Cognitive and Neurophysiological Models of Brain Asymmetry

A special issue of Symmetry (ISSN 2073-8994). This special issue belongs to the section "Life Sciences".

Deadline for manuscript submissions: closed (30 November 2021) | Viewed by 57526

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editors


E-Mail Website
Guest Editor
Ruhr-University BochumFakultät für PsychologieAE BiopsychologieD-44780 Bochum, Germany
Interests: brain asymmetry; hemispheric asymmetries; handedness; language lateralization; genetics; neuroscience; neuroimaging; laterality; psychology; meta-analysis

E-Mail Website
Guest Editor
Ruhr-University BochumFakultät für PsychologieAE BiopsychologieD-44780 Bochum, Germany

Special Issue Information

Dear Collegues,

Asymmetry is an inherent characteristic of brain organization in both humans and other vertebrate species. It is evident on the behavioural, neurophysiological and structural level. Brain asymmetry underlies the organization of several cognitive systems, such as emotion, communication and spatial processing. Despite this ubiquity of asymmetries in the vertebrate brain, we are only beginning to understand the complex neuronal mechanisms underlying this interaction between hemispheric asymmetries and cognitive systems. Unfortunately, despite the vast amount of empirical studies on brain asymmetries, theoretical models that aim for mechanistic explanations are sparse in the field. Therefore, this Special Issue is aimed at highlighting empirically-based mechanistic models of brain asymmetry. Both empirical papers testing existing or new models as well as theoretical papers suggesting new models of brain asymmetry are welcomed for the Special Issue. Replication studies of existing empirical evidence for specific models are also encouraged. Both submissions covering research in humans or research in non-human model species are welcome.

Dr. Sebastian Ocklenburg
Prof. Dr. Onur Güntürkün
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Symmetry is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • neuroscience
  • brain
  • asymmetry
  • laterality
  • functional hemispheric asymmetries
  • structural hemispheric asymmetries
  • theoretical models

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

5 pages, 213 KiB  
Editorial
Cognitive and Neurophysiological Models of Brain Asymmetry
by Sebastian Ocklenburg and Onur Güntürkün
Symmetry 2022, 14(5), 971; https://doi.org/10.3390/sym14050971 - 09 May 2022
Cited by 1 | Viewed by 1857
Abstract
Asymmetry is an inherent characteristic of brain organization in both humans and other vertebrate species, and is evident at the behavioral, neurophysiological, and structural levels. Brain asymmetry underlies the organization of several cognitive systems, such as emotion, communication, and spatial processing. Despite this [...] Read more.
Asymmetry is an inherent characteristic of brain organization in both humans and other vertebrate species, and is evident at the behavioral, neurophysiological, and structural levels. Brain asymmetry underlies the organization of several cognitive systems, such as emotion, communication, and spatial processing. Despite this ubiquity of asymmetries in the vertebrate brain, we are only beginning to understand the complex neuronal mechanisms underlying the interaction between hemispheric asymmetries and cognitive systems. Unfortunately, despite the vast number of empirical studies on brain asymmetries, theoretical models that aim to provide mechanistic explanations of hemispheric asymmetries are sparse in the field. Therefore, this Special Issue aims to highlight empirically based mechanistic models of brain asymmetry. Overall, six theoretical and four empirical articles were published in the Special Issue, covering a wide range of topics, from human handedness to auditory laterality in bats. Two key challenges for theoretical models of brain asymmetry are the integration of increasingly complex molecular data into testable models, and the creation of theoretical models that are robust and testable across different species. Full article
(This article belongs to the Special Issue Cognitive and Neurophysiological Models of Brain Asymmetry)

