Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Methodology for Monitoring Work Zones Traffic Operations Using Connected Vehicle Data
Safety 2022, 8(2), 41; https://doi.org/10.3390/safety8020041 - 01 Jun 2022
Cited by 2 | Viewed by 3437
Abstract
The National Work Zone Safety Information Clearinghouse estimated there were approximately 115,000 work zone crashes with 842 fatalities in 2019. There is broad consensus that it is important for agencies to develop near real-time risk assessment of work zone traffic operations to proactively [...] Read more.
The National Work Zone Safety Information Clearinghouse estimated there were approximately 115,000 work zone crashes with 842 fatalities in 2019. There is broad consensus that it is important for agencies to develop near real-time risk assessment of work zone traffic operations to proactively identify improvement opportunities. Due to the huge spatial distribution and relatively low frequency of crashes, legacy techniques of monitoring crash locations do not scale well for identifying all but the most severe construction zone operational problems. Past research identified hard braking and congestion as strong predictors for crashes in and around work zones. This paper presents scalable methodologies that can be used to systematically analyze hard-braking and speed data obtained from connected vehicles. These techniques have been applied to over 205 billion records in Indiana since 2019. These statewide data analytics are fused into concise graphics to identify work zones with emerging anomalies in congestion and/or hard braking. Weekly screening reports, institutionalized in Indiana for the past two years, provide information for agile agency monitoring and response. Case studies show quantitative changes in work zone performance measures, and corresponding surveillance video images illustrate the significance of these changes. During this period of near real-time monitoring and agile agency response, Indiana interstate crash rates have been reduced by 31% from 2019 to 2021, even though most 2021 interstate traffic volumes have rebounded to pre-pandemic 2019 volumes. Full article
Show Figures

Figure 1

Article
Goal Conflicts, Classical Management and Constructivism: How Operators Get Things Done
Safety 2022, 8(2), 37; https://doi.org/10.3390/safety8020037 - 07 May 2022
Cited by 3 | Viewed by 2762
Abstract
In this study we identify the differences in goal realisation when applying two conflicting paradigms regarding rule perception and management. We gathered more than 30 scenarios where goal conflicts were apparent in a military operational unit. We found that operators repetitively utilized certain [...] Read more.
In this study we identify the differences in goal realisation when applying two conflicting paradigms regarding rule perception and management. We gathered more than 30 scenarios where goal conflicts were apparent in a military operational unit. We found that operators repetitively utilized certain routines in executing their tasks in an effort to realize several conflicting goals. These routines were not originally intended nor designed into the rules and not explicitly included in documentation. They were not necessarily at odds with the literal wording and/or the intent of rules and regulations, although we did find examples of this. Our data showed that local ingenuity was created innovatively within the frame of existing rules or kept invisible to those outside the unit. The routines were introduced and passed on informally, and we found no evidence of testing for the introduction of new risks, no migration into the knowledge base of the organisation, and no dissemination as new best practices. An explanation for this phenomenon was found in the fact that the military organisation was applying a top-down, classical, rational approach to rules. In contrast, the routines were generated by adopting a constructivist view of rules as dynamic, local, situated constructions with operators as experts. The results of this study suggest that organisations are more effective in solving goal conflicts and creating transparency on local ingenuity if they adopt a constructivist paradigm instead of, or together with, a classical paradigm. Full article
Show Figures

Figure 1

Article
Prioritizing the Potential Smartification Measures by Using an Integrated Decision Support System with Sustainable Development Goals (a Case Study in Southern Italy)
Safety 2022, 8(2), 35; https://doi.org/10.3390/safety8020035 - 05 May 2022
Cited by 5 | Viewed by 2318
Abstract
With the increasing population of cities, expanding roads as one of the essential urban infrastructures is a necessary task; therefore, adverse effects such as increased fuel consumption, pollution, noise, and road accidents are inevitable. One of the most efficient ways to mitigate congestion-related [...] Read more.
With the increasing population of cities, expanding roads as one of the essential urban infrastructures is a necessary task; therefore, adverse effects such as increased fuel consumption, pollution, noise, and road accidents are inevitable. One of the most efficient ways to mitigate congestion-related adverse effects is to introduce effective intelligent transportation systems (ITS), using advanced technologies and mobile communication protocols to make roads smarter and reduce negative impacts such as improvement in fuel consumption and pollution, and reduction of road accidents, which leads to improving quality of life. Smart roads might play a growing role in the improved safety of road transportation networks. This study aims to evaluate and rank the potential smartification measures for the road network in Calabria, in southern Italy, with sustainable development goals. For this purpose, some potential smartification measures were selected. Experts in the field were consulted using an advanced procedure: four criteria were considered for evaluating these smartification measures. The Integrated fuzzy decision support system (FDSS), namely the fuzzy Delphi analytic hierarchy process (FDAHP) with the fuzzy technique for order performance by similarity to ideal solution (FTOPSIS) were used for evaluating and ranking the potential smartification measures. The results demonstrated that the repetition of signals in the vehicle has the highest rank, and photovoltaic systems spread along the road axis has the lowest rank to use as smartification measures in the roads of the case study. Full article
Show Figures

Figure 1

Article
Ergonomic Design of Apron Bus with Consideration for Passengers with Mobility Constraints
Safety 2022, 8(2), 33; https://doi.org/10.3390/safety8020033 - 03 May 2022
Cited by 6 | Viewed by 4717
Abstract
Passengers in an apron bus are usually subjected to a standing position because of its limited seats and capacity. Due to this, passengers, especially those with mobility constraints, may expose themselves to musculoskeletal disorder (MSD) risks such as body pain, discomfort, and non-collision [...] Read more.
Passengers in an apron bus are usually subjected to a standing position because of its limited seats and capacity. Due to this, passengers, especially those with mobility constraints, may expose themselves to musculoskeletal disorder (MSD) risks such as body pain, discomfort, and non-collision injuries. The purpose of this study is to design an ergonomic apron bus to aid the musculoskeletal discomfort experienced by passengers with mobility constraints, specifically the elderly, pregnant women, mothers carrying infants, and persons needing wheelchair assistance. A total of 149 participants are involved in the study. Corlett’s and Bishop’s body discomfort questionnaires and Rapid Entire Body Assessment (REBA) are utilized to evaluate the respondent’s experience of discomfort in different regions of their body. The results show that passengers with mobility constraints experience body discomfort during the apron bus ride. The prevalence of body discomfort is evident in the lower back, knee, thigh, arm, shoulder, and middle back. Finally, principles of anthropometry are used in the study along with quality function deployment (QFD), failure mode and effects analysis (FMEA), and cost-benefit analysis to evaluate the feasibility of the recommended ergonomic design of the apron bus. To meet the requirements of people with disabilities, the ergonomic design of an apron bus is created to minimize the risk of exposure of passengers to certain musculoskeletal discomfort, maximize the space, minimize the delay time of the airlines, and be able to prioritize passengers who require mobility assistance. Full article
Show Figures

Figure 1

Article
Effects of Automation and Fatigue on Drivers from Various Age Groups
Safety 2022, 8(2), 30; https://doi.org/10.3390/safety8020030 - 11 Apr 2022
Cited by 4 | Viewed by 2909
Abstract
This study explores how drivers are affected by automation when driving in rested and fatigued conditions. Eighty-nine drivers (45 females, 44 males) aged between 20 and 85 years attended driving experiments on separate days, once in a rested and once in a fatigued [...] Read more.
This study explores how drivers are affected by automation when driving in rested and fatigued conditions. Eighty-nine drivers (45 females, 44 males) aged between 20 and 85 years attended driving experiments on separate days, once in a rested and once in a fatigued condition, in a counterbalanced order. The results show an overall effect of automation to significantly reduce drivers’ workload and effort. The automation had different effects, depending on the drivers’ conditions. Differences between the manual and automated mode were larger for the perceived time pressure and effort in the fatigued condition as compared to the rested condition. Frustration was higher during manual driving when fatigued, but also higher during automated driving when rested. Subjective fatigue and the percentage of eye closure (PERCLOS) were higher in the automated mode compared to manual driving mode. PERCLOS differences between the automated and manual mode were higher in the fatigued condition than in the rested condition. There was a significant interaction effect of age and automation on drivers’ PERCLOS. These results are important for the development of driver-centered automation because they show different benefits for drivers of different ages, depending on their condition (fatigued or rested). Full article
Show Figures

Figure 1

Article
Safety Engagement in the Workplace: Text Mining Analysis
Safety 2022, 8(2), 24; https://doi.org/10.3390/safety8020024 - 01 Apr 2022
Cited by 2 | Viewed by 4020
Abstract
In order to derive safety engagement factors in the workplace and analyze the characteristics of the factors, we collected literature data to be analyzed by a systematic literature review and text mining analysis. We used safety, industrial, occupational, corporate, commitment, engagement, interaction, and [...] Read more.
In order to derive safety engagement factors in the workplace and analyze the characteristics of the factors, we collected literature data to be analyzed by a systematic literature review and text mining analysis. We used safety, industrial, occupational, corporate, commitment, engagement, interaction, and participation as key search terms for literature selection and used 143 literature datasets for analysis. We divided the factors of workplace safety engagement into the organizational level and the individual level. In studies after 2005, texts at the individual psychological level appeared in large numbers. Although individual factors have been studied as subfactors at the organizational level, we confirmed that the two types of factors must interact for safety engagement in the workplace. We classified safety engagement factors into cognitive, emotional, behavioral, and relational factors. In particular, relational factors were mainly composed of factors that negatively affected engagement. In the follow-up study, we identified the maturity level among safety engagement factors as divided into four dimensions needed to create a safe workplace environment and to suggest a direction for employees to engage themselves in safety. Full article
Show Figures

