Special Issue "Special Functions and Fractional Calculus and Their Applications in the Mathematical, Physical and Statistical Sciences"

A special issue of Sci (ISSN 2413-4155).

Deadline for manuscript submissions: closed (20 August 2023) | Viewed by 679

Special Issue Editor

Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada
Interests: real and complex analysis; fractional calculus and its applications; integral equations and transforms; higher transcendental functions and their applications; q-series and q-polynomials; analytic number theory; analytic and geometric Inequalities; probability and statistics; inventory modeling and optimization
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue cordially invites and welcomes review, expository, and original research articles dealing with recent advances in the theory and applications of various potentially useful families of special functions and of the operators of fractional calculus in the mathematical, physical, and statistical sciences. In particular, in the current literature, various operators of fractional calculus are being successfully used in the modeling and analysis of interesting real-world problems in many widely scattered disciplines within the physical, biological, chemical, earth, engineering, and statistical sciences.

We look forward to receiving your contributions to this Special Issue.

Prof. Dr. Hari Mohan Srivastava
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sci is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.


  • special (or higher transcendental) functions and their applications
  • operators of fractional integrals and fractional derivatives and their multidisciplinary applications
  • special functions of mathematical physics, applied mathematics, and analytic number theory
  • geometric function theory of complex analysis
  • bioscientific and engineering applications
  • special functions in probability theory and statistical sciences

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:


An Analysis of the Convergence Problem of a Function in Functional Norms by Applying the Generalized Nörlund-Matrix Product Operator
Sci 2023, 5(3), 32; https://doi.org/10.3390/sci5030032 - 22 Aug 2023
Viewed by 288
In this paper, we analyze the convergence problems of function g of Fourier series in Besov and generalized Zygmund norms using generalized Nörlund-Matrix (Np,qA) means of Fourier series. Convergence results are also compared by means of applications. Full article
Show Figures

Figure 1

Back to TopTop