remotesensing-logo

Journal Browser

Journal Browser

Remotely Sensed Data of Space Weather: New Observations, Approaches and Methods

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Atmospheric Remote Sensing".

Deadline for manuscript submissions: 15 June 2024 | Viewed by 2201

Special Issue Editors

Istituto Nazionale di Geofisica e Vulcanologia (INGV), 00143 Rome, Italy
Interests: geomagnetism; data analysis; space weather
Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, Rome, Italy
Interests: near-earth electromagnetic environment (magnetosphere, ionosphere); extreme events in climate; sea level rise; turbulence in fluids and plasmas; theory of complex systems and chaos
Special Issues, Collections and Topics in MDPI journals
National Institute for Astrophysics-Institute for Space Astrophysics and Planetology (INAF-IAPS), 00133 Rome, Italy
Interests: complexity and turbulence in space plasmas; dynamical systems and information theory approaches to Sun-Earth relationships and Earth’s magnetospheric dynamics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Perturbations of solar origin can trigger a multitude of physical processes occurring in interplanetary space down to the Earth’s surface.

The study of these processes is of the utmost importance, both to understand the physical mechanisms that govern them and, ultimately, to try to mitigate the consequent hazards on technological systems and human exploration.

At present, these investigations rely on a huge amount of data and a large number of new mathematical tools that enable significant advances in the comprehension, modeling and forecasting of the long chain of phenomena occurring during space weather events. On the one hand, there is a large number of measurements from ground-based facilities (i.e., geomagnetic observatories, ionosondes and radars) and from many space-based missions. On the other hand, thanks to the increasing computing capabilities, we are witnessing a rapid development of new techniques (e.g., in the field of machine learning) able to cope with wide and complex datasets and extract information from them that would otherwise be unavailable.

This Special Issue hopes to publish studies combining the two above-mentioned aspects. We welcome the submission of papers focused on the application of novel techniques, as well as traditional techniques used in a novel way, to remotely sensed data for space weather purposes.

Contributions in the framework of space weather relevant to this Special Issue may include:

  • Modeling and forecasting of space-weather-relevant quantities through innovative mathematical techniques;
  • Novel approaches for extracting new information from historical databases;
  • New observations obtained from the analysis of recently issued either ground- or space-based measurements.

Dr. Roberta Tozzi
Dr. Tommaso Alberti
Dr. Giuseppe Consolini
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • space weather
  • ground-based observatories and LEO satellite measurements
  • modeling and forecasting
  • machine learning and advanced statistical analysis
  • sun–earth interaction
  • deterministic and stochastic approaches

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 21662 KiB  
Article
Polar Cap Patches Scaling Properties: Insights from Swarm Data
by Roberta Tozzi, Paola De Michelis, Giulia Lovati, Giuseppe Consolini, Alessio Pignalberi, Michael Pezzopane, Igino Coco, Fabio Giannattasio and Maria Federica Marcucci
Remote Sens. 2023, 15(17), 4320; https://doi.org/10.3390/rs15174320 - 01 Sep 2023
Viewed by 471
Abstract
Among the effects of space weather, the degradation of air traffic communications and satellite-based navigation systems are the most notable. For this reason, it is of uttermost importance to understand the nature and origin of ionospheric irregularities that are at the base of [...] Read more.
Among the effects of space weather, the degradation of air traffic communications and satellite-based navigation systems are the most notable. For this reason, it is of uttermost importance to understand the nature and origin of ionospheric irregularities that are at the base of the observed communication outages. Here we focus on polar cap patches (PCPs) that constitute a special class of ionospheric irregularities observed at very high latitudes in the F region. To this purpose we use the so-called PCP flag, a Swarm Level 2 product, that allows for identifying PCPs. We relate the presence of PCPs to the values of the first- and second-order scaling exponents and intermittency estimated from Swarm A electron density fluctuations and to the values of the Rate Of change of electron Density Index (RODI) for two different levels of geomagnetic activity, over a time span of approximately 3.5 years starting on 16 July 2014. Our findings show that values of RODI, first- and second-order scaling exponents and intermittency corresponding to measurements taken inside PCPs differ from those corresponding to measurements taken outside PCPs. Additionally, the values of the first- and second-order scaling exponents and of intermittency indicate that PCPs are in a turbulent state. Investigation of the coincidence of loss of lock (LoL) events with PCPs displayed that approximately 57.4% of LoLs in the Northern hemisphere and 45.7% in the Southern hemisphere occur in coincidence of PCPs when disturbed geomagnetic activity is considered. During quiet geomagnetic conditions these percentages decrease to 51.4% in the Northern hemisphere and to 20.1% in the Southern hemisphere. Full article
Show Figures

Graphical abstract

19 pages, 8738 KiB  
Article
Tracking Geomagnetic Storms with Dynamical System Approach: Ground-Based Observations
by Tommaso Alberti, Paola De Michelis, Lucia Santarelli, Davide Faranda, Giuseppe Consolini and Maria Federica Marcucci
Remote Sens. 2023, 15(12), 3031; https://doi.org/10.3390/rs15123031 - 09 Jun 2023
Viewed by 961
Abstract
Using a dynamical systems approach, we examine the persistence and predictability of geomagnetic perturbations across a range of different latitudes and levels of geomagnetic activity. We look at the horizontal components of the magnetic field measured on the ground between 13 and 24 [...] Read more.
Using a dynamical systems approach, we examine the persistence and predictability of geomagnetic perturbations across a range of different latitudes and levels of geomagnetic activity. We look at the horizontal components of the magnetic field measured on the ground between 13 and 24 March 2015, at approximately 40 observatories in the Northern Hemisphere. We introduced two dynamical indicators: the extremal index θ, which quantifies the persistence of the system in a particular state and the instantaneous dimension d, which measures the active number of degrees of freedom of the system. The analysis revealed that during disturbed periods, the instantaneous dimension of the horizontal strength of the magnetic field, which depends on latitude, increases, indicating that the geomagnetic response is externally driven. Furthermore, during quiet times, the instantaneous dimension values fluctuate around the state-space dimension, indicating a more stochastic and thus less predictable nature system. Full article
Show Figures

Figure 1

Back to TopTop