Research

Jump to: Editorial, Review

21 pages, 4633 KiB  
Article
Hemispheric and Sex Differences in Mustached Bat Primary Auditory Cortex Revealed by Neural Responses to Slow Frequency Modulations
by Stuart D. Washington, Dominique L. Pritchett, Georgios A. Keliris and Jagmeet S. Kanwal
Symmetry 2021, 13(6), 1037; https://doi.org/10.3390/sym13061037 - 08 Jun 2021
Cited by 3 | Viewed by 2131
Abstract
The mustached bat (Pteronotus parnellii) is a mammalian model of cortical hemispheric asymmetry. In this species, complex social vocalizations are processed preferentially in the left Doppler-shifted constant frequency (DSCF) subregion of primary auditory cortex. Like hemispheric specializations for speech and music, [...] Read more.
The mustached bat (Pteronotus parnellii) is a mammalian model of cortical hemispheric asymmetry. In this species, complex social vocalizations are processed preferentially in the left Doppler-shifted constant frequency (DSCF) subregion of primary auditory cortex. Like hemispheric specializations for speech and music, this bat brain asymmetry differs between sexes (i.e., males>females) and is linked to spectrotemporal processing based on selectivities to frequency modulations (FMs) with rapid rates (>0.5 kHz/ms). Analyzing responses to the long-duration (>10 ms), slow-rate (<0.5 kHz/ms) FMs to which most DSCF neurons respond may reveal additional neural substrates underlying this asymmetry. Here, we bilaterally recorded responses from 176 DSCF neurons in male and female bats that were elicited by upward and downward FMs fixed at 0.04 kHz/ms and presented at 0–90 dB SPL. In females, we found inter-hemispheric latency differences consistent with applying different temporal windows to precisely integrate spectrotemporal information. In males, we found a substrate for asymmetry less related to spectrotemporal processing than to acoustic energy (i.e., amplitude). These results suggest that in the DSCF area, (1) hemispheric differences in spectrotemporal processing manifest differently between sexes, and (2) cortical asymmetry for social communication is driven by spectrotemporal processing differences and neural selectivities for amplitude. Full article
(This article belongs to the Special Issue Cognitive and Neurophysiological Models of Brain Asymmetry)
Show Figures

Figure 1

11 pages, 2485 KiB  
Article
A Simulation on Relation between Power Distribution of Low-Frequency Field Potentials and Conducting Direction of Rhythm Generator Flowing through 3D Asymmetrical Brain Tissue
by Hao Cheng, Manling Ge, Abdelkader Nasreddine Belkacem, Xiaoxuan Fu, Chong Xie, Zibo Song, Shenghua Chen and Chao Chen
Symmetry 2021, 13(5), 900; https://doi.org/10.3390/sym13050900 - 19 May 2021
Cited by 2 | Viewed by 1763
Abstract
Although the power of low-frequency oscillatory field potentials (FP) has been extensively applied previously, few studies have investigated the influence of conducting direction of deep-brain rhythm generator on the power distribution of low-frequency oscillatory FPs on the head surface. To address this issue, [...] Read more.
Although the power of low-frequency oscillatory field potentials (FP) has been extensively applied previously, few studies have investigated the influence of conducting direction of deep-brain rhythm generator on the power distribution of low-frequency oscillatory FPs on the head surface. To address this issue, a simulation was designed based on the principle of electroencephalogram (EEG) generation of equivalent dipole current in deep brain, where a single oscillatory dipole current represented the rhythm generator, the dipole moment for the rhythm generator’s conducting direction (which was orthogonal and rotating every 30 degrees and at pointing to or parallel to the frontal lobe surface) and the (an)isotropic conduction medium for the 3D (a)symmetrical brain tissue. Both the power above average (significant power value, SP value) and its space (SP area) of low-frequency oscillatory FPs were employed to respectively evaluate the strength and the space of the influence. The computation was conducted using the finite element method (FEM) and Hilbert transform. The finding was that either the SP value or the SP area could be reduced or extended, depending on the conducting direction of deep-brain rhythm generator flowing in the (an)isotropic medium, suggesting that the 3D (a)symmetrical brain tissue could decay or strengthen the spatial spread of a rhythm generator conducting in a different direction. Full article
(This article belongs to the Special Issue Cognitive and Neurophysiological Models of Brain Asymmetry)
Show Figures

