remotesensing-logo

Journal Browser

Journal Browser

Special Issue "Applications of Remote Sensing in Monitoring Ionospheric and Atmospheric Physics"

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Atmospheric Remote Sensing".

Deadline for manuscript submissions: 31 May 2024 | Viewed by 1140

Special Issue Editors

Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, China
Interests: ionospheric irregularities; traveling ionospheric disturbances; ionosonde; ionograms autoscaling; radio wave propagation; simulation of plasma irregularities; planetary ionospheric irregularities
Special Issues, Collections and Topics in MDPI journals
Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Interests: ionospheric weather; ionospheric modeling; ionospheric data assimilation; ionosphere—thermosphere coupling; planetary ionosphere
Special Issues, Collections and Topics in MDPI journals
MIT Haystack Observatory, Westford, MA 01886, USA
Interests: ionospheric irregularities; ionospheric data assimilation; GNSS and radio occultation; subauroral electrodynamics; ionosphere—thermosphere coupling; geospace storm effects
Special Issues, Collections and Topics in MDPI journals
Institute of Space Weather, Nanjing University of Information Science & Technology, NO. 219, Ningliu Road, Nanjing 210044, China
Interests: nitric oxide cooling in lower thermosphere; ionosphere and middle atmosphere coupling; thermospheric and ionospheric storms
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The ionosphere, where atoms and molecules are partly ionized by solar radiation, constitutes a significant part of Earth’s upper atmosphere. The free electrons in the ionosphere can significantly affect the propagation of radio waves. The ionosphere plays a critical role in communications and navigation systems in our daily life. Therefore, developing our understanding of this section of our atmosphere is of great importance for human activities. The ionosphere has strong temporal and spatial variability. Being coupled downward to the lower atmosphere and upward to the magnetosphere, the ionosphere is not only affected by solar activities, but also by the lower atmospheric waves and geomagnetic disturbances. The ionosphere is also controlled by photochemical, dynamic, and electrodynamic processes. As a result, there are many open questions in the ionospheric community, such as the day-to-day variation in the ionosphere, ionospheric irregularities, ionospheric longitudinal structure, the forecasting of the ionosphere, ionospheric storms, etc.

The middle and upper atmosphere are located at the end of the solar terrestrial energy transfer chain and play important roles space science research. The middle and upper atmosphere comprise the passage zone for various spacecraft and the residence zone for low-orbit spacecraft. Therefore, the heating and cooling process, the temporal and spatial variability, and the transient structure of the atmosphere at this altitude have significant impact on the safety and precise orbit entry of spacecraft.

With the development of modern techniques, many methods of remote sensing of the ionosphere and the atmosphere, including ionosondes, radars, radio occultations, GNSS receivers, and airglow observations from the ground and spacecraft, etc., have emerged to assist in further understanding the ionosphere and the atmosphere.

In this Special Issue, we aim to improve the understanding of ionospheric and atmospheric physics by the application of remote sensing of the ionosphere and atmosphere. Both original research and review papers are welcome.

We encourage contributions to topics including but not limited to:

  • Spatial and temporal distributions in the ionosphere/atmosphere
  • Ionospheric irregularities
  • Ionospheric/thermosphric modeling
  • Ionospheric data assimilation
  • Ionosphere-Thermosphere coupling
  • Traveling ionospheric/atmospheric disturbances
  • Remote sensing by radio waves and optical imaging
  • Ionospheric/thermospheric weather

This Special Issue is the second edition of Remote Sensing Special Issue entitled Applications of Remote Sensing in Monitoring Ionospheric Physics and Ionospheric Weather Forecasting.