Figure 1

Article
Assessment of Aircraft Engine Blade Inspection Performance Using Attribute Agreement Analysis
Safety 2022, 8(2), 23; https://doi.org/10.3390/safety8020023 - 29 Mar 2022
Cited by 3 | Viewed by 4109
Abstract
Background—Visual inspection is an important element of aircraft engine maintenance to assure flight safety. Predominantly performed by human operators, those maintenance activities are prone to human error. While false negatives imply a risk to aviation safety, false positives can lead to increased maintenance [...] Read more.
Background—Visual inspection is an important element of aircraft engine maintenance to assure flight safety. Predominantly performed by human operators, those maintenance activities are prone to human error. While false negatives imply a risk to aviation safety, false positives can lead to increased maintenance cost. The aim of the present study was to evaluate the human performance in visual inspection of aero engine blades, specifically the operators’ consistency, accuracy, and reproducibility, as well as the system reliability. Methods—Photographs of 26 blades were presented to 50 industry practitioners of three skill levels to assess their performance. Each image was shown to each operator twice in random order, leading to N = 2600 observations. The data were statistically analysed using Attribute Agreement Analysis (AAA) and Kappa analysis. Results—The results show that operators were on average 82.5% consistent with their serviceability decision, while achieving an inspection accuracy of 67.7%. The operators’ reproducibility was 15.4%, as was the accuracy of all operators with the ground truth. Subsequently, the false-positive and false-negative rates were analysed separately to the overall inspection accuracy, showing that 20 operators (40%) achieved acceptable performances, thus meeting the required standard. Conclusions—In aviation maintenance the false-negative rate of <5% as per Aerospace Standard AS13100 is arguably the single most important metric since it determines the safety outcomes. The results of this study show acceptable false-negative performance in 60% of appraisers. Thus, there is the desirability to seek ways to improve the performance. Some suggestions are given in this regard. Full article
Show Figures

Graphical abstract

Article
Relationships among Bicycle Rider Behaviours, Anger, Aggression, and Crashes in Finland
Safety 2022, 8(1), 18; https://doi.org/10.3390/safety8010018 - 07 Mar 2022
Cited by 3 | Viewed by 3781
Abstract
Riding a bicycle is increasingly encouraged as a sustainable transport solution, especially in urban areas. However, safety concerns, both perceived and actual, can significantly lower the willingness to ride among the population. To support cycling planning and policy in the double task of [...] Read more.
Riding a bicycle is increasingly encouraged as a sustainable transport solution, especially in urban areas. However, safety concerns, both perceived and actual, can significantly lower the willingness to ride among the population. To support cycling planning and policy in the double task of increasing the levels of cycling while mitigating crash risk, there is a need to better understand the behaviours and attitudes of bicycle riders. In this manuscript, we study a cohort of Finnish bicycle riders through four questionnaires, the Cycling Behaviour Questionnaire (CBQ), Cyclist Risk Perception and Regulation Scale (RPRS), Cyclist Anger Scale (CAS), and Cyclist Aggression Expression Inventory (CAX). Our findings show low self-reported errors and violations, and high levels of knowledge regarding traffic rules among Finnish bicycle riders. Most participants report low levels of aggression, which is generally dealt with in constructive ways, while anger was most commonly a result of interactions with motor vehicles and less with other road users such as pedestrians. To further reduce the crash risk in cycling, our results point to the need for further separation between bicycle riders and motorised vehicles, and for the development of risk perception and positive behaviours among riders, particularly those engaging in risky behaviours. Full article
Article
Dangerous Overtaking of Cyclists in Montréal
Safety 2022, 8(1), 16; https://doi.org/10.3390/safety8010016 - 27 Feb 2022
Cited by 2 | Viewed by 4957
Abstract
It is largely consented that the bicycle is a sustainable mobility alternative in the city. Despite its many benefits, cycling comprises risks of injury or death. Among others, these risks are a result of unsafe overtaking manoeuvres performed by motorized vehicles against cyclists. [...] Read more.
It is largely consented that the bicycle is a sustainable mobility alternative in the city. Despite its many benefits, cycling comprises risks of injury or death. Among others, these risks are a result of unsafe overtaking manoeuvres performed by motorized vehicles against cyclists. This study aims to identify the characteristics of the road network and traffic influencing the lateral distance and duration of overtaking. Using bicycles equipped with distance sensors, GPS, and cameras, four cyclists covered 1689 km in Montréal. Hence, 3591 overtakings were identified with an average distance of 176 cm; 111 overtaking manoeuvres took place at distances less than 1 m, resulting in an unsafe event for every 32 overtakings. On average, the duration of an overtaking was 1.082 s and dangerous overtakings (less than one metre) lasted 0.57 s more than safe overtakings (one metre and over). A generalized additive logit model (GAM) is built to predict the likelihood of a dangerous lateral passing (less than 1 m). The results show that in taking a major route, the presence of parked vehicles and the time required for overtaking significantly increase the probability of experiencing a dangerous overtaking. However, the participant, type of vehicle, or presence of a bike lane have no significant effect. Therefore, the results demonstrate the importance of keeping cyclists isolated from traffic. Furthermore, providing a bike path along parking spaces seems to be a solution that does not enhance cyclist safety. Full article
(This article belongs to the Special Issue Non-Motorized Road Users Safety)
Show Figures

Figure 1

Article
Addressing Uncertainty by Designing an Intelligent Fuzzy System to Help Decision Support Systems for Winter Road Maintenance
Safety 2022, 8(1), 14; https://doi.org/10.3390/safety8010014 - 17 Feb 2022
Cited by 3 | Viewed by 3490
Abstract
One of the main challenges in developing efficient and effective winter road maintenance is to design an accurate prediction model for the road surface friction coefficient. A reliable and accurate prediction model of road surface friction coefficient can help decision support systems to [...] Read more.
One of the main challenges in developing efficient and effective winter road maintenance is to design an accurate prediction model for the road surface friction coefficient. A reliable and accurate prediction model of road surface friction coefficient can help decision support systems to significantly increase traffic safety, while saving time and cost. High dynamicity in weather and road surface conditions can lead to the presence of uncertainties in historical data extracted by sensors. To overcome this issue, this study uses an adaptive neuro-fuzzy inference system that can appropriately address uncertainty using fuzzy logic neural networks. To investigate the ability of the proposed model to predict the road surface friction coefficient, real data were measured at equal time intervals using optical sensors and road-mounted sensors. Then, the most critical features were selected based on the Pearson correlation coefficient, and the dataset was split into two independent training and test datasets. Next, the input variables were fuzzified by generating a fuzzy inference system using the fuzzy c-means clustering method. After training the model, a testing set was used to validate the trained model. The model was evaluated by means of graphical and numerical metrics. The results show that the constructed adaptive neuro-fuzzy model has an excellent ability to learn and accurately predict the road surface friction coefficient. Full article
Show Figures

Figure 1

Review
Occupational Exposure to Mineral Dust in Mining and Earthmoving Works: A Scoping Review
Safety 2022, 8(1), 9; https://doi.org/10.3390/safety8010009 - 30 Jan 2022
Cited by 2 | Viewed by 4901
Abstract
Anthropogenic activity is related to several environmental imbalances, including dust. Particulate matter can also hinder humans with numerous health consequences, such as asthma, cancer, and pneumoconiosis. With a particular focus on mineral dust, this review is intended to determine in which circumstances occupational [...] Read more.
Anthropogenic activity is related to several environmental imbalances, including dust. Particulate matter can also hinder humans with numerous health consequences, such as asthma, cancer, and pneumoconiosis. With a particular focus on mineral dust, this review is intended to determine in which circumstances occupational exposure occurs in the mining and earthmoving industries. Research followed the guidelines provided by the preferred reporting items for systematic review and meta-analysis protocols and its extension for scoping reviews. Of the 8993 records identified, only 24 passed both exclusion and inclusion criteria. Within the pool of results, it was possible to identify the following variables related to dust exposure: job-related (activity, job category, and site), engineering (equipment, transport system), technical (distance), and physical (season and weather) variables. Due to the significant variance in protocol settings, it was challenging to perform a general analysis, resulting in a study-by-study approach. The most significant conclusion of this study is not related to the setting of occupational exposure, although it derives from it. The necessity of adopting standard procedures for data collection, independent of research objective, was demonstrated within the context of occupational exposure to mineral dust. Full article
Show Figures

Figure 1

Article
Evaluating the Associations between Forward Collision Warning Severity and Driving Context
Safety 2022, 8(1), 5; https://doi.org/10.3390/safety8010005 - 20 Jan 2022
Cited by 4 | Viewed by 4207
Abstract
Forward collision warning (FCW) systems typically employ forward sensing technologies to identify possible forward collisions and provide an alert to the driver in the event they have not recognized a threat. These systems have demonstrated safety benefits. However, because the base rate of [...] Read more.
Forward collision warning (FCW) systems typically employ forward sensing technologies to identify possible forward collisions and provide an alert to the driver in the event they have not recognized a threat. These systems have demonstrated safety benefits. However, because the base rate of collisions is low, sensitive FCW systems can provide a high rate of alarms in situations with no or low probability of collision, which may negatively impact driver responsiveness and satisfaction. We examined over 2000 naturally occurring FCWs in two modern vehicles as a part of a naturalistic driving study investigation into advanced vehicle technologies. Analysts used cabin and forward camera footage, as well as environmental characteristics, to judge the likelihood of a crash during each alert, which were used to model the likelihood of an alert representing a possible collision. Only nine FCWs were considered “crash possible and imminent”. Road-type, speed, traffic density, and deceleration profiles distinguished between alert severity. Modeling outcomes provide clues for reducing nuisance and false alerts, and the method of using subjective video annotation combined with vehicle kinematics shows promise for investigating FCW alerts in the real world. Full article
Show Figures

