Machine Learning and Data Analysis II

A special issue of Symmetry (ISSN 2073-8994). This special issue belongs to the section "Computer".

Deadline for manuscript submissions: 30 September 2024 | Viewed by 788

Special Issue Editor

Department of Computer Networks and Systems, Silesian University of Technology, 44-100 Gliwice, Poland
Interests: image processing; data mining; machine learning; pattern recognition; rough set theory; biclustering
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Due to the great success of our Special Issue "Machine Learning and Data Analysis" we decided to set up a second volume.

There is no need to convince anyone about the huge influence of theoretical models of machine learning or data analysis techniques on our present way of living. They influence many science disciplines including industry, medicine, transport, and many others. We may observe how different approaches are mixed to become a new and complete model: classifiers for image analysis as well as image pattern recognition algorithms for classification; neural networks for clustering, classification or time series prediction; feature selection and extraction algorithms for preprocessing step of many of above mentioned applications.

The topics of the Special Issue include but are not limited to the following:

  • Supervised learning;
  • Unsupervised learning;
  • Time series analysis;
  • Descriptive analysis;
  • Biclustering;
  • Genetic algorithms;
  • ML & DM applications;
  • Artificial neural networks;
  • Deep learning;
  • Decision support systems;
  • Anomaly detection;
  • Image analysis;
  • Pattern recognition.

Welcome to read the publications in "Machine Learning and Data Analysis" at https://www.mdpi.com/journal/symmetry/special_issues/Machine_Learning_Data_Analysis.

Dr. Marcin Michalak
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Symmetry is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • machine learning
  • data analysis
  • process modelling
  • time series prediction

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 532 KiB  
Article
Shifting Pattern Biclustering and Boolean Reasoning Symmetry
Symmetry 2023, 15(11), 1977; https://doi.org/10.3390/sym15111977 - 26 Oct 2023
Viewed by 558
Abstract
There are several goals of the two-dimensional data analysis: one may be interested in searching for groups of similar objects (clustering), another one may be focused on searching for some dependencies between a specified one and other variables (classification, regression, associate rules induction), [...] Read more.
There are several goals of the two-dimensional data analysis: one may be interested in searching for groups of similar objects (clustering), another one may be focused on searching for some dependencies between a specified one and other variables (classification, regression, associate rules induction), and finally, some may be interested in serching for well-defined patterns in the data called biclusters. It was already proved that there exists a mathematically proven symmetry between some patterns in the matrix and implicants of data-defined Boolean function. This paper provides the new look for a specific pattern search—the pattern named the δ-shifting pattern. The shifting pattern is interesting, as it accounts for constant fluctuations in data, i.e., it captures situations in which all the values in the pattern move up or down for one dimension, maintaining the range amplitude for all the dimensions. Such a behavior is very common in real data, e.g., in the analysis of gene expression data. In such a domain, a subset of genes might go up or down for a subset of patients or experimental conditions, identifying functionally coherent categories. A δ-shifting pattern meets the necessity of shifting pattern induction together with the bias of the real values acquisition where the original shifts may be disturbed with some outer conditions. Experiments with a real dataset show the potential of our approach at finding biclusters with δ-shifting patterns, providing excellent performance. It was possible to find the 12×9 pattern in the 112×9 input data with MSR=0.00653. The experiments also revealed that δ-shifting patterns are quite difficult to be found by some well-known methods of biclustering, as these are not designed to focus on shifting patterns—results comparable due to MSR had much more variability (in terms of δ) than patterns found with Boolean reasoning. Full article
(This article belongs to the Special Issue Machine Learning and Data Analysis II)
Show Figures

Figure 1

Back to TopTop