Dr. Chunhua Jiang
Dr. Huijun Le
Dr. Ercha Aa
Dr. Zheng Li
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ionosphere
  • atmosphere
  • ionospheric irregularities
  • ionospheric/thermosphric modelling
  • data assimilation
  • geomagnetic storms
  • radars
  • radio occultations
  • GNSS TEC
  • airglow observations

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

12 pages, 5712 KiB  
Communication
Seasonal Variations in Ion Density, Ion Temperature, and Migrating Tides in the Topside Ionosphere Revealed by ICON/IVM
Remote Sens. 2023, 15(21), 5205; https://doi.org/10.3390/rs15215205 - 01 Nov 2023
Viewed by 495
Abstract
Based on the plasma parameters measured by the Ion Velocity Meter (IVM) instrument on the Ionospheric Connection Explorer (ICON) satellite from 2020 to 2021, we present an analysis of seasonal variations in ion density, ion temperature, and migrating tides in the low-latitude topside [...] Read more.
Based on the plasma parameters measured by the Ion Velocity Meter (IVM) instrument on the Ionospheric Connection Explorer (ICON) satellite from 2020 to 2021, we present an analysis of seasonal variations in ion density, ion temperature, and migrating tides in the low-latitude topside ionosphere. The interannual variations in total ion density and O+ density are directly impacted by solar radiation. However, the concentration of H+ is not highly related to solar activity. The measurements show that the hemispheric dividing latitude for the seasonal variation in Ti is at about 9°N. We suggest that the reason for the hemispheric dividing latitude being 9°N is because measurements at this geographical latitude represent the closest match to the geomagnetic equator. An anticorrelation in the seasonal variations between the total ion density (as well as the O+ density) and the ion temperature is observed at all observed latitudes while the correlations between H+ density and the ion temperature are positive in most of the latitudes except for serval degrees around 9°N. The latitudinal variations in the correlation coefficients lead us to suggest that thermal conduction is likely more important than ion-neutral collision in the ion energy budget at 600 km. Additionally, semiannual oscillations with peak amplitudes in winters and summers at the extra-equatorial latitudes are revealed in the observations of diurnal migrating tides in the topside ionosphere, which are different from the latitudinal and seasonal distributions of diurnal migrating tides captured in the lower thermospheric temperature and total electron content. Full article
Show Figures

Figure 1

Other

Jump to: Research

14 pages, 14429 KiB  
Technical Note
A New Approach to the Ionosphere at Middle and Low Latitudes under the Geomagnetic Quiet Time of December 2019 by ICON and GOLD Observations
Remote Sens. 2023, 15(23), 5591; https://doi.org/10.3390/rs15235591 - 01 Dec 2023
Viewed by 373
Abstract
It has been found that the total electron content (TEC) and the ionospheric electric fields indicated by the geomagnetic data showed inconsistent changes with each other at the mid- and low latitudes in both the American and the Asian–Australian sectors during geomagnetic quiet [...] Read more.
It has been found that the total electron content (TEC) and the ionospheric electric fields indicated by the geomagnetic data showed inconsistent changes with each other at the mid- and low latitudes in both the American and the Asian–Australian sectors during geomagnetic quiet time (GQT) from 30 November to 8 December 2019 (Kpmax = 1.7). Meanwhile, the effects of thermospheric compositions are still indistinct. In this work, we analyze the mid/low-latitude ionospheric variations during this period, utilizing multi-instrument observations. The vertical drift velocities from the Ionospheric Connection Explorer (ICON) show significant variations and are in line with the changes in TEC at low latitudes in both of the two sectors. The zonal electric fields are supposed to play the main role in the TEC changes. This is also confirmed by the ionospheric F2 layer parameters data from the ionosonde stations at Sanya in the Asian–Australian sectors. The correlation between the variations in the geomagnetic H component (ΔH) and ionospheric F-layer electric fields can be affected by solar activity levels. The geomagnetic data ΔH sometimes may not indicate the magnitude of the electric fields in the F-region ionosphere under geomagnetic quiet conditions. The column density ratio of atomic oxygen (O) to molecular nitrogen (N2) (∑O/N2) from the Global Scale Observations of the Limb and Disk (GOLD) showed a strong enhancement at mid-latitudes in the American sector on 30 November. It is speculated that the neutral compositions should make a minor contribution to the changes in TEC during this event, compared with the electric fields. Full article
Show Figures

Graphical abstract

Back to TopTop