Epigenetic Changes in Organisms Stressed by Environmental Pollution

A special issue of Toxics (ISSN 2305-6304). This special issue belongs to the section "Novel Methods in Toxicology Research".

Deadline for manuscript submissions: closed (31 January 2023) | Viewed by 5763

Special Issue Editors

Institute of Zoology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
Interests: epigenetics; transcriptomics; ecotoxicology; environmental pollution

E-Mail Website
Guest Editor
Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
Interests: evolutionary ecology; evolutionary genomics; adaptation to anthropogenic disturbances; ecotoxicology; population genetics

Special Issue Information

Dear Colleagues,

Environmental pollution can exert tremendous effects on the epigenetic landscape of the affected organisms and, in this way, play a significant role in adaptation to changing environmental conditions. Changes in epigenetic marks, including DNA methylation, histone modifications, and non-coding RNAs, can induce changes in gene transcription, leading to long-term physiological changes or even transgenerational inheritance. As such, epigenetic marks present highly promising tools for the development of sensitive and predictive biomarkers of environmental exposure in the field of ecotoxicology.

The focus of this Special Issue is to further explore the effects of environmental pollution on epigenetic marks in both invertebrate and vertebrate model organisms stressed with pollutants in their natural habitats as well as in controlled laboratory setups. Original research articles and reviews exploring the effects of pollutants on epigenetic marks, as well as their links to gene expression and phenotypic traits, are highly welcomed. Articles defining all aspects of epigenetic inheritance, including intergenerational, multigenerational, and transgenerational effects, are of particular significance.

Dr. Maja Šrut
Dr. Anamaria Štambuk
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Toxics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • epigenetics
  • DNA methylation
  • histone modifications
  • small RNAs
  • environmental pollution
  • epigenetic biomarkers

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 3993 KiB  
Article
Trans- and Multigenerational Effects of Isothiazolinone Biocide CMIT/MIT on Genotoxicity and Epigenotoxicity in Daphnia magna
by Jiwan Kim and Jinhee Choi
Toxics 2023, 11(4), 388; https://doi.org/10.3390/toxics11040388 - 20 Apr 2023
Cited by 2 | Viewed by 1949
Abstract
The mixture of 5-chloro-2-methylisothiazol-3(2H)-one and 2-methylisothiazol-3(2H)-one, CMIT/MIT, is an isothiazolinone biocide that is consistently detected in aquatic environments because of its broad-spectrum usage in industrial fields. Despite concerns about ecotoxicological risks and possible multigenerational exposure, toxicological information on CMIT/MIT is very limited to [...] Read more.
The mixture of 5-chloro-2-methylisothiazol-3(2H)-one and 2-methylisothiazol-3(2H)-one, CMIT/MIT, is an isothiazolinone biocide that is consistently detected in aquatic environments because of its broad-spectrum usage in industrial fields. Despite concerns about ecotoxicological risks and possible multigenerational exposure, toxicological information on CMIT/MIT is very limited to human health and within-generational toxicity. Furthermore, epigenetic markers altered by chemical exposure can be transmitted over generations, but the role of these changes in phenotypic responses and toxicity with respect to trans- and multigenerational effects is poorly understood. In this study, the toxicity of CMIT/MIT on Daphnia magna was evaluated by measuring various endpoints (mortality, reproduction, body size, swimming behavior, and proteomic expression), and its trans- and multigenerational effects were investigated over four consecutive generations. The genotoxicity and epigenotoxicity of CMIT/MIT were examined using a comet assay and global DNA methylation measurements. The results show deleterious effects on various endpoints and differences in response patterns according to different exposure histories. Parental effects were transgenerational or recovered after exposure termination, while multigenerational exposure led to acclimatory/defensive responses. Changes in DNA damage were closely associated with altered reproduction in daphnids, but their possible relationship with global DNA methylation was not found. Overall, this study provides ecotoxicological information on CMIT/MIT relative to multifaceted endpoints and aids in understanding multigenerational phenomena under CMIT/MIT exposure. It also emphasizes the consideration of exposure duration and multigenerational observations in evaluating ecotoxicity and the risk management of isothiazolinone biocides. Full article
(This article belongs to the Special Issue Epigenetic Changes in Organisms Stressed by Environmental Pollution)
Show Figures