Figure 1

13 pages, 1741 KiB  
Article
Brain Size Associated with Foot Preferences in Australian Parrots
by Gisela Kaplan and Lesley J. Rogers
Symmetry 2021, 13(5), 867; https://doi.org/10.3390/sym13050867 - 12 May 2021
Cited by 9 | Viewed by 3023
Abstract
Since foot preference of cockatoos and parrots to hold and manipulate food and other objects has been associated with better ability to perform certain tasks, we predicted that either strength or direction of foot preference would correlate with brain size. Our study of [...] Read more.
Since foot preference of cockatoos and parrots to hold and manipulate food and other objects has been associated with better ability to perform certain tasks, we predicted that either strength or direction of foot preference would correlate with brain size. Our study of 25 psittacine species of Australia found that species with larger absolute brain mass have stronger foot preferences and that percent left-footedness is correlated positively with brain mass. In a sub-sample of 11 species, we found an association between foot preference and size of the nidopallial region of the telencephalon, an area equivalent to the mammalian cortex and including regions with executive function and other higher-level functions. Our analysis showed that percent left-foot use correlates positively and significantly with size of the nidopallium relative to the whole brain, but not with the relative size of the optic tecta. Psittacine species with stronger left-foot preferences have larger brains, with the nidopallium making up a greater proportion of those brains. Our results are the first to show an association between brain size and asymmetrical limb use by parrots and cockatoos. Our results support the hypothesis that limb preference enhances brain capacity and higher (nidopallial) functioning. Full article
(This article belongs to the Special Issue Cognitive and Neurophysiological Models of Brain Asymmetry)
Show Figures

Figure 1

11 pages, 255 KiB  
Article
Lateralization of Auditory Processing of Silbo Gomero
by Pamela Villar González, Onur Güntürkün and Sebastian Ocklenburg
Symmetry 2020, 12(7), 1183; https://doi.org/10.3390/sym12071183 - 17 Jul 2020
Cited by 2 | Viewed by 3343
Abstract
Left-hemispheric language dominance is a well-known characteristic of the human language system. However, it has been shown that leftward language lateralization decreases dramatically when people communicate using whistles. Whistled languages present a transformation of a spoken language into whistles, facilitating communication over great [...] Read more.
Left-hemispheric language dominance is a well-known characteristic of the human language system. However, it has been shown that leftward language lateralization decreases dramatically when people communicate using whistles. Whistled languages present a transformation of a spoken language into whistles, facilitating communication over great distances. In order to investigate the laterality of Silbo Gomero, a form of whistled Spanish, we used a vocal and a whistled dichotic listening task in a sample of 75 healthy Spanish speakers. Both individuals that were able to whistle and to understand Silbo Gomero and a non-whistling control group showed a clear right-ear advantage for vocal dichotic listening. For whistled dichotic listening, the control group did not show any hemispheric asymmetries. In contrast, the whistlers’ group showed a right-ear advantage for whistled stimuli. This right-ear advantage was, however, smaller compared to the right-ear advantage found for vocal dichotic listening. In line with a previous study on language lateralization of whistled Turkish, these findings suggest that whistled language processing is associated with a decrease in left and a relative increase in right hemispheric processing. This shows that bihemispheric processing of whistled language stimuli occurs independent of language. Full article
(This article belongs to the Special Issue Cognitive and Neurophysiological Models of Brain Asymmetry)

Review

Jump to: Editorial, Research

21 pages, 844 KiB  
Review
Structural Brain Asymmetries for Language: A Comparative Approach across Primates
by Yannick Becker and Adrien Meguerditchian
Symmetry 2022, 14(5), 876; https://doi.org/10.3390/sym14050876 - 25 Apr 2022
Cited by 5 | Viewed by 6841
Abstract
Humans are the only species that can speak. Nonhuman primates, however, share some ‘domain-general’ cognitive properties that are essential to language processes. Whether these shared cognitive properties between humans and nonhuman primates are the results of a continuous evolution [homologies] or of a [...] Read more.
Humans are the only species that can speak. Nonhuman primates, however, share some ‘domain-general’ cognitive properties that are essential to language processes. Whether these shared cognitive properties between humans and nonhuman primates are the results of a continuous evolution [homologies] or of a convergent evolution [analogies] remain difficult to demonstrate. However, comparing their respective underlying structure—the brain—to determinate their similarity or their divergence across species is critical to help increase the probability of either of the two hypotheses, respectively. Key areas associated with language processes are the Planum Temporale, Broca’s Area, the Arcuate Fasciculus, Cingulate Sulcus, The Insula, Superior Temporal Sulcus, the Inferior Parietal lobe, and the Central Sulcus. These structures share a fundamental feature: They are functionally and structurally specialised to one hemisphere. Interestingly, several nonhuman primate species, such as chimpanzees and baboons, show human-like structural brain asymmetries for areas homologous to key language regions. The question then arises: for what function did these asymmetries arise in non-linguistic primates, if not for language per se? In an attempt to provide some answers, we review the literature on the lateralisation of the gestural communication system, which may represent the missing behavioural link to brain asymmetries for language area’s homologues in our common ancestor. Full article
(This article belongs to the Special Issue Cognitive and Neurophysiological Models of Brain Asymmetry)
Show Figures

