Porcine Enteric Viruses

A special issue of Viruses (ISSN 1999-4915). This special issue belongs to the section "Animal Viruses".

Deadline for manuscript submissions: 30 June 2024 | Viewed by 3900

Special Issue Editor

Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen 39660, Gyeongbuk-do, Republic of Korea
Interests: enteric viruses; coronavirus; rotavirus; pathogenicity; vaccine

Special Issue Information

Dear Colleagues,

This Special Issue focuses on enteric viruses that cause severe acute and mild diarrhea among pigs, especially in the livestock and veterinary industries. Pig farms are important to the global agricultural economy and produce food. Porcine diarrhea can cause mortality among pigs, especially piglets, and can cause economic losses. The major viruses that cause diarrhea among pigs are coronaviruses (PEDV, TGEV, and PDCoV) and rotavirus. Many porcine-diarrhea-causing viruses have been found in pig feces, including porcine Sapelovirus (PSV), porcine Kobuvirus (PKoV), porcine Sapovirus, porcine Astrovirus (PAstV), porcine Bocavirus, and Caliciviruses (Norovirus and Sapovirus). In addition, many pathogens among swine enteric viruses can also infect humans. However, information regarding enteric viruses among pigs is limited, and hence, there are only a few effective strategies for their control and prevention, despite their significant economic impact. In this Special Issue, we will focus on general topics covering porcine enteric viruses infection. There are no limitations on the types of contributions; original articles, brief communications, case reports, and reviews are welcome. The scope includes, but is not limited to, pathogenesis, molecular mechanisms, host–virus interactions, genetic evolution, epidemiological studies, vaccine development and evaluation, and novel methods of diagnosing porcine enteric viruses infections.

Dr. Dong-Jun An
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Viruses is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • PEDV
  • TGEV
  • rotavirus
  • deltacoronavirus
  • sapelovirus
  • kobuvirus
  • astrovirus
  • pathogenicity
  • genetic evolution
  • vaccine

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 2090 KiB  
Article
Identification of Putative Novel Rotavirus H VP7, VP4, VP6 and NSP4 Genotypes in Pigs
by Elena Ferrari, Greta Vignola, Cristina Bertasio, Chiara Chiapponi, Giovanni Loris Alborali, Vito Martella and Maria Beatrice Boniotti
Viruses 2024, 16(1), 68; https://doi.org/10.3390/v16010068 - 30 Dec 2023
Viewed by 831
Abstract
Rotavirus H (RVH) has been detected in humans, pigs and bats. Recently, RVH infections were reported in different porcine farms worldwide, suggesting epidemiological relevance. However, to date, the genome information of RVH strains has been limited due to the scarcity of deposited sequences. [...] Read more.
Rotavirus H (RVH) has been detected in humans, pigs and bats. Recently, RVH infections were reported in different porcine farms worldwide, suggesting epidemiological relevance. However, to date, the genome information of RVH strains has been limited due to the scarcity of deposited sequences. This study aimed to characterize the VP7, VP4, VP6 and NSP4 genes of RVHs from 27 symptomatic pigs, in Italy, between 2017 and 2021. RVH genes were amplified via RT-PCR using specific primers, and the amplicons were sequenced. By coupling the data generated in this study with the sequences available in the databases, we elaborated a classification scheme useful to genotype the VP7, VP4, VP6 and NSP4 genes. The nucleotide identity and phylogenetic analyses unveiled an impressive genetic heterogeneity and allowed the classification of the Italian RVH strains into 12G (VP7), 6P (VP4), 8I (VP6) and 8E (NSP4) genotypes, of which 6I, 5E and the totality of the G and P genotypes were of novel identification. Our data highlight the high genetic variability of the RVH strains circulating in pigs and underline the importance of a robust classification system to track the epidemiology of RVHs. Full article
(This article belongs to the Special Issue Porcine Enteric Viruses)
Show Figures

Figure 1

16 pages, 7142 KiB  
Article
Cholesterol 25-Hydroxylase Suppresses Swine Acute Diarrhea Syndrome Coronavirus Infection by Blocking Spike Protein-Mediated Membrane Fusion
by Dakai Liu, Da Shi, Hongyan Shi, Liaoyuan Zhang, Jiyu Zhang, Miaomiao Zeng, Tingshuai Feng, Xiaoman Yang, Xin Zhang, Jianfei Chen, Zhaoyang Jing, Zhaoyang Ji, Jialin Zhang and Li Feng
Viruses 2023, 15(12), 2406; https://doi.org/10.3390/v15122406 - 11 Dec 2023
Viewed by 786
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an emerging porcine intestinal coronavirus that can cause acute diarrhea, vomiting, rapid weight loss, and high mortality in newborn piglets. Cholesterol 25-hydroxylase (CH25H) is a molecular mediator of innate antiviral immunity and converts cholesterol to 25-hydroxycholesterol [...] Read more.
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an emerging porcine intestinal coronavirus that can cause acute diarrhea, vomiting, rapid weight loss, and high mortality in newborn piglets. Cholesterol 25-hydroxylase (CH25H) is a molecular mediator of innate antiviral immunity and converts cholesterol to 25-hydroxycholesterol (25HC). Previous studies have reported that CH25H and 25HC have an antiviral effect against multiple viruses. However, the interplay between SADS-CoV infection and CH25H or 25HC is still uncertain. Here, we found that CH25H and its enzymatic product 25HC restrained SADS-CoV replication by blocking membrane fusion. Our results show that CH25H was upregulated by SADS-CoV infection in vitro and in vivo, and that it was an IFN-stimulated gene in porcine ileum epithelial cells. Moreover, CH25H and CH25H mutants lacking catalytic activity can inhibit SADS-CoV replication. Furthermore, 25HC significantly suppressed SADS-CoV infection by inhibiting virus entry. Notably, we confirmed that CH25H and 25HC blocked SADS-CoV spike protein-mediated membrane fusion. Our data provide a possible antiviral therapy against SADS-CoV and other conceivable emerging coronaviruses in the future. Full article
(This article belongs to the Special Issue Porcine Enteric Viruses)
Show Figures

