remotesensing-logo

Journal Browser

Journal Browser

Special Issue "Landsat 9 Pre-launch, Commissioning, and Early On-Orbit Imaging Performance"

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Satellite Missions for Earth and Planetary Exploration".

Deadline for manuscript submissions: closed (30 September 2023) | Viewed by 7284

Special Issue Editors

U. S. Geological Survey, Sioux Falls, SD 57198, USA
Interests: landsat; optical; satellite; radiometry; calibration; validation
Science Systems and Applications, Inc., NASA, Greenbelt, MD 20771, USA
Interests: landsat; laboratory measurement; calibration; validation
U. S. Geological Survey, Sioux Falls, SD 57198, USA
Interests: landsat; remote sensing; geometry; calibration; validation
U. S. Geological Survey, Sioux Falls, SD 57198, USA
Interests: landsat; earth observation; radiometry; calibration; validation
KBR, Inc., U. S. Geological Survey, Sioux Falls, SD 57198, USA
Interests: landsat; earth observation; calibration; validation

Special Issue Information

Dear Colleagues,

With a successful launch on September 27, 2021, Landsat 9 joined the 50-year Landsat mission: the longest-running Earth-observing satellite program. Largely designed to be identical to Landsat 8, Landsat 9 carries updated Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) instruments. Landsat 9 improvements include reduced stray-light in TIRS and an increased dynamic range bit-depth with OLI. Advances in pre-launch characterization gave a better understanding of the geometric, radiometric, spatial, spectral, etc. quality of both instruments. Activities during the commissioning period combined the pre-launch knowledge with the on-board calibration system responses and the latest vicarious calibration methods to ensure Landsat 9 OLI and TIRS were performing at or above the required levels while fitting seamlessly into the existing Landsat archive.

This Special Issue aims to cover all Landsat 9 calibration and validation activities performed to date to ensure its geometric, radiometric, spatial, spectral, etc. data quality. Topics may cover pre-launch characterization, testing, commissioning, and early on-orbit performance for either the Landsat 9 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) instruments, spacecraft, or full observatories. Comparisons between Landsat 9 and other missions, including the existing Landsat archive, are also welcome.

Suggested themes and article types for submissions.

  • Landsat 9 Design
  • Landsat 9 Pre-Launch Testing
  • Landsat 9 Geometric Performance
  • Landsat 9 Radiometric Performance
  • Landsat 9 Vicarious Calibration
  • Landsat 9 Cross-Calibration

Cody Anderson
Dr. Lawrence Ong
Michael Choate
Esad Micijevic
Kathryn Ruslander
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • landsat
  • calibration
  • validation
  • geometry
  • radiometry
  • vicarious
  • satellite
  • optical

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

Article
Landsat 9 Geometric Commissioning Calibration Updates and System Performance Assessment
Remote Sens. 2023, 15(14), 3524; https://doi.org/10.3390/rs15143524 - 12 Jul 2023
Viewed by 495
Abstract
Starting with launch of Landsat 7 (L7) on 15 April 1999, the USGS Landsat Image Assessment System (IAS) has been performing calibration and characterization operations for over 20 years on the Landsat spacecrafts and their associated payloads. With the launch of Landsat 9 [...] Read more.
Starting with launch of Landsat 7 (L7) on 15 April 1999, the USGS Landsat Image Assessment System (IAS) has been performing calibration and characterization operations for over 20 years on the Landsat spacecrafts and their associated payloads. With the launch of Landsat 9 (L9) on 27 September 2021, that spacecraft and its payloads, the Operational Land Imager-2 (OLI-2) and Thermal Infrared Sensor-2 (TIRS-2), were added to the existing suite of missions supported by the IAS. This paper discusses the geometric characterizations, calibrations, and performance analyses conducted during the commissioning period of the L9 spacecraft and its instruments. During this time frame the following calibration refinements were performed; (1) alignment between the OLI-2 and TIRS-2 instruments and the spacecraft attitude control system, (2) within-instrument band alignment, (3) instrument-to-instrument alignment. These refinements, carried out during commissioning and discussed in this paper, were performed to provide an on-orbit update to the pre-launch calibration parameters that were determined through Ground System Element (GSE) testing and Thermal Vacuum Testing (TVAC) for the two instruments and the L9 spacecraft. The commissioning period calibration update captures the effects of launch shift and zero-G release, and typically represents the largest changes that are made to the on-orbit geometric calibration parameters during the mission. The geometric calibration parameter updates performed during commissioning were done prior to releasing any L9 products to the user community. This commissioning period also represents the time frame during which focus is more strictly placed on the spacecraft and instrument performance, ensuring that system and instrument requirements are met, as contrasted with the post commissioning time frame when a greater focus is placed on the products generated, their behavior and their impact on the user community. Along with the calibration updates discussed in this paper key geometric performance requirements with respect to geodetic accuracy, geometric accuracy, and swath width are presented, demonstrating that the geometric performance of the L9 spacecraft and its’ instruments with respect to these key performance requirements are being met. Within the paper it will be shown that the absolute geodetic accuracy is met for OLI-2 and TIRS-2 with a margin of approximately 79% and 65% respectively while the geometric accuracy is met for OLI-2 and TIRS-2 with a margin of approximately 68% and 43% respectively. Full article
Show Figures