Figure 1

76 pages, 4149 KiB  
Review
Cerebral Polymorphisms for Lateralisation: Modelling the Genetic and Phenotypic Architectures of Multiple Functional Modules
by Chris McManus
Symmetry 2022, 14(4), 814; https://doi.org/10.3390/sym14040814 - 14 Apr 2022
Cited by 13 | Viewed by 13162
Abstract
Recent fMRI and fTCD studies have found that functional modules for aspects of language, praxis, and visuo-spatial functioning, while typically left, left and right hemispheric respectively, frequently show atypical lateralisation. Studies with increasing numbers of modules and participants are finding increasing numbers of [...] Read more.
Recent fMRI and fTCD studies have found that functional modules for aspects of language, praxis, and visuo-spatial functioning, while typically left, left and right hemispheric respectively, frequently show atypical lateralisation. Studies with increasing numbers of modules and participants are finding increasing numbers of module combinations, which here are termed cerebral polymorphisms—qualitatively different lateral organisations of cognitive functions. Polymorphisms are more frequent in left-handers than right-handers, but it is far from the case that right-handers all show the lateral organisation of modules described in introductory textbooks. In computational terms, this paper extends the original, monogenic McManus DC (dextral-chance) model of handedness and language dominance to multiple functional modules, and to a polygenic DC model compatible with the molecular genetics of handedness, and with the biology of visceral asymmetries found in primary ciliary dyskinesia. Distributions of cerebral polymorphisms are calculated for families and twins, and consequences and implications of cerebral polymorphisms are explored for explaining aphasia due to cerebral damage, as well as possible talents and deficits arising from atypical inter- and intra-hemispheric modular connections. The model is set in the broader context of the testing of psychological theories, of issues of laterality measurement, of mutation-selection balance, and the evolution of brain and visceral asymmetries. Full article
(This article belongs to the Special Issue Cognitive and Neurophysiological Models of Brain Asymmetry)
Show Figures

Figure 1

18 pages, 1062 KiB  
Review
It Is Not Just in the Genes
by Martina Manns
Symmetry 2021, 13(10), 1815; https://doi.org/10.3390/sym13101815 - 29 Sep 2021
Cited by 6 | Viewed by 2443
Abstract
Asymmetries in the functional and structural organization of the nervous system are widespread in the animal kingdom and especially characterize the human brain. Although there is little doubt that asymmetries arise through genetic and nongenetic factors, an overarching model to explain the development [...] Read more.
Asymmetries in the functional and structural organization of the nervous system are widespread in the animal kingdom and especially characterize the human brain. Although there is little doubt that asymmetries arise through genetic and nongenetic factors, an overarching model to explain the development of functional lateralization patterns is still lacking. Current genetic psychology collects data on genes relevant to brain lateralizations, while animal research provides information on the cellular mechanisms mediating the effects of not only genetic but also environmental factors. This review combines data from human and animal research (especially on birds) and outlines a multi-level model for asymmetry formation. The relative impact of genetic and nongenetic factors varies between different developmental phases and neuronal structures. The basic lateralized organization of a brain is already established through genetically controlled embryonic events. During ongoing development, hemispheric specialization increases for specific functions and subsystems interact to shape the final functional organization of a brain. In particular, these developmental steps are influenced by environmental experiences, which regulate the fine-tuning of neural networks via processes that are referred to as ontogenetic plasticity. The plastic potential of the nervous system could be decisive for the evolutionary success of lateralized brains. Full article
(This article belongs to the Special Issue Cognitive and Neurophysiological Models of Brain Asymmetry)
Show Figures