Figure 1

Article
Reversing Poor Safety Records: Identifying Best Practices to Improve Fleet Safety
Safety 2022, 8(1), 2; https://doi.org/10.3390/safety8010002 - 24 Dec 2021
Cited by 3 | Viewed by 3664
Abstract
Commercial motor vehicle safety is of utmost importance, as crashes involving commercial motor vehicles often result in significant property damage, injuries, fatalities, and financial loss for fleets. However, fleet managers are often unsure what strategies other fleets have used to successfully improve safety. [...] Read more.
Commercial motor vehicle safety is of utmost importance, as crashes involving commercial motor vehicles often result in significant property damage, injuries, fatalities, and financial loss for fleets. However, fleet managers are often unsure what strategies other fleets have used to successfully improve safety. To identify best practices, researchers completed case studies with nine commercial motor vehicle fleets that successfully improved their safety performance. A content analysis was performed, and the successful strategies were organized into the Haddon Matrix. Results showed that there was no one single strategy that fleets used to improve safety. Instead, fleets relied on a comprehensive approach focusing on pre-crash countermeasures, including addressing hiring practices, driver training, fleet safety culture, safety technologies, scheduling, and maintenance. However, an enhanced safety culture and advanced safety technology were identified as critical components to their safety improvement. Results from this study may help fleets understand what their peers have used to successfully improve safety and which strategies may not be as helpful. Full article
Article
Safety and Reliability Analysis of an Ammonia-Powered Fuel-Cell System
Safety 2021, 7(4), 80; https://doi.org/10.3390/safety7040080 - 23 Nov 2021
Cited by 7 | Viewed by 5308
Abstract
Recently, the shipping industry has been under increasing pressure to improve its environmental impact with a target of a 50% reduction in greenhouse gas emissions by 2050, compared to the 2008 levels. For this reason, great attention has been placed on alternative zero-carbon [...] Read more.
Recently, the shipping industry has been under increasing pressure to improve its environmental impact with a target of a 50% reduction in greenhouse gas emissions by 2050, compared to the 2008 levels. For this reason, great attention has been placed on alternative zero-carbon fuels, specifically ammonia, which is considered a promising solution for shipping decarbonisation. In this respect, a novel ammonia-powered fuel-cell configuration is proposed as an energy-efficient power generation configuration with excellent environmental performance. However, there are safety and reliability concerns of the proposed ammonia-powered system that need to be addressed prior to its wider acceptance by the maritime community. Therefore, this is the first attempt to holistically examine the safety, operability, and reliability of an ammonia fuel-cell-powered ship, while considering the bunkering and fuel specifications. The proposed methodology includes the novel combination of a systematic preliminary hazard identification process with a functional and model-based approach for simulating the impact of various hazards. Furthermore, the critical faults and functional failures of the proposed system are identified and ranked according to their importance. This work can be beneficial for both shipowners and policymakers by introducing technical innovation and for supporting the future regulatory framework. Full article
Show Figures

Figure 1

Article
Characterization of the Safety Profile of Sweet Chestnut Wood Distillate Employed in Agriculture
Safety 2021, 7(4), 79; https://doi.org/10.3390/safety7040079 - 22 Nov 2021
Cited by 7 | Viewed by 3776
Abstract
In organic agriculture, synthetic pesticides and treatments are substituted by natural remedies with interesting success for product yield and environmental outcomes, but the safety of these bio-based products needs to be assessed in vertebrate and human models. Therefore, in this paper we assessed [...] Read more.
In organic agriculture, synthetic pesticides and treatments are substituted by natural remedies with interesting success for product yield and environmental outcomes, but the safety of these bio-based products needs to be assessed in vertebrate and human models. Therefore, in this paper we assessed the safety profile of sweet chestnut (Castanea sativa) wood distillate (WD) on the different cellular components of tissues implied in transcutaneous absorption. We investigated the viability of different cell lines mimicking the skin (HaCaT keratinocytes), mucosa (A431), connective (normal human dermal fibroblasts, NHDF) and vascular (human umbilical vein endothelial cells, HUVEC) tissues after exposure to increasing concentrations (0.04–0.5%, v/v, corresponding to 1:2800–1:200 dilutions) of WD. A short exposure to increasing doses of WD was well tolerated up to the highest concentration. Instead, following a prolonged treatment, a concentration dependent cytotoxic effect was observed. Notably, a different behavior was found with the various cell lines, with higher sensitivity to cytotoxicity by the cells with higher proliferation rate and reduced doubling time (human keratinocytes). Moreover, to exclude an inflammatory effect at the not cytotoxic WD concentrations, the expression of the main inducible markers of inflammation, cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1), were assessed, and no improvement was found both after brief and prolonged exposure. In conclusion, our data exclude any inflammatory and cytotoxic effect at the lowest WD concentrations, namely 0.07% and 0.04%, mimicking some recommended dilutions of the product and the potential exposure doses for the operators in agriculture. Nevertheless, higher concentrations showed a safe profile for short time usage, but caution should be used by farmers following persistent product exposure. Full article
Show Figures

Graphical abstract

Article
Decision-Making Framework for Implementing Safer Human-Robot Collaboration Workstations: System Dynamics Modeling
Safety 2021, 7(4), 75; https://doi.org/10.3390/safety7040075 - 27 Oct 2021
Cited by 2 | Viewed by 4287
Abstract
Human-Robot Collaboration (HRC) systems are often implemented seeking for reducing risk of Work-related Musculoskeletal Disorders (WMSD) development and increasing productivity. The challenge is to successfully implement an industrial HRC to manage those factors, considering that non-linear behaviors of complex systems can produce counterintuitive [...] Read more.
Human-Robot Collaboration (HRC) systems are often implemented seeking for reducing risk of Work-related Musculoskeletal Disorders (WMSD) development and increasing productivity. The challenge is to successfully implement an industrial HRC to manage those factors, considering that non-linear behaviors of complex systems can produce counterintuitive effects. Therefore, the aim of this study was to design a decision-making framework considering the key ergonomic methods and using a computational model for simulations. It considered the main systemic influences when implementing a collaborative robot (cobot) into a production system and simulated scenarios of productivity and WMSD risk. In order to verify whether the computational model for simulating scenarios would be useful in the framework, a case study in a manual assembly workstation was conducted. The results show that both cycle time and WMSD risk depend on the Level of Collaboration (LoC). The proposed framework helps deciding which cobot to implement in a context of industrial assembly process. System dynamics were used to understand the actual behavior of all factors and to predict scenarios. Finally, the framework presented a clear roadmap for the future development of an industrial HRC system, drastically reducing risk management in decision-making. Full article
Show Figures

Figure 1

Review
Ergonomics and Human Factors as a Requirement to Implement Safer Collaborative Robotic Workstations: A Literature Review
Safety 2021, 7(4), 71; https://doi.org/10.3390/safety7040071 - 18 Oct 2021
Cited by 16 | Viewed by 5737
Abstract
There is a worldwide interest in implementing collaborative robots (Cobots) to reduce work-related Musculoskeletal Disorders (WMSD) risk. While prior work in this field has recognized the importance of considering Ergonomics & Human Factors (E&HF) in the design phase, most works tend to highlight [...] Read more.
There is a worldwide interest in implementing collaborative robots (Cobots) to reduce work-related Musculoskeletal Disorders (WMSD) risk. While prior work in this field has recognized the importance of considering Ergonomics & Human Factors (E&HF) in the design phase, most works tend to highlight workstations’ improvements due to Human-Robot Collaboration (HRC). Based on a literature review, the current study summarises studies where E&HF was considered a requirement rather than an output. In this article, the authors are interested in understanding the existing studies focused on Cobots’ implementation with ergonomic requirements, and the methods applied to design safer collaborative workstations. This review was performed in four prominent publications databases: Scopus, Web of Science, Pubmed, and Google Scholar, searching for the keywords ‘Collaborative robots’ or ‘Cobots’ or ‘HRC’ and ‘Ergonomics’ or ‘Human factors’. Based on the inclusion criterion, 20 articles were reviewed, and the main conclusions of each are provided. Additionally, the focus was given to the segmentation between studies considering E&HF during the design phase of HRC systems and studies applying E&HF in real-time on HRC systems. The results demonstrate the novelty of this topic, especially of the real-time applications of ergonomics as a requirement. Globally, the results of the reviewed studies showed the potential of E&HF requirements integrated into HRC systems as a relevant input for reducing WMSD risk. Full article
Show Figures

Figure 1

Article
Are Traffic Announcements Really Effective? A Systematic Review of Evaluations of Crash-Prevention Communication Campaigns
Safety 2021, 7(4), 66; https://doi.org/10.3390/safety7040066 - 24 Sep 2021
Cited by 24 | Viewed by 6812
Abstract
Communication campaigns are commonly used in the traffic and road safety sector to raise public awareness of the importance of avoiding risky road user attitudes and behaviors. Surprisingly few of these communication campaigns evaluate their effectiveness in a formal and comprehensive manner. The [...] Read more.
Communication campaigns are commonly used in the traffic and road safety sector to raise public awareness of the importance of avoiding risky road user attitudes and behaviors. Surprisingly few of these communication campaigns evaluate their effectiveness in a formal and comprehensive manner. The core aim of the present systematic review is to identify the type of studies that evaluate the effectiveness of campaigns in this sector, in order to identify and contrast their main findings. This systematic review followed the PRISMA methodology, by means of which the relevant articles based on the search term were identified. A total of 613 indexed articles were filtered, and a final set of 27 articles directly addressing the issue was analyzed. Search strategies were developed and conducted in WOS, Scopus, NCBI, Google Scholar and APA databases. The selected articles point out that, although advertisements alone have a certain positive effect, their effectiveness is substantially increased if they are accompanied by other preventive measures such as legislation or road safety education. In any case, more evaluations of traffic campaigns are needed to identify which techniques are effective and which are not, and which should therefore be replaced by new methods of behavior modification in future communication campaigns. Full article
(This article belongs to the Special Issue Non-Motorized Road Users Safety)
Show Figures

Figure 1

Article
Ride in Peace: How Cycling Infrastructure Types Affect Traffic Conflict Occurrence in Montréal, Canada
Safety 2021, 7(3), 63; https://doi.org/10.3390/safety7030063 - 09 Sep 2021
Cited by 5 | Viewed by 6486
Abstract
Urban cycling is increasingly common in many North American cities and has the potential to address key challenges of urban mobility, congestion, air pollution and health. However, lack of safety is often cited by potential bike users as the most important deterrent to [...] Read more.
Urban cycling is increasingly common in many North American cities and has the potential to address key challenges of urban mobility, congestion, air pollution and health. However, lack of safety is often cited by potential bike users as the most important deterrent to cycling. This study aimed to evaluate the effect of cycling facility type on traffic conflict likelihood. Four participants recorded a total of 87 h (1199 km) of video, which was reviewed by trained observers to identify and characterize traffic conflicts, yielding 465 conflicts with vehicles and 209 conflicts with pedestrians. Bootstrapped generalized additive logit regressions (GAM) were built to predict traffic conflict likelihood. Results show that while cycling on an off-street bike path effectively reduces the likelihood of conflict with a vehicle, it increases the probability of conflict with a pedestrian. Bike lanes were associated with an increase in the likelihood of a conflict with a vehicle. Decision makers should favor physically segregated and clearly marked cyclist-only facilities to ensure safe and efficient conditions for commuter cyclists. Full article
(This article belongs to the Special Issue Non-Motorized Road Users Safety)
Show Figures