Figure 1

Article
Inter-Comparison of Landsat-8 and Landsat-9 during On-Orbit Initialization and Verification (OIV) Using Extended Pseudo Invariant Calibration Sites (EPICS): Advanced Methods
Remote Sens. 2023, 15(9), 2330; https://doi.org/10.3390/rs15092330 - 28 Apr 2023
Viewed by 1300
Abstract
Three advanced methodologies were performed during Landsat-9 on orbit and initialization and verification (OIV): Extended Pseudo Invariant Calibration Sites Absolute Calibration Model Double Ratio (ExPAC Double Ratio) and Extended Pseudo Invariant Calibration Sites (EPICS)-based cross-calibration utilizing stable regions in Northern African desert sites [...] Read more.
Three advanced methodologies were performed during Landsat-9 on orbit and initialization and verification (OIV): Extended Pseudo Invariant Calibration Sites Absolute Calibration Model Double Ratio (ExPAC Double Ratio) and Extended Pseudo Invariant Calibration Sites (EPICS)-based cross-calibration utilizing stable regions in Northern African desert sites (EPICS-NA) and a global scale (EPICS-Global). The development of these three techniques was described using uncertainties analysis. The ExPAC Double Ratio was derived based on the ratio between ExPAC model prediction and satellite measurements for Landsat-8 and Landsat-9. The ExPAC Double Ratio can be performed to determine differences between sensors ranging from visible, red edge, near-infrared, to short-wave infrared wavelengths. The ExPAC Double Ratio and EPICS-based inter-comparison ratio uncertainties were determined using the Monte Carlo Simulation. It was found that the uncertainty levels of 1–2% can be achieved. The EPICS-based cross-calibration results were derived using two targets: EPICS-NA and EPICS-Global, with uncertainties of 1–2.2% for all spectral bands. The inter-comparison results between Landsat-9 and Landsat-8 during the OIV period using the three advanced methods were well within 0.5% for all spectral bands except for the green band, which showed sub 1% agreement. Full article
Show Figures

Figure 1

Article
Extended Cross-Calibration Analysis Using Data from the Landsat 8 and 9 Underfly Event
Remote Sens. 2023, 15(7), 1788; https://doi.org/10.3390/rs15071788 - 27 Mar 2023
Cited by 1 | Viewed by 1883
Abstract
The Landsat 8 and 9 Underfly Event occurred in November 2021, during which Landsat 9 flew beneath Landsat 8 in the final stages before settling in its final orbiting path. An analysis was performed on the images taken during this event, which resulted [...] Read more.
The Landsat 8 and 9 Underfly Event occurred in November 2021, during which Landsat 9 flew beneath Landsat 8 in the final stages before settling in its final orbiting path. An analysis was performed on the images taken during this event, which resulted in a cross-calibration with uncertainties estimated to be less than 0.5%. This level of precision was due, in part, to the near-identical sensors aboard each instrument, as well as the underfly event itself, which allowed the sensors to take nearly the exact same image at nearly the exact same time. This initial calibration was applied before the end of the on-orbit initial verification (OIV) period; this meant the analysis was performed in less than a month. While it was an effective and efficient first look at the data, a longer-term analysis was deemed prudent to obtain the most accurate cross-calibration with the smallest uncertainties. The three forms of uncertainty established in the initial analysis, dubbed “Phase 1”, were geometric, spectral, and angular. This paper covers Phase 2 of the underfly analysis; several modifications were made to the Phase 1 process to improve the cross-calibration results, including a spectral correction in the form of a spectral band adjustment factor (SBAF) and a more robust filtering system that used the statistics of the reflectance data to better include important data compared to the more aggressive filters used in Phase 1. A proper uncertainty analysis was performed to more accurately quantify the uncertainty associated with the underfly cross-calibration. The results of Phase 2 showed that the Phase 1 analysis was within its 0.5% uncertainty estimation, and the cross-calibration gain values in this paper were used by USGS EROS to update the Landsat 9 calibration at the end of 2022. Full article
Show Figures