Figure 1

13 pages, 2704 KiB  
Article
High Prevalence, Genetic Diversity, and Recombination of Porcine Sapelovirus in Pig Farms in Fujian, Southern China
by Qiu-Yong Chen, Zhi-Hua Sun, Yong-Liang Che, Ru-Jing Chen, Xue-Min Wu, Ren-Jie Wu, Long-Bai Wang and Lun-Jiang Zhou
Viruses 2023, 15(8), 1751; https://doi.org/10.3390/v15081751 - 17 Aug 2023
Viewed by 820
Abstract
Porcine sapelovirus (PSV) is a ubiquitous virus in farmed pigs that is associated with SMEDI syndrome, polioencephalomyelitis, and diarrhea. However, there are few reports on the prevalence and molecular characterization of PSV in Fujian Province, Southern China. In this study, the prevalence of [...] Read more.
Porcine sapelovirus (PSV) is a ubiquitous virus in farmed pigs that is associated with SMEDI syndrome, polioencephalomyelitis, and diarrhea. However, there are few reports on the prevalence and molecular characterization of PSV in Fujian Province, Southern China. In this study, the prevalence of PSV and a poetical combinative strain PSV2020 were characterized using real-time PCR, sequencing, and bioinformatics analysis. As a result, an overall sample prevalence of 30.8% was detected in 260 fecal samples, and a farm prevalence of 76.7% was observed in 30 Fujian pig farms, from 2020 to 2022. Noteably, a high rate of PSV was found in sucking pigs. Bioinformatics analysis showed that the full-length genome of PSV2020 was 7550 bp, and the genetic evolution of its ORF region was closest to the G1 subgroup, which was isolated from Asia and America; the similarity of nucleotides and amino acids to other PSVs was 59.5~88.7% and 51.7~97.0%, respectively. However, VP1 genetic evolution analysis showed a distinct phylogenetic topology from the ORF region; PSV2020 VP1 was closer to the DIAPD5469-10 strain isolated from Italy than strains isolated from Asia and America, which comprise the G1 subgroup based on the ORF region. Amino acid discrepancy analysis illustrated that the PSV2020 VP1 gene inserted twelve additional nucleotides, corresponding to four additional amino acids (STAE) at positions 898–902 AAs. Moreover, a potential recombination signal was observed in the 2A coding region, near the 3′ end of VP1, owing to recombination analysis. Additionally, 3D genetic evolutionary analysis showed that all reference strains demonstrated, to some degree, regional conservation. These results suggested that PSV was highly prevalent in Fujian pig farms, and PSV2020, a PSV-1 genotype strain, showed gene diversity and recombination in evolutionary progress. This study also laid a scientific foundation for the investigation of PSV epidemiology, molecular genetic characteristics, and vaccine development. Full article
(This article belongs to the Special Issue Porcine Enteric Viruses)
Show Figures

Figure 1

13 pages, 4857 KiB  
Article
Rescue of a Live-Attenuated Porcine Epidemic Diarrhea Virus HSGP Strain Using a Virulent Strain and a Partially Attenuated Strain
by Sok Song, Gyu-Nam Park, Jihye Shin, Ki-Sun Kim, Byung-Hyun An, SeEun Choe, Song-Yi Kim, Bang-Hun Hyun and Dong-Jun An
Viruses 2023, 15(7), 1601; https://doi.org/10.3390/v15071601 - 21 Jul 2023
Viewed by 1039
Abstract
In South Korea in 2013, the G1-based vaccine failed to prevent an outbreak of G2b-type porcine epidemic diarrhea virus (PEDV), which is more pathogenic than the traditional G1-type strain, thereby allowing the virus to spread. In 2017 and 2018, field samples were cultured [...] Read more.
In South Korea in 2013, the G1-based vaccine failed to prevent an outbreak of G2b-type porcine epidemic diarrhea virus (PEDV), which is more pathogenic than the traditional G1-type strain, thereby allowing the virus to spread. In 2017 and 2018, field samples were cultured sequentially on Vero cells to isolate HS (virulent) and SGP-M1 (partially attenuated) strains, respectively, of the G2b type. The HS strain harbors a single amino acid (aa) change and two aa deletions in the N-terminal domain of S1 (55I56G57E→55K56Δ57Δ). The SGP-M1 strain harbors a seven aa deletion in the C-terminal domain of S2 (1380~1386ΔFEKVHVQ). By co-infecting various animal cells with these two strains (HS and SGP-M1), we succeeded in cloning strain HSGP, which harbors the mutations present in the two original viruses. The CPE pattern of the HSGP strain was different from that of the HS and SGP-M1 strains, with higher viral titers. Studies in piglets showed attenuated pathogenicity of the HSGP strain, with no clinical symptoms or viral shedding, and histopathologic lesions similar to those in negative controls. These findings confirm that deletion of specific sequences from the S gene attenuates the pathogenicity of PEDV. In addition, HSGP strains created by combining two different strains have the potential for use as novel attenuated live vaccine candidates. Full article
(This article belongs to the Special Issue Porcine Enteric Viruses)
Show Figures

Figure 1

Back to TopTop