Figure 1

Article
Evaluation and Analysis of Whole-Body Vibration Exposure during Soil Tillage Operation
Safety 2021, 7(3), 61; https://doi.org/10.3390/safety7030061 - 30 Aug 2021
Cited by 8 | Viewed by 3590
Abstract
This study investigated whole-body vibration (WBV) response in real field harrowing operations at different tractor ride conditions i.e., average speed, front harrow pin angle (FHPA), and rear harrow pin distance (RHPD). Taguchi’s L27 orthogonal array was used to formulate a systematic design [...] Read more.
This study investigated whole-body vibration (WBV) response in real field harrowing operations at different tractor ride conditions i.e., average speed, front harrow pin angle (FHPA), and rear harrow pin distance (RHPD). Taguchi’s L27 orthogonal array was used to formulate a systematic design of experiments. WBV exposure was measured along the three translational axes to compute overall daily vibration magnitude i.e., A(8). Tractor’s seat isolation capacity was assessed in terms of Seat Effective Amplitude Transmissibility i.e., SEAT%. Raw acceleration data was analysed to obtain dominant frequencies using Fast Fourier Transform (FFT). A(8) was found to range between 0.43 to 0.87 m/s2 in the experimental trials. Seat isolation capacity was found to be poor in 89% of the experiments i.e., SEAT% > 100%. Average speed and FHPA was found to have a significant impact (p ≤ 0.05) on A(8) and SEAT%. FFT response showed a range of primary and secondary dominant peaks within a frequency range of 0.2 to 11 Hz. In conclusion, the majority of experimental trials (67%) exceeded the Directive2002/44EU recommended exposure action value (EAV) limit i.e., 0.5 m/s2. The harrowing operation was found to exhibit vibration exposure at low frequencies in the vicinity of natural frequencies of the human body and may consequently affect ride comfort. Full article
Show Figures

Figure 1

Article
Visual Perception and Understanding of Variable Message Signs: The Influence of the Drivers’ Age and Message Layout
Safety 2021, 7(3), 60; https://doi.org/10.3390/safety7030060 - 28 Aug 2021
Cited by 3 | Viewed by 4062
Abstract
Variable message signs (VMS) are used to display messages providing up-to-date traffic-relevant information so that drivers can safely adapt their behavior in real time. The information reported in a VMS should be brief but comprehensive to minimize perception time. The latter can be [...] Read more.
Variable message signs (VMS) are used to display messages providing up-to-date traffic-relevant information so that drivers can safely adapt their behavior in real time. The information reported in a VMS should be brief but comprehensive to minimize perception time. The latter can be influenced by the way the message is displayed. This study investigates how the different ways of displaying the same message can influence reading time and the information perception process at different driving speeds. Specifically, the following message characteristics are investigated: (i) use of uppercase and lowercase letters; (ii) use of familiar pictograms; and (iii) use of less familiar pictograms. Furthermore, as perception time typically changes with ageing, drivers belonging to three different age classes are tested. The experimentation was performed by simulating a vehicle passing along a straight road upon which a VMS displaying different messages was placed. Experimentation results are analyzed using the Kruskal–Wallis test, Friedman rank-sum test and Welch one-way ANOVA, showing that: (i) the use of uppercase or lowercase does not seem to significantly affect reading times; (ii) the use of pictograms that are not very familiar to habitual road-users can be counterproductive for the perception process; (iii) elderly drivers always have greater difficulty in perceiving the message than young or middle-aged drivers. The findings of this study can be of help for traffic authorities to design the most suitable structure for a VMS so that its information can be unequivocally and immediately conveyed to drivers. Full article
(This article belongs to the Special Issue Traffic Safety and Driver Behaviour 2021)
Show Figures

Figure 1

Article
Safety Climate and the Impact of the COVID-19 Pandemic: An Investigation on Safety Perceptions among Farmers in Italy
Safety 2021, 7(3), 52; https://doi.org/10.3390/safety7030052 - 02 Jul 2021
Cited by 5 | Viewed by 5597
Abstract
The diffusion of the COVID-19 pandemic has generated numerous interventions aimed at reducing the contagion by means of specific prevention measures, also characterized by stricter occupational health and safety (OHS) procedures at the workplace. To better understand how this novel working context has [...] Read more.
The diffusion of the COVID-19 pandemic has generated numerous interventions aimed at reducing the contagion by means of specific prevention measures, also characterized by stricter occupational health and safety (OHS) procedures at the workplace. To better understand how this novel working context has impacted on farmers’ safety behavior and attitude, a safety climate assessment was carried out by means of the Nordic Safety Climate Questionnaire (NOSACQ-50), which was augmented to include specific items related to the modifications of working conditions due to COVID-19. This allowed us to analyze changes in safety climate perceptions, pointing out worker-manager discrepancies in safety behavior and attitude. Additionally, the COVID-19 questionnaire contributed to analyzing the effects of the specific OHS measures due to the pandemic from the workers’ standpoint. Results showed that concerns related to the COVID-19 pandemic have augmented the attention paid to OHS, demonstrating a correlation between the safety climate dimensions and the OHS measures due to COVID-19. Besides, farmers’ risk-taking behavior and attitude appeared still critical, highlighting the need for more specific and contextual interventions in terms of safety information and training. Overall, this study aims to expand knowledge on shared safety awareness and perceptions in the COVID-19 period. Full article
(This article belongs to the Special Issue Resilient Safety Culture)
Show Figures

Figure 1

Article
Integrated IEW-TOPSIS and Fire Dynamics Simulation for Agent-Based Evacuation Modeling in Industrial Safety
Safety 2021, 7(2), 47; https://doi.org/10.3390/safety7020047 - 07 Jun 2021
Cited by 13 | Viewed by 5885
Abstract
Emergency events in the industrial sector have been increasingly reported during the past decade. However, studies that focus on emergency evacuation to improve industrial safety are still scarce. Existing evacuation-related studies also lack a perspective of fire assembly point’s analysis. In this research, [...] Read more.
Emergency events in the industrial sector have been increasingly reported during the past decade. However, studies that focus on emergency evacuation to improve industrial safety are still scarce. Existing evacuation-related studies also lack a perspective of fire assembly point’s analysis. In this research, location of assembly points is analyzed using the multi-criteria decision analysis (MCDA) technique based on the integrated information entropy weight (IEW) and techniques for order preference by similarity to ideal solution (TOPSIS) to support the fire evacuation plan. Next, we propose a novel simulation model that integrates fire dynamics simulation coupled with agent-based evacuation simulation to evaluate the impact of smoke and visibility from fire on evacuee behavior. Factors related to agent and building characteristics are examined for fire perception of evacuees, evacuees with physical disabilities, escape door width, fire location, and occupancy density. Then, the proposed model is applied to a case study of a home appliance factory in Chachoengsao, Thailand. Finally, results for the total evacuation time and the number of remaining occupants are statistically examined to suggest proper evacuation planning. Full article
Show Figures

Figure 1

Article
Retrofitting Agricultural Self-Propelled Machines with Roll-Over and Tip-Over Protective Structures
Safety 2021, 7(2), 46; https://doi.org/10.3390/safety7020046 - 04 Jun 2021
Cited by 4 | Viewed by 5822
Abstract
In the agricultural sector, the loss of stability related to the use of self-propelled agricultural machinery (SPAM) has caused and continues to cause accidents, often with fatal outcomes. The probability of occurrence of this risk can be reduced by acting on various aspects, [...] Read more.
In the agricultural sector, the loss of stability related to the use of self-propelled agricultural machinery (SPAM) has caused and continues to cause accidents, often with fatal outcomes. The probability of occurrence of this risk can be reduced by acting on various aspects, but above all the presence of a protective structure is necessary. Depending on the machine, the protective structure can be a roll-over protective structure (ROPS), or a tip-over protective structure (TOPS). Hence, to reduce this gap, a reverse engineering approach and virtual engineering methods were applied starting from the analysis of harmonized standards actually in force, with the goal of providing both a reference procedure to be used in the risk assessment analysis of SPAM’s protective structures and technical information to manufacture and install protective structure on old agricultural machinery. Two representative case studies were used to validate the procedure by means of finite element method (FEM) analyses and computer aided design (CAD) prototyping. Results show that the proposed approach can represent a useful indication for the safety update of this type of machinery. Full article
Show Figures

Figure 1

Article
Impact of Construction Safety Culture and Construction Safety Climate on Safety Behavior and Safety Motivation
Safety 2021, 7(2), 41; https://doi.org/10.3390/safety7020041 - 18 May 2021
Cited by 21 | Viewed by 9027
Abstract
The construction industry is known for its disappointing safety performance. Therefore, rethinking current safety management frameworks is crucial. This study assesses a newly proposed construction safety culture and climate framework that aims to overcome the present ambiguity in the definitions and measurement of [...] Read more.
The construction industry is known for its disappointing safety performance. Therefore, rethinking current safety management frameworks is crucial. This study assesses a newly proposed construction safety culture and climate framework that aims to overcome the present ambiguity in the definitions and measurement of construction safety culture and construction safety climate. The goal is to provide a practical construction safety culture and safety climate framework that fits the construction industry’s needs. A survey was designed to validate the proposed framework and assess its influence on safety behavior and safety motivation. The survey was completed by 275 construction practitioners. The findings suggest that the construction safety culture initiates and maintains the construction safety climate. Similarly, the construction safety culture, which is represented by the actions of upper management and safety personnel, significantly contributes to higher levels of safety behavior and safety motivation, whereas the construction safety climate does not. Accordingly, this study highlights the importance of the construction safety culture’s influence on overall workplace culture. This study’s contribution to the body of knowledge is critical to improving construction workplaces’ overall safety performance. The findings can be strategically used by construction firms to address the construction industry’s higher rates of fatal and nonfatal injuries. Finally, the results obtained support the newly proposed framework of construction safety culture and climate, which, in turn, helps the industry better manage overall site safety. Full article
(This article belongs to the Special Issue Resilient Safety Culture)
Show Figures

