Special Issue "Veterinary Vaccines"

A special issue of Vaccines (ISSN 2076-393X). This special issue belongs to the section "Veterinary Vaccines".

Deadline for manuscript submissions: closed (31 May 2023) | Viewed by 3357

Special Issue Editors

Instituto De Ciências Da Saúde, Federal University of Bahia, Salvador 40170110, Brazil
Interests: reverse vaccinology; veterinary vaccines; recombinant proteins
Biotecnologia, Universidade Federal de Pelotas, Pelotas 96010610, Brazil
Interests: reverse vaccinology; veterinary vaccines; recombinant proteins; biotechnology

Special Issue Information

Dear Colleagues,

The field of veterinary vaccination has seen many significant advances in technologies over the past years, with the introduction of several vaccines based on novel recombinant DNA technology. In addition, improved knowledge of immune response mechanisms has brought successes in the development of vaccines that protect against challenging pathogens. Such vaccines have been successfully used to address many of the important veterinary and human diseases. With the current interest in One Health approaches to humans, animals, and the environment, veterinary vaccines have an important role to play in the development of further vaccine technologies.

The aim of this Special Issue is to present recent vaccination strategies that are now available and in development to the veterinary research worker. In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following:

  • Traditional vaccine technologies based on killed/inactivated and live/attenuated approaches;
  • Live vectored vaccines;
  • Modified live marker/differentiating infection in vaccinated animals;
  • Recombinant subunit and protein vaccines;
  • Peptide vaccines;
  • Nucleic acid vaccines.

We look forward to receiving your contributions.

Dr. Silvana Beutinger Marchioro
Dr. Sibele Borsuk
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Vaccines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • vaccines
  • animals
  • inactivated
  • attenuated
  • DIVA
  • subunit
  • peptide
  • vector
  • nucleic acid

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
A Booster with a Genotype-Matched Inactivated Newcastle Disease Virus (NDV) Vaccine Candidate Provides Better Protection against a Virulent Genotype XIII.2 Virus
Vaccines 2023, 11(5), 1005; https://doi.org/10.3390/vaccines11051005 - 20 May 2023
Viewed by 902
Abstract
Newcastle disease (ND) is endemic in Bangladesh. Locally produced or imported live Newcastle disease virus (NDV) vaccines based on lentogenic virus strains, locally produced live vaccines of the mesogenic Mukteswar strain, as well as imported inactivated vaccines of lentogenic strains, are being used [...] Read more.
Newcastle disease (ND) is endemic in Bangladesh. Locally produced or imported live Newcastle disease virus (NDV) vaccines based on lentogenic virus strains, locally produced live vaccines of the mesogenic Mukteswar strain, as well as imported inactivated vaccines of lentogenic strains, are being used in Bangladesh under different vaccination regimens. Despite these vaccinations, frequent outbreaks of ND are being reported in Bangladesh. Here we compared the efficacy of booster immunization with three different vaccines in chickens that had been primed with two doses of live LaSota vaccine. A total of 30 birds (Group A) were primed with two doses of live LaSota virus (genotype II) vaccine at days 7 and 28, while 20 birds (Group B) remained unvaccinated. At day 60, birds of Group A were divided into three sub-groups, which received booster immunizations with three different vaccines; A1: live LaSota vaccine, A2: inactivated LaSota vaccine, and A3: inactivated genotype XIII.2 vaccine (BD-C161/2010 strain from Bangladesh). Two weeks after booster vaccination (at day 74), all vaccinated birds (A1–A3) and half of the unvaccinated birds (B1) were challenged with a genotype XIII.2 virulent NDV (BD-C161/2010). A moderate antibody response was observed after the primary vaccination, which substantially increased after the booster vaccination in all groups. The mean HI titers induced by the inactivated LaSota vaccine (8.0 log2/5.0 log2 with LaSota/BD-C161/2010 HI antigen) and the inactivated BD-C161/2010 vaccine (6.7 log2/6.2 log2 with LaSota/BD-C161/2010 HI antigen) were significantly higher than those induced by the LaSota live booster vaccine (3.6 log2/2.6 log2 with LaSota/BD-C161/2010 HI antigen). Despite the differences in the antibody titers, all chickens (A1–A3) survived the virulent NDV challenge, while all the unvaccinated challenged birds died. Among the vaccinated groups, however, 50% of the chickens in Group A1 (live LaSota booster immunization) shed virus at 5- and 7-days post challenge (dpc), while 20% and 10% of the chickens in Group A2 (inactivated LaSota booster immunization) shed virus at 3 and 5 dpc, respectively, and only one chicken (10%) in Group A3 shed virus at 5 dpc. In conclusion, the genotype-matched inactivated NDV booster vaccine offers complete clinical protection and a significant reduction in virus shedding. Full article
(This article belongs to the Special Issue Veterinary Vaccines)
Show Figures