Graphical abstract

17 pages, 2104 KiB  
Article
Marine Pollutant Tributyltin Affects DNA Methylation and Fitness of Banded Murex (Hexaplex trunculus) Populations
by Maja Šrut, Iva Sabolić, Anita Erdelez, Dorotea Grbin, Martina Furdek Turk, Robert Bakarić, Melita Peharda and Anamaria Štambuk
Toxics 2023, 11(3), 276; https://doi.org/10.3390/toxics11030276 - 17 Mar 2023
Cited by 1 | Viewed by 1215
Abstract
Banded murex, Hexaplex trunculus, is a marine gastropod whose reproductive fitness can be severely affected by very low concentrations of antifouling compound tributyltin (TBT). TBT has strong xenoandrogen impacts on snails, causing the development of imposex (e.g., the superimposition of male sexual [...] Read more.
Banded murex, Hexaplex trunculus, is a marine gastropod whose reproductive fitness can be severely affected by very low concentrations of antifouling compound tributyltin (TBT). TBT has strong xenoandrogen impacts on snails, causing the development of imposex (e.g., the superimposition of male sexual characteristic in females), thereby affecting the fitness of entire populations. TBT is also known as a DNA-demethylating agent and an obesogenic factor. The aim of this study was to unravel the interactions between TBT bioaccumulation, phenotypic responses, and epigenetic and genetic endpoints in native populations of H. trunculus. Seven populations inhabiting environments along the pollution gradient were sampled in the coastal eastern Adriatic. These included sites of intense marine traffic and boat maintenance activity and sites with low anthropogenic impact. Populations inhabiting intermediately and highly polluted sites exhibited higher TBT burdens, higher incidences of imposex, and higher wet masses of snails than populations in lowly polluted sites. Other morphometric traits and cellular biomarker responses did not show clear differentiation among populations in relation to marine traffic/pollution intensity. An analysis of methylation sensitive amplification polymorphism (MSAP) revealed environmentally driven population differentiation and higher epigenetics than genetic within-population diversity. Moreover, decreases in genome-wide DNA methylation coincided with the imposex level and snail mass, suggesting an epigenetic background of the animal phenotypic response. Full article
(This article belongs to the Special Issue Epigenetic Changes in Organisms Stressed by Environmental Pollution)
Show Figures

Figure 1

Review

Jump to: Research

11 pages, 579 KiB  
Review
Environmental Epigenetics in Soil Ecosystems: Earthworms as Model Organisms
by Maja Šrut
Toxics 2022, 10(7), 406; https://doi.org/10.3390/toxics10070406 - 20 Jul 2022
Cited by 3 | Viewed by 1991
Abstract
One of the major emerging concerns within ecotoxicology is the effect of environmental pollutants on epigenetic changes, including DNA methylation, histone modifications, and non-coding RNAs. Epigenetic mechanisms regulate gene expression, meaning that the alterations of epigenetic marks can induce long-term physiological effects that [...] Read more.
One of the major emerging concerns within ecotoxicology is the effect of environmental pollutants on epigenetic changes, including DNA methylation, histone modifications, and non-coding RNAs. Epigenetic mechanisms regulate gene expression, meaning that the alterations of epigenetic marks can induce long-term physiological effects that can even be inherited across generations. Many invertebrate species have been used as models in environmental epigenetics, with a special focus on DNA methylation changes caused by environmental perturbations (e.g., pollution). Among soil organisms, earthworms are considered the most relevant sentinel organisms for anthropogenic stress assessment and are widely used as standard models in ecotoxicological testing of soil toxicity. In the last decade, several research groups have focused on assessing the impact of environmental stress on earthworm epigenetic mechanisms and tried to link these mechanisms to the physiological effects. The aim of this review is to give an overview and to critically examine the available literature covering this topic. The high level of earthworm genome methylation for an invertebrate species, responsiveness of epigenome to environmental stimuli, availability of molecular resources, and the possibility to study epigenetic inheritance make earthworms adequate models in environmental epigenomics. However, there are still many knowledge gaps that need to be filled in, before we can fully explore earthworms as models in this field. These include detailed characterization of the methylome using next-generation sequencing tools, exploration of multigenerational and transgenerational effects of pollutants, and information about other epigenetic mechanisms apart from DNA methylation. Moreover, the connection between epigenetic effects and phenotype has to be further explored. Full article
(This article belongs to the Special Issue Epigenetic Changes in Organisms Stressed by Environmental Pollution)
Show Figures

Figure 1

Back to TopTop