Figure 1

Article
Cooperation between Roads and Vehicles: Field Validation of a Novel Infrastructure-Based Solution for All Road Users’ Safety
Safety 2021, 7(2), 39; https://doi.org/10.3390/safety7020039 - 17 May 2021
Cited by 3 | Viewed by 4842
Abstract
Cooperative intelligent transport systems (C-ITS) are expected to considerably influence road safety, traffic efficiency and comfort. Nevertheless, their market penetration is still limited, on the one hand due to the high costs of installation and maintenance of the infrastructures and, on the other [...] Read more.
Cooperative intelligent transport systems (C-ITS) are expected to considerably influence road safety, traffic efficiency and comfort. Nevertheless, their market penetration is still limited, on the one hand due to the high costs of installation and maintenance of the infrastructures and, on the other hand, due to the price of support automated driving functions. A breakthrough C-ITS technological solution was studied, designed, built and tested that is based on the implementation of custom low-cost on-road platforms (named “strips”) that embed micro/nano sensors, communication technologies and energy harvesting to shift intelligence from the vehicle to the road infrastructure. The strips, through a V2X and LTE communication gateway, transmit real-time, reliable and accurate information at lane level about the environmental and road condition, the traffic and the other road users’ position and speed. The exchanged information supports a series of C-ITS functions and services extending equipped vehicles capabilities and providing similar functions to non-equipped ones (including powered two wheelers). The general framework and the technological solution proposed is presented and the results of the field trials, conducted in three pilot sites around Europe, quantify the promising system performance as well as the positive effects of the C-ITS applications developed and tested on driver/rider’s behavior. Full article
(This article belongs to the Special Issue Driver Behavior Safety Research in Road Transportation)
Show Figures

Figure 1

Article
A Combinatorial Safety Analysis of Cruise Ship Diesel–Electric Propulsion Plant Blackout
Safety 2021, 7(2), 38; https://doi.org/10.3390/safety7020038 - 14 May 2021
Cited by 6 | Viewed by 5360
Abstract
Diesel–Electric Propulsion (DEP) has been widely used for the propulsion of various ship types including cruise ships. Considering the potential consequences of blackouts, especially on cruise ships, it is essential to design and operate the ships’ power plants for avoiding and preventing such [...] Read more.
Diesel–Electric Propulsion (DEP) has been widely used for the propulsion of various ship types including cruise ships. Considering the potential consequences of blackouts, especially on cruise ships, it is essential to design and operate the ships’ power plants for avoiding and preventing such events. This study aims at implementing a comprehensive safety analysis for a cruise ship Diesel–Electric Propulsion (DEP) plant focusing on blackout events. The Combinatorial Approach to Safety Analysis (CASA) method is used to develop Fault Trees considering the blackout as the top event, and subsequently estimate the blackout frequency as well as implement importance analysis. The derived results demonstrate that the overall blackout frequency is close to corresponding values reported in the pertinent literature as well as estimations based on available accident investigations. This study deduces that the blackout frequency depends on the number of operating Diesel Generator (DG) sets, the DG set’s loading profile, the amount of electrical load that can be tripped during overload conditions and the plant operation phase. In addition, failures of the engine auxiliary systems and the fast-electrical load reduction functions, as well as the power generation control components, are identified as important. This study demonstrates the applicability of the CASA method to complex marine systems and reveals the parameters influencing the investigated system blackout frequency, thus providing better insights for these systems’ safety analysis and enhancement. Full article
Show Figures

Figure 1

Article
Distraction in the Driving Simulator: An Event-Related Potential (ERP) Study with Young, Middle-Aged, and Older Drivers
Safety 2021, 7(2), 36; https://doi.org/10.3390/safety7020036 - 11 May 2021
Cited by 9 | Viewed by 5267
Abstract
Distraction is a major causal factor of road crashes, and very young and older drivers seem to be particularly susceptible to distracting stimuli; however, the possibilities of exploring the causes for increased distractibility of these groups in real traffic seem to be limited. [...] Read more.
Distraction is a major causal factor of road crashes, and very young and older drivers seem to be particularly susceptible to distracting stimuli; however, the possibilities of exploring the causes for increased distractibility of these groups in real traffic seem to be limited. Experiments in a driving simulator are a good choice to eliminate the risk for crashes and to present highly standardized stimulus combinations. In the present study, 72 subjects from four age groups completed a driving task that required occasional responses to the brake lights of a car in front. In addition, in certain experimental conditions, subjects had to respond to distracting visual or auditory stimuli. In addition to behavioral data, electrophysiological correlates of stimulus processing were derived from the electroencephalogram (EEG). In the two older groups, braking response times increased even in a simple task condition when visual distraction stimuli occurred. In more complex task conditions braking response times increased with acoustic and visual distractors in the middle-aged group as well. In these complex task conditions braking error rates, especially the missing of braking reaction in favor of the distracting task, increased under visual distraction with increasing age. Associated with this, a reduced P3b component in the event-related potential indicated an unfavorable allocation of mental resources. The study demonstrates the potential of driving simulators for studying effects of distraction, but also their limitations with respect to the interpretability of the results. Full article
(This article belongs to the Special Issue Driving Simulator)
Show Figures

Figure 1

Review
Occupational Accidents Related to Heavy Machinery: A Systematic Review
Safety 2021, 7(1), 21; https://doi.org/10.3390/safety7010021 - 16 Mar 2021
Cited by 11 | Viewed by 6817
Abstract
Surface and underground mining, due to its technical challenges, is considered a hazardous industry. The great majority of accidents and fatalities are frequently associated with ineffective or inappropriate training methods. Knowing that knowledge of occupational accident causes plays a significant role in safety [...] Read more.
Surface and underground mining, due to its technical challenges, is considered a hazardous industry. The great majority of accidents and fatalities are frequently associated with ineffective or inappropriate training methods. Knowing that knowledge of occupational accident causes plays a significant role in safety management systems, it is important to systematise this kind of information. The primary objective of this systematic review was to find evidence of work-related accidents involving machinery and their causes and, thus, to provide relevant data available to improve the mining project (design). The Preferred Reporting of Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement methodology was used to conduct the review. This paper provides the main research results based on a systematic review protocol registered in the International Prospective Register of Systematic Reviews (PROSPERO), where the research strategy, information sources, and eligibility criteria are provided. From the 3071 articles identified, 16 were considered eligible and added to the study. Results are presented in a narrative-based form, with additional data provided in descriptive tables. The data analysed showed that the equipment often related to mining accidents are conveyor belts, haul trucks, and dumpers, especially during maintenance or repair activities. Attention should be paid to powered tools. Effective monitoring and machine operation control are some of the stated measures to minimise accidents. Particular attention should be paid to less experienced and senior workers, mainly through fatigue control, workload management, and appropriate training programs. Full article
Show Figures

Figure 1

Article
The Italian Validation of OSCI: The Organizational and Safety Climate Inventory
Safety 2021, 7(1), 22; https://doi.org/10.3390/safety7010022 - 16 Mar 2021
Cited by 5 | Viewed by 4788
Abstract
Although safety climate has been the object of multiple studies in the last thirty years, the relationship between safety climate and organizational climate has been scarcely investigated. The Organizational and Safety Climate Inventory (OSCI) was the first and only validated instrument to allow [...] Read more.
Although safety climate has been the object of multiple studies in the last thirty years, the relationship between safety climate and organizational climate has been scarcely investigated. The Organizational and Safety Climate Inventory (OSCI) was the first and only validated instrument to allow the assessment of organizational and safety climates simultaneously and by using the same theoretical framework. The present work investigated the psychometric properties of OSCI in an Italian sample at the group level; study 1 (N = 745) examined the factor structure of the scale by using confirmatory factor analyses. Study 2 (N = 471) advanced the original Portuguese validation by testing its measurement equivalence across gender and company sector through multiple-group confirmatory factor analyses. Results confirmed one higher-order factor structure with four first-order factors for both Organizational Climate and Safety Climate, with Organizational Climate predicting Safety Climate. Moreover, the scale was found to be invariant between men and women and between different types of company. Reliability, discriminant, and criterion validities of the scale showed very good values. Overall, the findings strengthened the original claim of the OSCI to be a valid and innovative instrument, which allows the identification of specific dimensions of safety climate, starting from a more general model of organizational climate. Full article
(This article belongs to the Special Issue Methods and Instruments for Evaluating and Measuring Safety)
Show Figures

Figure A1

Article
Are Double-Lane Roundabouts Safe Enough? A CHAID Analysis of Unsafe Driving Behaviors
Safety 2021, 7(1), 20; https://doi.org/10.3390/safety7010020 - 08 Mar 2021
Cited by 7 | Viewed by 4750
Abstract
This study investigated the nature and causes of unsafe driving behavior at roundabouts through an on-road study. Four urban double-lane roundabouts with different layouts were selected for an on-road study. Sixty-six drivers (41 males and 25 females) aged 18–65 years took part in [...] Read more.
This study investigated the nature and causes of unsafe driving behavior at roundabouts through an on-road study. Four urban double-lane roundabouts with different layouts were selected for an on-road study. Sixty-six drivers (41 males and 25 females) aged 18–65 years took part in the study. Unsafe behaviors observed during the in situ survey were divided into three different categories: entry unsafe behaviors, circulation unsafe behaviors, and exit unsafe behaviors. Three chi-square automatic interaction detection (CHAID) analyses were developed in order to analyze the influence of roundabout characteristics and maneuvers on unsafe behaviors at double-lane roundabouts. The results confirmed the awareness that double-lane roundabouts are unsafe and inadvisable. More than half of unsafe driving behaviors were found to be entry unsafe behaviors. Moreover, the entry radius was found to be the geometric variable most influencing unsafe driving behaviors. Full article
(This article belongs to the Special Issue Sustainable and Safe Road Design)
Show Figures

Graphical abstract

Article
Research on the Use of Mobile Devices and Headphones on Pedestrian Crossings—Pilot Case Study from Slovakia
Safety 2021, 7(1), 17; https://doi.org/10.3390/safety7010017 - 02 Mar 2021
Cited by 10 | Viewed by 5949
Abstract
The topic of the use of mobile devices and headphones on pedestrian crossings is much less explored in comparison to the use of the mobile phone while driving. Recent years have seen many discussions on this issue, especially in foreign countries. The Slovak [...] Read more.
The topic of the use of mobile devices and headphones on pedestrian crossings is much less explored in comparison to the use of the mobile phone while driving. Recent years have seen many discussions on this issue, especially in foreign countries. The Slovak Republic, however, has not been giving it enough attention (and it is not mentioned in the National Road Safety Plan for the Slovak Republic from 2011 to 2020). This paper aims to draw attention to this issue. It presents basic outputs of a pilot study on pedestrian safety, with a focus on the use of mobile devices and headphones at selected non-signalized pedestrian crossings in three Slovak cities. Overall, 9% of pedestrians used headphones or mobile devices at observed pedestrian crossings (4% of them used headphones, 1% used headphones and at same time used their mobile phone, 2% made phone calls and 2% used their mobile phones). While these numbers can be considered relatively low, the study proved that during weekdays every 2 min someone was using the crossing without fully focusing on crossing the road safely. Another main finding was that although the safety risk at pedestrian crossings is increased by factors such as rush hour traffic or reduced visibility, pedestrian behavior related to the use of mobile phones and headphones does not change. A safety assessment was also carried out at the crossings. The results show that pedestrian behavior is not affected by the level of safety of the crossing (e.g., visibility of the crossing for drivers). The results of the presented analysis suggest that action is needed to change that. Due to the lack of information about accidents involving pedestrians using mobile phones and headsets when crossing the road, no relevant statistical data could be analyzed. The dataset collected can be used as a basis for further investigation or comparisons with other countries of the relevant indicators. In future work, we would like to include a pedestrian–driver interaction factor focusing on driver speed behavior in relation to pedestrians (who are on or are about to step onto a pedestrian crossing) and identify critical situations caused by improper behavior of drivers and/or pedestrians. This will help to understand speed adjustment problems related to pedestrian crossings. Full article
(This article belongs to the Special Issue Non-Motorized Road Users Safety)
Show Figures