Figure 1

Article
Cross-Protection of an Inactivated and a Live-Attenuated Lumpy Skin Disease Virus Vaccine against Sheeppox Virus Infections in Sheep
Vaccines 2023, 11(4), 763; https://doi.org/10.3390/vaccines11040763 - 29 Mar 2023
Viewed by 559
Abstract
Sheeppox virus (SPPV) (genus Capripoxvirus, family Poxviridae) infections are a highly virulent and contagious disease of sheep with a high morbidity and mortality, especially in naïve populations and young animals. For the control of SPPV, homologous and heterologous live-attenuated vaccines are commercially available. [...] Read more.
Sheeppox virus (SPPV) (genus Capripoxvirus, family Poxviridae) infections are a highly virulent and contagious disease of sheep with a high morbidity and mortality, especially in naïve populations and young animals. For the control of SPPV, homologous and heterologous live-attenuated vaccines are commercially available. In our study, we compared a commercially available live-attenuated lumpy skin disease virus (LSDV) vaccine strain (Lumpyvax) with our recently developed inactivated LSDV vaccine candidate regarding their protective efficacy against SPPV in sheep. Both vaccines were proven to be safe in sheep, and neither clinical signs nor viremia could be detected after vaccination and challenge infection. However, the local replication of the challenge virus in the nasal mucosa of previously vaccinated animals was observed. Because of the advantages of an inactivated vaccine and its heterologous protection efficacy against SPPV in sheep, our inactivated LSDV vaccine candidate is a promising additional tool for the prevention and control of SPPV outbreaks in the future. Full article
(This article belongs to the Special Issue Veterinary Vaccines)
Show Figures

Figure 1

Communication
Evaluation of the Association of Recombinant Proteins NanH and PknG from Corynebacterium pseudotuberculosis Using Different Adjuvants as a Recombinant Vaccine in Mice
Vaccines 2023, 11(3), 519; https://doi.org/10.3390/vaccines11030519 - 23 Feb 2023
Viewed by 551
Abstract
Caseous lymphadenitis is a chronic contagious disease that causes economic losses worldwide. Treatments are ineffective, thus demonstrating the importance of vaccination. In this study, rNanH and rPknG proteins from Corynebacterium pseudotuberculosis were associated with saponin or aluminum hydroxide adjuvants. Three experimental groups (10 [...] Read more.
Caseous lymphadenitis is a chronic contagious disease that causes economic losses worldwide. Treatments are ineffective, thus demonstrating the importance of vaccination. In this study, rNanH and rPknG proteins from Corynebacterium pseudotuberculosis were associated with saponin or aluminum hydroxide adjuvants. Three experimental groups (10 animals each) were immunized with sterile 0.9% saline solution (G1), rNanH + rPknG + Saponin (G2), rNanH + rPknG + Al(OH)3 (G3). The mice received two vaccine doses 21 days apart. Animals were challenged 21 days after the last immunization and evaluated for 50 days, with endpoint criteria applied when needed. The total IgG production levels of the experimental groups increased significantly on day 42 when compared to the control (p < 0.05). When tested against rNanH, G2 had a better rate of anti-rNanH antibodies compared to G3. In the anti-rPknG ELISA, the levels of total IgG, IgG1, and IgG2a antibodies were higher in G2. The vaccines generated partial protection, with 40% of the animals surviving the challenge. The association of recombinant NanH and PknG proteins led to promising protection rates in mice, and although using different adjuvants did not interfere with the survival rate, it influenced the immune response generated by the vaccine formulations. Full article
(This article belongs to the Special Issue Veterinary Vaccines)
Show Figures

Figure 1

Article
A Vaccine Targeting Ovine Herpesvirus 2 Glycoprotein B Protects against Sheep-Associated Malignant Catarrhal Fever
Vaccines 2022, 10(12), 2156; https://doi.org/10.3390/vaccines10122156 - 15 Dec 2022
Cited by 1 | Viewed by 897
Abstract
Malignant catarrhal fever (MCF) is a complex and often fatal disease of ungulates. Effective vaccines are needed to avoid MCF outbreaks and mitigate losses. This study aimed to evaluate a sheep-associated MCF (SA-MCF) vaccine candidate targeting ovine herpesvirus 2 (OvHV-2) glycoprotein B (gB). [...] Read more.
Malignant catarrhal fever (MCF) is a complex and often fatal disease of ungulates. Effective vaccines are needed to avoid MCF outbreaks and mitigate losses. This study aimed to evaluate a sheep-associated MCF (SA-MCF) vaccine candidate targeting ovine herpesvirus 2 (OvHV-2) glycoprotein B (gB). Rabbits were used as a laboratory animal model to test the safety, immunogenicity, and protective efficacy of a chimeric virus consisting of a recombinant, non-pathogenic strain of alcelaphine herpesvirus-1 encoding OvHV-2 ORF8 to express gB (AlHV-1∆ORF73/OvHV-2-ORF8). Viral-vectored immunizations were performed by using the AlHV-1∆ORF73/OvHV-2-ORF8 chimera alone or as a DNA prime (OvHV-2-ORF8)-virus boost regimen. The viral vector was inoculated by intravenous or intramuscular routes and the DNA was delivered by intradermal shots using a gene gun. The vaccine candidates were deemed safe as no clinical signs were observed following any of the immunizations. Anti-OvHV-2 gB antibodies with neutralizing activity were induced by all immunogens. At three weeks post-final immunization, all animals were challenged intranasally with a lethal dose of OvHV-2. MCF protection rates ranging from 66.7% to 71.4% were observed in vaccinated rabbits, while all mock-vaccinated animals developed the disease. The significant protective efficacy obtained with the vaccine platforms tested in this study encourages further trials in relevant livestock species, such as cattle and bison. Full article
(This article belongs to the Special Issue Veterinary Vaccines)
Show Figures

Figure 1

Back to TopTop