. Persistent thymus atrophy was correlated with weaker T cell proliferation, suggesting correlation between persistent thymus atrophy and impaired T cell immune response to subsequent infections. Full article
(This article belongs to the Special Issue Advances in Endemic and Emerging Viral Diseases in Livestock)
Show Figures

Figure 1

Review

Jump to: Research

18 pages, 1773 KiB  
Review
Epidemiological Dynamics of Foot-and-Mouth Disease in the Horn of Africa: The Role of Virus Diversity and Animal Movement
by Fanos Tadesse Woldemariyam, Christopher Kinyanjui Kariuki, Joseph Kamau, Annebel De Vleeschauwer, Kris De Clercq, David J. Lefebvre and Jan Paeshuyse
Viruses 2023, 15(4), 969; https://doi.org/10.3390/v15040969 - 14 Apr 2023
Cited by 4 | Viewed by 3624
Abstract
The Horn of Africa is a large area of arid and semi-arid land, holding about 10% of the global and 40% of the entire African livestock population. The region’s livestock production system is mainly extensive and pastoralist. It faces countless problems, such as [...] Read more.
The Horn of Africa is a large area of arid and semi-arid land, holding about 10% of the global and 40% of the entire African livestock population. The region’s livestock production system is mainly extensive and pastoralist. It faces countless problems, such as a shortage of pastures and watering points, poor access to veterinary services, and multiple endemic diseases like foot-and-mouth disease (FMD). Foot-and-mouth disease is one of the most economically important livestock diseases worldwide and is endemic in most developing countries. Within Africa, five of the seven serotypes of the FMD virus (FMDV) are described, but serotype C is not circulating anymore, a burden unseen anywhere in the world. The enormous genetic diversity of FMDV is favored by an error-prone RNA-dependent RNA polymerase, intra-typic and inter-typic recombination, as well as the quasi-species nature of the virus. This paper describes the epidemiological dynamics of foot-and-mouth disease in the Horn of Africa with regard to the serotypes and topotypes distribution of FMDV, the livestock production systems practiced, animal movement, the role of wildlife, and the epidemiological complexity of FMD. Within this review, outbreak investigation data and serological studies confirm the endemicity of the disease in the Horn of Africa. Multiple topotypes of FMDV are described in the literature as circulating in the region, with further evolution of virus diversity predicted. A large susceptible livestock population and the presence of wild ungulates are described as complicating the epidemiology of the disease. Further, the husbandry practices and legal and illegal trading of livestock and their products, coupled with poor biosecurity practices, are also reported to impact the spread of FMDV within and between countries in the region. The porosity of borders for pastoralist herders fuels the unregulated transboundary livestock trade. There are no systematic control strategies in the region except for sporadic vaccination with locally produced vaccines, while literature indicates that effective control measures should also consider virus diversity, livestock movements/biosecurity, transboundary trade, and the reduction of contact with wild, susceptible ungulates. Full article
(This article belongs to the Special Issue Advances in Endemic and Emerging Viral Diseases in Livestock)
Show Figures

Figure 1

Back to TopTop