Figure 1

Article
Physical Ergonomic Improvement and Safe Design of an Assembly Workstation through Collaborative Robotics
Safety 2021, 7(1), 14; https://doi.org/10.3390/safety7010014 - 18 Feb 2021
Cited by 14 | Viewed by 6253
Abstract
One of the key interesting features of collaborative robotic applications is the potential to lighten the worker workload and potentiate better working conditions. Moreover, developing robotics applications that meets ergonomic criteria is not always a straightforward endeavor. We propose a framework to guide [...] Read more.
One of the key interesting features of collaborative robotic applications is the potential to lighten the worker workload and potentiate better working conditions. Moreover, developing robotics applications that meets ergonomic criteria is not always a straightforward endeavor. We propose a framework to guide the safe design and conceptualization of ergonomic-driven collaborative robotics workstations. A multi-disciplinary approach involving robotics and ergonomics and human factors shaped this methodology that leads future engineers through the digital transformation of a manual assembly (with repetitive and hazardous operations) to a hybrid workstation, focusing on the physical ergonomic improvement. The framework follows four main steps, (i) the characterization of the initial condition, (ii) the risk assessment, (iii) the definition of requirements for a safe design, and (iv) the conceptualization of the hybrid workstation with all the normative implications it entails. We applied this methodology to a case study in an assembly workstation of a furniture manufacturing company. Results show that the methodology adopted sets an adequate foundation to accelerate the design and development of new human-centered collaborative robotic workstations. Full article
Show Figures

Figure 1

Article
Securing Schools against Terrorist Attacks
Safety 2021, 7(1), 13; https://doi.org/10.3390/safety7010013 - 04 Feb 2021
Cited by 4 | Viewed by 5320
Abstract
The population is nowadays increasingly threatened by events that have an immediate impact on their health and lives. One of the most endangered targets are the so-called soft targets. These are such targets that are characterized by a high population concentration, and low [...] Read more.
The population is nowadays increasingly threatened by events that have an immediate impact on their health and lives. One of the most endangered targets are the so-called soft targets. These are such targets that are characterized by a high population concentration, and low or even no level of security against violent or even terrorist attacks. The research carried out by the authors clearly showed that one of the important and easily vulnerable soft targets are schools. This article focuses on the safety of schools and their facilities. The authors focused on finding out the safety of schools as soft targets in the Czech Republic. The security level of schools was measured at selected nursery, elementary, and secondary schools in the city of Brno. As well as technical elements, other factors contributing to the overall safety of schools were also verified. It was found that although a large number of schools have at least basic elements of security available, systemic and organizational measures are not sufficient for technical measures to be important. Full article
Show Figures

Figure 1

Article
When the Tension Is Rising: A Simulation-Based Study on the Effects of Safety Incentive Programs and Behavior-Based Safety Management
Safety 2021, 7(1), 9; https://doi.org/10.3390/safety7010009 - 28 Jan 2021
Cited by 5 | Viewed by 5563
Abstract
When an organization’s management creates a goal conflict between workplace safety and the profitability of the organization, workers perceive work-safety tension. This leads to reduced safety-related behavior, culminating in higher rates of occupational injuries. In this study, we explored design components of behavior-based [...] Read more.
When an organization’s management creates a goal conflict between workplace safety and the profitability of the organization, workers perceive work-safety tension. This leads to reduced safety-related behavior, culminating in higher rates of occupational injuries. In this study, we explored design components of behavior-based safety programs: audit results and process communication, reward and punishment, and the framing of production goals as gains or losses. This allowed us to directly observe the effects of the goal conflicts and of the countermeasures that we designed in this study. We examined the perceived work-safety tension using a simulated water treatment plant in a laboratory study with 166 engineering students. Participants had the task of conducting a start-up procedure. The operators’ goal conflict was created by a choice between a safe and mandatory (less productive) procedure and an unsafe and forbidden (more productive) one. As participants were told that their payment for the study would depend on their performance, we expected that rule violations would occur. We found acceptance of measures and their design as important for rule related behavior. Work-safety tension emerged as a strong driver for violating safety rules. We conclude that safety incentive programs can become ineffective if goal conflicts create work-safety tension. Full article
Show Figures

Figure 1

Article
An Examination of the Strava Usage Rate—A Parameter to Estimate Average Annual Daily Bicycle Volumes on Rural Roadways
Safety 2021, 7(1), 8; https://doi.org/10.3390/safety7010008 - 27 Jan 2021
Cited by 3 | Viewed by 5660
Abstract
In Spain, a new challenge is emerging due to the increase of many recreational bicyclists on two-lane rural roads. These facilities have been mainly designed for motorized vehicles, so the coexistence of cyclists and drivers produces an impact, in terms of road safety [...] Read more.
In Spain, a new challenge is emerging due to the increase of many recreational bicyclists on two-lane rural roads. These facilities have been mainly designed for motorized vehicles, so the coexistence of cyclists and drivers produces an impact, in terms of road safety and operation. In order to analyze the occurrence of crashes and enhance safety for bicycling, it is crucial to know the cycling volume. Standard procedures recommend using data from permanent stations and temporary short counts, but bicycle volumes are rarely monitored in rural roads. However, bicyclists tend to track their leisure and exercise activities with fitness apps that use GPS. In this context, this research aims at analyzing the daily and seasonal variability of the Strava Usage Rate (SUR), defined as the proportion of bicyclists using the Strava app along a certain segment on rural highways, to estimate the Annual Average Daily Bicycle (AADB) volume on rural roads. The findings of this study offer possible solutions to policy makers in terms of planning and design of the cycling network. Moreover, the use of crowdsourced data from the Strava app will potentially save costs to public agencies, since public data could replace costly counting campaigns. Full article
(This article belongs to the Special Issue Non-Motorized Road Users Safety)
Show Figures

Figure 1

Article
Comparative Analyses of Parameters Influencing Children Pedestrian Behavior in Conflict Zones of Urban Intersections
Safety 2021, 7(1), 5; https://doi.org/10.3390/safety7010005 - 18 Jan 2021
Cited by 11 | Viewed by 5834
Abstract
Children pedestrians make up 30% of the total number of children injured in road traffic in the EU. Research shows that children are injured more often in the urban areas, in residential areas near schools and parks, often at intersections and pedestrian crossings. [...] Read more.
Children pedestrians make up 30% of the total number of children injured in road traffic in the EU. Research shows that children are injured more often in the urban areas, in residential areas near schools and parks, often at intersections and pedestrian crossings. In this study, children’s traffic behavior was analyzed by observation of signalized pedestrian crosswalks. According to the same methodology, the research was conducted in three cities in two countries (Enna, Italy, Osijek and Rijeka, Croatia) with different urban and traffic characteristics. A total of 900 measurements were analyzed, 300 in each of the cities at 18 pedestrian crosswalks located in an urban setting in the vicinity of primary schools. A detailed statistical analysis of the influence parameters shows that, as general influence parameters, pedestrian crosswalk length, movement in a group and the age of children can be distinguished. Factors that have proven to have a significant influence on the movement of children in two of the three cities observed are gender, supervision by adults, running and cellphone use. The result can serve as a valuable input for interventions in traffic education as well as a basis for the improvement of traffic conditions at intersections where children are regularly present. Full article
(This article belongs to the Special Issue Methods and Instruments for Evaluating and Measuring Safety)
Article
A Comprehensive Approach Combining Regulatory Procedures and Accident Data Analysis for Road Safety Management Based on the European Directive 2019/1936/EC
Safety 2021, 7(1), 6; https://doi.org/10.3390/safety7010006 - 18 Jan 2021
Cited by 18 | Viewed by 7443
Abstract
The European Union policy for road safety management is based on the European Directive 2019/1936/EC. Among the safety management procedures and strategies, road safety inspections (RSI) are an effective tool for preventing accident risk and reducing crash frequency and severity for existing road [...] Read more.
The European Union policy for road safety management is based on the European Directive 2019/1936/EC. Among the safety management procedures and strategies, road safety inspections (RSI) are an effective tool for preventing accident risk and reducing crash frequency and severity for existing road networks. The European Transport Safety Council encourages the extension of these measures to the main urban and rural roads by the 5th Road Safety Action Programme. In light of the above, in this study, a safety performance evaluation through the RSI approach is carried out for a high-risk rural road in Southern Italy in order to identify all the road infrastructure-related features with poor safety conditions. Afterwards, the relationship between infrastructure deficiencies and the frequency and severity of accidents is investigated; a significant relationship between accident density/total number of injured people and road markings gap is found. Furthermore, the results confirm that a high density of driveways strongly impacts crash frequency. The analysis of the contribution of multiple infrastructure-related variables on the crash occurrences is proposed by the identification of several mathematical models. A second-order AIC (Akaike’s information criterion) approach is carried out to compare the five fitted models investigated. Finally, a prediction calibrated model is proposed. Full article
(This article belongs to the Special Issue Sustainable and Safe Road Design)
Show Figures

