Porous Media to Improve the Thermal Performance of Phase Change Materials

A special issue of Thermo (ISSN 2673-7264).

Deadline for manuscript submissions: closed (29 February 2024) | Viewed by 1093

Special Issue Editors


E-Mail Website
Guest Editor
Department of Industrial Engineering, University of Naples Federico II, 80138 Napoli, Italy
Interests: porous media; thermal energy storage; phase change materials; bioheat; hyperthermia
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Materials Science, Energy, and Nano-Engineering MSN Department, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
Interests: thermodynamics; fluid phase equilibrium; structure–properties relationships; various thermodynamic-based models; process simulation models
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Phase change materials have been shown to be promising because of their capability in absorbing/releasing heat at a constant temperature. However, it is widely known that their poor thermal characteristics such as conductivity are limiting, as they do not allow these materials to have a large energy density or fast melting/solidification transients. Despite many solutions that have been proposed recently, porous materials such as metal foams, 3D-printed cellular structures, etc., have been shown to be promising. This is because a highly conductive metal is introduced within the phase change materials, increasing not only the overall thermal conductivity, but also the available area for the heat transfer between metal and the phase change materials.

The aim of the present Special Issue is to collect original contributions on thermal enhancement techniques for phase change materials based on porous media, and that propose new solutions to this very recent challenge for energy efficiency and sustainability improvement goals.

Dr. Marcello Iasiello
Prof. Dr. Johan Jacquemin
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Thermo is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • phase change materials
  • porous media
  • thermal energy storage
  • metal foams
  • cellular materials
  • heat transfer
  • thermal performances
  • thermal conductivity

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

27 pages, 4327 KiB  
Article
On the Effective Thermophysical Properties of Phase Change Materials Embedded in Metallic Lattice Structures with Generic Topological Parameters
by Stefano Piacquadio, Johannes Soika, Maximilian Schirp, Kai-Uwe Schröder and Sauro Filippeschi
Thermo 2023, 3(4), 566-592; https://doi.org/10.3390/thermo3040034 - 07 Oct 2023
Viewed by 743
Abstract
The recent literature has introduced the use of architected materials with a metallic lattice structure-based topology to enhance the thermal conductivity of phase change materials (PCM). The potential of such structures lies in the freedom of design with complex geometries. This, however, has [...] Read more.
The recent literature has introduced the use of architected materials with a metallic lattice structure-based topology to enhance the thermal conductivity of phase change materials (PCM). The potential of such structures lies in the freedom of design with complex geometries. This, however, has introduced novel challenges regarding the analytical description of these materials’ effective thermophysical properties, which are used in order to treat the composite as a homogenized material. Only a few limited works have been presented thus far that have holistically addressed the calculation of such properties. The wide variety of possible geometric parameters in these materials can only be appropriately treated via an adaptable approach that can be extended to upcoming lattice geometries. With this aim in mind, the present work introduces a method to calculate the effective thermal conductivity of the discussed composite PCM. A cell-based approach to calculate the effective thermal conductivity is introduced. The method makes use of Steinmetz’s solids as a basis from which one can derive the porosity of unit cells with variable geometric parameters. Empirical factors are introduced to account for limitations due to the complex geometry and eventual manufacturing imperfections of these structures. Thus, semi-analytical formulae to describe the effective thermal conductivity of the lattice cells are derived for a variety of cuboid and hexagonal prismatic unit cells with generic topological parameters. The formulae are validated against the models and experimental results present in the literature. Finally, an analysis and discussion of the limited validity of homogenization techniques for lattice structures is presented. Full article
Show Figures

Figure 1

Back to TopTop