Figure 1

11 pages, 611 KiB  
Review
Recent Advances in Handedness Genetics
by Silvia Paracchini
Symmetry 2021, 13(10), 1792; https://doi.org/10.3390/sym13101792 - 26 Sep 2021
Cited by 12 | Viewed by 3104
Abstract
Around the world, about 10% people prefer using their left-hand. What leads to this fixed proportion across populations and what determines left versus right preference at an individual level is far from being established. Genetic studies are a tool to answer these questions. [...] Read more.
Around the world, about 10% people prefer using their left-hand. What leads to this fixed proportion across populations and what determines left versus right preference at an individual level is far from being established. Genetic studies are a tool to answer these questions. Analysis in twins and family show that about 25% of handedness variance is due to genetics. In spite of very large cohorts, only a small fraction of this genetic component can be pinpoint to specific genes. Some of the genetic associations identified so far provide evidence for shared biology contributing to both handedness and cerebral asymmetries. In addition, they demonstrate that handedness is a highly polygenic trait. Typically, handedness is measured as the preferred hand for writing. This is a very convenient measure, especially to reach large sample sizes, but quantitative measures might capture different handedness dimensions and be better suited for genetic analyses. This paper reviews the latest findings from molecular genetic studies as well as the implications of using different ways of assessing handedness. Full article
(This article belongs to the Special Issue Cognitive and Neurophysiological Models of Brain Asymmetry)
Show Figures

Figure 1

15 pages, 246 KiB  
Review
How Asymmetries Evolved: Hearts, Brains, and Molecules
by Michael C. Corballis
Symmetry 2021, 13(6), 914; https://doi.org/10.3390/sym13060914 - 21 May 2021
Cited by 8 | Viewed by 3791
Abstract
Humans belong to the vast clade of species known as the bilateria, with a bilaterally symmetrical body plan. Over the course of evolution, exceptions to symmetry have arisen. Among chordates, the internal organs have been arranged asymmetrically in order to create more efficient [...] Read more.
Humans belong to the vast clade of species known as the bilateria, with a bilaterally symmetrical body plan. Over the course of evolution, exceptions to symmetry have arisen. Among chordates, the internal organs have been arranged asymmetrically in order to create more efficient functioning and packaging. The brain has also assumed asymmetries, although these generally trade off against the pressure toward symmetry, itself a reflection of the symmetry of limbs and sense organs. In humans, at least, brain asymmetries occur in independent networks, including those involved in language and manual manipulation biased to the left hemisphere, and emotion and face perception biased to the right. Similar asymmetries occur in other species, notably the great apes. A number of asymmetries are correlated with conditions such as dyslexia, autism, and schizophrenia, and have largely independent genetic associations. The origin of asymmetry itself, though, appears to be unitary, and in the case of the internal organs, at least, may depend ultimately on asymmetry at the molecular level. Full article
(This article belongs to the Special Issue Cognitive and Neurophysiological Models of Brain Asymmetry)
25 pages, 1431 KiB  
Review
Atypical Brain Asymmetry in Human Situs Inversus: Gut Feeling or Real Evidence?
by Guy Vingerhoets, Robin Gerrits and Helena Verhelst
Symmetry 2021, 13(4), 695; https://doi.org/10.3390/sym13040695 - 16 Apr 2021
Cited by 6 | Viewed by 13636
Abstract
The alignment of visceral and brain asymmetry observed in some vertebrate species raises the question of whether this association also exists in humans. While the visceral and brain systems may have developed asymmetry for different reasons, basic visceral left–right differentiation mechanisms could have [...] Read more.
The alignment of visceral and brain asymmetry observed in some vertebrate species raises the question of whether this association also exists in humans. While the visceral and brain systems may have developed asymmetry for different reasons, basic visceral left–right differentiation mechanisms could have been duplicated to establish brain asymmetry. We describe the main phenotypical anomalies and the general mechanism of left–right differentiation of vertebrate visceral and brain laterality. Next, we systematically review the available human studies that explored the prevalence of atypical behavioral and brain asymmetry in visceral situs anomalies, which almost exclusively involved participants with the mirrored visceral organization (situs inversus). The data show no direct link between human visceral and brain functional laterality as most participants with situs inversus show the typical population bias for handedness and brain functional asymmetry, although an increased prevalence of functional crowding may be present. At the same time, several independent studies present evidence for a possible relation between situs inversus and the gross morphological asymmetry of the brain torque with potential differences between subtypes of situs inversus with ciliary and non-ciliary etiologies. Full article
(This article belongs to the Special Issue Cognitive and Neurophysiological Models of Brain Asymmetry)
Show Figures

Figure 1

Back to TopTop