Figure 1

Review
On Driver Behavior Recognition for Increased Safety: A Roadmap
Safety 2020, 6(4), 55; https://doi.org/10.3390/safety6040055 - 12 Dec 2020
Cited by 17 | Viewed by 8448
Abstract
Advanced Driver-Assistance Systems (ADASs) are used for increasing safety in the automotive domain, yet current ADASs notably operate without taking into account drivers’ states, e.g., whether she/he is emotionally apt to drive. In this paper, we first review the state-of-the-art of emotional and [...] Read more.
Advanced Driver-Assistance Systems (ADASs) are used for increasing safety in the automotive domain, yet current ADASs notably operate without taking into account drivers’ states, e.g., whether she/he is emotionally apt to drive. In this paper, we first review the state-of-the-art of emotional and cognitive analysis for ADAS: we consider psychological models, the sensors needed for capturing physiological signals, and the typical algorithms used for human emotion classification. Our investigation highlights a lack of advanced Driver Monitoring Systems (DMSs) for ADASs, which could increase driving quality and security for both drivers and passengers. We then provide our view on a novel perception architecture for driver monitoring, built around the concept of Driver Complex State (DCS). DCS relies on multiple non-obtrusive sensors and Artificial Intelligence (AI) for uncovering the driver state and uses it to implement innovative Human–Machine Interface (HMI) functionalities. This concept will be implemented and validated in the recently EU-funded NextPerception project, which is briefly introduced. Full article
(This article belongs to the Special Issue Traffic Safety and Driver Behaviour)
Show Figures

Graphical abstract

Review
Reporting as a Key Element of an Effective Near-Miss Management System in Shipping
Safety 2020, 6(4), 53; https://doi.org/10.3390/safety6040053 - 01 Dec 2020
Cited by 7 | Viewed by 7585
Abstract
Shipping is a high-risk industry and prone to accidents. A near-miss management system is an important aspect of the safety performance in shipping because the causes are the same for near-misses and accidents. Reporting, analyzing, and learning from near-misses can prevent the recurrence [...] Read more.
Shipping is a high-risk industry and prone to accidents. A near-miss management system is an important aspect of the safety performance in shipping because the causes are the same for near-misses and accidents. Reporting, analyzing, and learning from near-misses can prevent the recurrence of accidents and thus improve safety on ships. This paper addresses near-miss management systems in shipping and provides insights into the quality of the implementation of these systems, with an emphasis on the importance of reporting. Research data were derived from two surveys and supported by data gained from near-miss reports and existing literature reviews. Professional seafarers of various ranks, ages, nationalities, and experiences, serving on tankers, cruise ships, bulk carriers, and container ships, voluntarily participated in these surveys. The first survey comprised 223 participants, and the second survey involved 22 participants. The research results indicate that near-miss reporting is inadequate, and several barriers limit appropriate near-miss reporting. The difficulty of seafarers in identifying near-miss events was found to be one of the major barriers to near-miss reporting at sea. Based on this research, a conceptual model of a near-miss management system was developed, and measures that can be applied to overcome barriers and increase reporting are proposed. Full article
Show Figures

Figure 1

Article
Risk Assessment of a Battery-Powered High-Speed Ferry Using Formal Safety Assessment
Safety 2020, 6(3), 39; https://doi.org/10.3390/safety6030039 - 26 Aug 2020
Cited by 12 | Viewed by 10087
Abstract
Fully electric ships have been widely developed, investigated and evaluated by the maritime industry as a potential solution to respond to the emissions control required according to the International Maritime Organization (IMO). This study aims at presenting a novel approach to evaluate the [...] Read more.
Fully electric ships have been widely developed, investigated and evaluated by the maritime industry as a potential solution to respond to the emissions control required according to the International Maritime Organization (IMO). This study aims at presenting a novel approach to evaluate the safety level of a battery-powered high speed catamaran. Following the Formal Safety Assessment procedure, the risk assessment of the considered ship was conducted leading to the identification of the involved hazards along with the estimation of their frequency and consequences thus allowing for the identification of the most severe hazards. Fault tree analysis is carried out for and the identified top events followed by an event tree analysis to estimate the risk and safety level of the vessel. Furthermore, a cost-benefit assessment is conducted to evaluate the financial impact of selected risk control options. The derived results indicate that the application of battery power systems for high speed ferries exhibits low and acceptable accident frequencies. It is also supported the current regulation to carry out mandatory risk assessment for battery-powered ships. Full article
(This article belongs to the Special Issue Maritime Safety and Operations)
Show Figures

Figure 1

Article
Driver Take-Over Reaction in Autonomous Vehicles with Rotatable Seats
Safety 2020, 6(3), 34; https://doi.org/10.3390/safety6030034 - 01 Jul 2020
Cited by 6 | Viewed by 6514
Abstract
A new concept in the interior design of autonomous vehicles is rotatable or swivelling seats that allow people sitting in the front row to rotate their seats and face backwards. In the current study, we used a take-over request task conducted in a [...] Read more.
A new concept in the interior design of autonomous vehicles is rotatable or swivelling seats that allow people sitting in the front row to rotate their seats and face backwards. In the current study, we used a take-over request task conducted in a fixed-based driving simulator to compare two conditions, driver front-facing and rear-facing. Thirty-six adult drivers participated in the experiment using a within-subject design with take-over time budget varied. Take-over reaction time, remaining action time, crash, situation awareness and trust in automation were measured. Repeated measures ANOVA and Generalized Linear Mixed Model were conducted to analyze the results. The results showed that the rear-facing configuration led to longer take-over reaction time (on average 1.56 s longer than front-facing, p < 0.001), but it caused drivers to intervene faster after they turned back their seat in comparison to the traditional front-facing configuration. Situation awareness in both front-facing and rear-facing autonomous driving conditions were significantly lower (p < 0.001) than the manual driving condition, but there was no significant difference between the two autonomous driving conditions (p = 1.000). There was no significant difference of automation trust between front-facing and rear-facing conditions (p = 0.166). The current study showed that in a fixed-based simulator representing a conditionally autonomous car, when using the rear-facing driver seat configuration (where participants rotated the seat by themselves), participants had longer take-over reaction time overall due to physical turning, but they intervened faster after they turned back their seat for take-over response in comparison to the traditional front-facing seat configuration. This behavioral change might be at the cost of reduced take-over response quality. Crash rate was not significantly different in the current laboratory study (overall the average rate of crash was 11%). A limitation of the current study is that the driving simulator does not support other measures of take-over request (TOR) quality such as minimal time to collision and maximum magnitude of acceleration. Based on the current study, future studies are needed to further examine the effect of rotatable seat configurations with more detailed analysis of both TOR speed and quality measures as well as in real world driving conditions for better understanding of their safety implications. Full article
Show Figures

Figure 1

Article
Muscle Activity during Postural Stability Tasks: Role of Military Footwear and Load Carriage
Safety 2020, 6(3), 35; https://doi.org/10.3390/safety6030035 - 01 Jul 2020
Cited by 3 | Viewed by 6342
Abstract
Decrements to postural control manifest as an increase in muscle activity, indicating continuous attempts to maintain body equilibrium and postural stability. Extrinsic factors such as footwear, and intrinsic factors such as muscle fatigue, can affect postural stability. The purpose of this study was [...] Read more.
Decrements to postural control manifest as an increase in muscle activity, indicating continuous attempts to maintain body equilibrium and postural stability. Extrinsic factors such as footwear, and intrinsic factors such as muscle fatigue, can affect postural stability. The purpose of this study was to analyze the impact of two types of military footwear and a military-type load-carrying task on lower extremity muscle activity during various postural stability tasks. Sixteen males’ (age: 26.63 ± 3.93 years; mass: 87 ± 12.4 kg; height: 178.04 ± 6.2 cm) muscle activity from knee flexors, extensors, ankle dorsiflexors, and plantar flexors were measured using electromyography in standard (STD) and minimalist (MIN) military footwear, before (PRE) and after (POST) a simulated workload during sensory organization and motor control tests on the Neurocom EquitestTM. Mean muscle activity was analyzed using 2 (footwear) × 2 (time) repeated measures ANOVA with an alpha level of 0.05. Results revealed a requirement of significantly greater muscle activity in POST and STD. MIN demonstrated lesser balance decrements POST workload, which could be attributed to its design characteristics. Results will help in suggesting footwear design characteristics to minimize muscular exertion while eliciting better postural control, and to prevent postural instability due to overexertion in military personnel. Full article
Show Figures

Figure 1

Article
Risk Perception and Its Influencing Factors among Construction Workers in Malawi
Safety 2020, 6(2), 33; https://doi.org/10.3390/safety6020033 - 24 Jun 2020
Cited by 13 | Viewed by 7900
Abstract
This study employed a deductive research approach and a survey strategy to assess risk perception and its influencing factors among construction workers in Malawi. Three specific construction hazards and their associated risks were selected. The hazards were “working at height (WAH)” “manual handling [...] Read more.
This study employed a deductive research approach and a survey strategy to assess risk perception and its influencing factors among construction workers in Malawi. Three specific construction hazards and their associated risks were selected. The hazards were “working at height (WAH)” “manual handling of loads (MHL)” and “heavy workload or intense pressure to be more productive (HWP).” The study engaged multistage sampling of 376 subjects. Univariate analysis, factor analysis and multiple linear regressions were performed in order to determine the main influencing factors among the independent variables. The study established that workers were aware of risks posed by their work. The majority perceived the risk associated with WAH, MHL and HWP as very high (62.7%, =8.80 ± 1.95); (48.5%, =8.10 ± 2.38); (57.9%, =8.49 ± 2.22) respectively. The study identified six factors as variables that showed a significant effect on workers’ perception of risk (p < 0.05). These factors were: “dreaded factor,” “avoidability and controllability,” “expert knowledge,” “personal knowledge,” “education level,” and “age”. It is concluded that contractors in the Malawian construction industry should integrate analysis of behaviors and risk perception of the workers and other players to guide the identification of better health and safety interventions at their worksites. Full article
Show Figures

Figure 1

Review
Aquatic Competencies and Drowning Prevention in Children 2–4 Years: A Systematic Review
Safety 2020, 6(2), 31; https://doi.org/10.3390/safety6020031 - 21 Jun 2020
Cited by 12 | Viewed by 11466
Abstract
Aquatic competencies have been proposed as a prevention strategy for children aged 2–4 years who are over-represented in drowning statistics. For this recommendation to be made, exploration of the connection between aquatic competencies and drowning is required. This review critically analyzed studies exploring [...] Read more.
Aquatic competencies have been proposed as a prevention strategy for children aged 2–4 years who are over-represented in drowning statistics. For this recommendation to be made, exploration of the connection between aquatic competencies and drowning is required. This review critically analyzed studies exploring aquatic competencies and their effect on drowning and/or injury severity in children 2–4 years. English language peer-reviewed literature up to 31 July 2019 was searched and the PRISMA process utilized. Data were extracted from twelve studies that fulfilled the inclusion criteria. Findings from this study included that aquatic competencies were not found to increase risk of drowning and demonstrated children aged 2–4 years are capable of developing age-appropriate aquatic competencies. Age-appropriate aquatic competencies extracted were propulsion/locomotion, flotation/buoyancy, water familiarization, submersion and water exits. The acquisition of these competencies holds benefit for the prevention of drowning. No evidence was found relating to injury severity. There was limited exploration of the relationship between aquatic competencies attainment and age-related developmental readiness. The review highlights the need for consistent measures of exposure, clarity around skills acquisition, better age-specific data (2 years vs. 3 years vs. 4 years), studies with larger sample sizes, further exploration of the dose–response relationship and consistent skill level testing across age groups. Further investigation is required to establish the efficacy of aquatic competencies as a drowning prevention intervention, as well as exploring the relationship between aquatic competencies and age-related developmental readiness. In conclusion, early evidence suggests aquatic competencies can help to reduce drowning. Full article
Show Figures

Figure 1

Article
Role of Passengers in Single-Vehicle Drunk-Driving Crashes: An Injury-Severity Analysis
Safety 2020, 6(2), 30; https://doi.org/10.3390/safety6020030 - 21 Jun 2020
Cited by 8 | Viewed by 6645
Abstract
Background: Drunk-driving is a major crash risk factor, and crashes resulting from this risky behavior tend to be serious and have significant economic and societal impacts. The presence of passengers and their demographics and activities can influence risky driving behaviors such as drunk-driving. [...] Read more.
Background: Drunk-driving is a major crash risk factor, and crashes resulting from this risky behavior tend to be serious and have significant economic and societal impacts. The presence of passengers and their demographics and activities can influence risky driving behaviors such as drunk-driving. However, passengers could either be an “enabling” factor to take more risks or could be an “inhibiting” factor by ensuring safe driving by a drunk-driver. Objective: This study examines whether the presence of passengers affects the contributing factors of single-vehicle (SV) drunk-driving crashes, by presenting a severity analysis of single- and multi-occupant SV drunk-driving crashes, to identify risk factors that contribute to crash severity outcomes, for the effective implementation of relevant countermeasures. Method: A total of 7407 observations for 2012–2016 from the crash database of the State of Alabama was used for this study. The variables were divided into six classes: temporal, locational, driver, vehicle, roadway, and crash characteristics and injury severities into three: severe, minor, and no injury. Two latent class multinomial logit models—one each for single- and multi-occupant crashes—were developed, to analyze the effects of significant factors on injury severity outcomes using marginal effects. Results: The estimated results show that collision with a ditch, run-off road, intersection, winter season, wet roadway, and interstate decreased the probability of severe injuries in both single- and multi-occupant crashes, whereas rural area, road with downward grade, dark and unlit roadway, unemployed driver, and driver with invalid license increased the likelihood of severe injuries for both single- and multi-occupant crashes. Female drivers were more likely to be severely injured in single-occupant crashes, but less likely in multi-occupant crashes. A significant association was found between severe injuries and weekends, residential areas, and crash location close (<25 mi ≈40.23 km) to the residence of the at-fault driver in multi-occupant crashes. Sport utility vehicles were found to be safer when driving with passengers. Conclusions: The model findings show that, although many correlates are consistent between the single- and multi-occupant SV crashes that are associated with locational, roadway, vehicle, temporal, and driver characteristics, their effect can vary across the single- and multi-occupant driving population. The findings from this study can help in targeting interventions, developing countermeasures, and educating passengers to reduce drunk-driving crashes and consequent injuries. Such integrated efforts combined with engineering and emergency response may contribute in developing a true safe systems approach. Full article
Show Figures

Figure 1

Article
Speeds of Young E-Cyclists on Urban Streets and Related Risk Factors: An Observational Study in Israel
Safety 2020, 6(2), 29; https://doi.org/10.3390/safety6020029 - 18 Jun 2020
Cited by 10 | Viewed by 5873
Abstract
In Israel, a growing use of electric bicycles by youngsters has been noted, with an increase in related injuries. In this study, an observational survey was conducted on typical urban streets, aiming to characterize the riding speeds of young e-cyclists compared to regular [...] Read more.
In Israel, a growing use of electric bicycles by youngsters has been noted, with an increase in related injuries. In this study, an observational survey was conducted on typical urban streets, aiming to characterize the riding speeds of young e-cyclists compared to regular cyclists and the associated risk factors in their behaviors. The survey covered 39 sites in eight cities, and included 1054 cyclists. The results showed that mean speeds of young e-cyclists were higher than those of regular cyclists at all types of sites, with a difference of 6–9 km/h. The mean speeds of e-bicycles were below 25 km/h, as prescribed by law, but the 85-percentile speeds were higher. E-cyclist speeds depend on the type of street, road layout and place of riding. More e-cyclists used the roadway compared to regular cyclists, however, on divided roads, more e-cyclists used sidewalks in spite of the law prohibition, thus endangering pedestrians. The majority of cyclists did not wear helmets. The unsafe behaviors of teenage e-cyclists increase the injury risk for themselves and for other road-users. Thus, separate bicycle infrastructure should be promoted in the cities. Road safety education and training of young e-cyclists with stronger enforcement of traffic regulations are also needed. Full article
Show Figures

Figure 1

Article
Roadside Fixed-Object Collisions, Barrier Performance, and Fatal Injuries in Single-Vehicle, Run-Off-Road Crashes
Safety 2020, 6(2), 27; https://doi.org/10.3390/safety6020027 - 20 May 2020
Cited by 19 | Viewed by 8058
Abstract
Objectives: To quantify the odds of fatal injuries associated with drivers involved in single-vehicle, run-off-road (SVROR), injury crashes. Methods: An in-service safety evaluation was carried out using multivariate logistic regression models. Results: The odds of motorist death was lower for w-beam guardrail crashes [...] Read more.
Objectives: To quantify the odds of fatal injuries associated with drivers involved in single-vehicle, run-off-road (SVROR), injury crashes. Methods: An in-service safety evaluation was carried out using multivariate logistic regression models. Results: The odds of motorist death was lower for w-beam guardrail crashes as compared to tree, pole, and concrete barrier crashes. On the other hand, there was no statistically significant difference between the odds of motorist death in concrete barrier crashes as compared to tree or pole crashes. The odds of motorist death were lower for curbs and collision-free crashes as compared to tree, pole, and barrier crashes. Thus, obstacles should be removed whenever possible and barriers installed only whenever absolutely necessary. The lack of vehicle containment (in barrier crashes) was found: (i) to tend to occur on higher-posted-speed-limit roads and result in a higher percentage of fatal crashes, (ii) to be more prevalent with the less rigid barrier type, and (iii) to result in a consistently higher percentage of fatal crashes under the concrete barrier category. Conclusions: Findings not only support state-of-the-art roadside design guidelines and crash-testing criteria, but they may also be useful in evaluating proposed roadside safety improvements. Full article
Show Figures

Figure 1

Article
A Novel Method for Safety Analysis of Cyber-Physical Systems—Application to a Ship Exhaust Gas Scrubber System
Safety 2020, 6(2), 26; https://doi.org/10.3390/safety6020026 - 19 May 2020
Cited by 19 | Viewed by 7798
Abstract
Cyber-Physical Systems (CPSs) represent a systems category developed and promoted in the maritime industry to automate functions and system operations. In this study, a novel Combinatorial Approach for Safety Analysis is presented, which addresses the traditional safety methods’ limitations by integrating System Theoretic [...] Read more.
Cyber-Physical Systems (CPSs) represent a systems category developed and promoted in the maritime industry to automate functions and system operations. In this study, a novel Combinatorial Approach for Safety Analysis is presented, which addresses the traditional safety methods’ limitations by integrating System Theoretic Process Analysis (STPA), Events Sequence Identification (ETI) and Fault Tree Analysis (FTA). The developed method results in the development of a detailed Fault Tree that captures the effects of both the physical components/subsystems and the software functions’ failures. The quantitative step of the method employs the components’ failure rates to calculate the top event failure rate along with importance metrics for identifying the most critical components/functions. This method is implemented for an exhaust gas open loop scrubber system safety analysis to estimate its failure rate and identify critical failures considering the baseline system configuration as well as various alternatives with advanced functions for monitoring and diagnostics. The results demonstrate that configurations with SOx sensor continuous monitoring or scrubber unit failure diagnosis/prognosis lead to significantly lower failure rate. Based on the analysis results, the advantages/disadvantages of the novel method are also discussed. This study also provides insights for better safety analysis of the CPSs. Full article
(This article belongs to the Special Issue Maritime Safety and Operations)
Show Figures

Figure 1

Article
Effect of Road Markings and Traffic Signs Presence on Young Driver Stress Level, Eye Movement and Behaviour in Night-Time Conditions: A Driving Simulator Study
Safety 2020, 6(2), 24; https://doi.org/10.3390/safety6020024 - 11 May 2020
Cited by 15 | Viewed by 9203
Abstract
The study investigates how the presence of traffic signalling elements (road markings and traffic signs) affects the behaviour of young drivers in night-time conditions. Statistics show that young drivers (≤30 years old) are often involved in road accidents, especially those that occur in [...] Read more.
The study investigates how the presence of traffic signalling elements (road markings and traffic signs) affects the behaviour of young drivers in night-time conditions. Statistics show that young drivers (≤30 years old) are often involved in road accidents, especially those that occur in night-time conditions. Among other factors, this is due to lack of experience, overestimation of their ability or the desire to prove themselves. A driving simulator scenario was developed for the purpose of the research and 32 young drivers took two runs using it: (a) one containing no road markings and traffic signs and (b) one containing road markings and traffic signs. In addition to the driving simulator, eye tracking glasses were used to track eye movement and an electrocardiograph was used to monitor the heart rate and to determine the level of stress during the runs. The results show statistically significant differences (dependent samples t-test) between the two runs concerning driving speed, lateral position of the vehicle, and visual scanning of the environment. The results prove that road markings and traffic signs provide the drivers with timely and relevant information related to the upcoming situation, thus enabling them to adjust their driving accordingly. The results are valuable to road authorities and provide an explicit confirmation of the importance of traffic signalling for the behaviour of young drivers in night-time conditions, and thus for the overall traffic safety. Full article
(This article belongs to the Special Issue Sustainable and Safe Road Design)
Show Figures

Figure 1

Back to TopTop