Figure 1

Article
Validation of Expanded Trend-to-Trend Cross-Calibration Technique and Its Application to Global Scale
Remote Sens. 2022, 14(24), 6216; https://doi.org/10.3390/rs14246216 - 08 Dec 2022
Cited by 2 | Viewed by 881
Abstract
The expanded Trend-to-Trend (T2T) cross-calibration technique has the potential to calibrate two sensors in much less time and provides trends on a daily assessment basis. The trend obtained from the expanded technique aids in evaluating the differences between satellite sensors. Therefore, this technique [...] Read more.
The expanded Trend-to-Trend (T2T) cross-calibration technique has the potential to calibrate two sensors in much less time and provides trends on a daily assessment basis. The trend obtained from the expanded technique aids in evaluating the differences between satellite sensors. Therefore, this technique was validated with several trusted cross-calibration techniques to evaluate its accuracy. Initially, the expanded T2T technique was validated with three independent RadCaTS RRV, DIMITRI-PICS, and APICS models, and results show a 1% average difference with other models over all bands. Further, this technique was validated with other SDSU techniques to calibrate the newly launched satellite Landsat 9 with 8, demonstrating good agreement in all bands within 0.5%. This technique was also validated for Terra MODIS and ETM+, showing consistency within 1% for all bands compared to four PICS sites. Additionally, the T2T technique was applied to a global scale using EPICS Global sites. The expanded T2T cross-calibration gain result obtained for Landsat 8 versus Landsat 7/8, Sentinel 2A/2B, and Terra/Aqua MODIS presented that the difference between these pairs was within 0.5–1% for most of the spectral bands. Total uncertainty obtained for these pairs of sensors using Monte Carlo Simulation varies from 2.5–4% for all bands except for SWIR2 bands, which vary up to 5%. The difference between EPICS Global and EPICS North Africa was calculated using the ratio of trend gain; the difference among them was within 0.5–1% difference on average for all the sensors and bands within a 0.5% uncertainty level difference. Full article
Show Figures

Figure 1

Other

Jump to: Research

Technical Note
Validation of Landsat-9 and Landsat-8 Surface Temperature and Reflectance during the Underfly Event
Remote Sens. 2023, 15(13), 3370; https://doi.org/10.3390/rs15133370 - 30 Jun 2023
Cited by 1 | Viewed by 695
Abstract
With the launch of Landsat-9 on 27 September 2021, Landsat continues its fifty-year continuity mission of providing users with calibrated Earth observations. It has become a requirement that an underflight experiment be performed during commissioning to support sensor cross-calibration. In this most recent [...] Read more.
With the launch of Landsat-9 on 27 September 2021, Landsat continues its fifty-year continuity mission of providing users with calibrated Earth observations. It has become a requirement that an underflight experiment be performed during commissioning to support sensor cross-calibration. In this most recent experiment, Landsat-9 flew under Landsat-8 for nearly three days with over 50% ground overlap, from 13 to 15 November 2021. To address the scarcity of reference data that are available to support calibration and validation early-on in the mission, a ground campaign was planned and executed by the Rochester Institute of Technology (RIT) on 14 November 2021 to provide full spectrum measurements for early mission comparisons. The primary experiment was conducted in the Outer Banks, North Carolina at Jockey’s Ridge Sand Dunes. Full-spectrum ground-based measurements were acquired with calibrated reference equipment, while a novel Unmanned Aircraft System (UAS)-based platforms acquired hyperspectral visible and near-infrared (VNIR)/Short-wave infrared (SWIR) imagery data and coincident broadband cooled thermal infrared (TIR) imagery. Results of satellite/UAS/ground comparisons were an indicator, during the commissioning phase, that Landsat-9 is behaving consistently with Landsat-8, ground reference, and UAS measurements. In the thermal infrared, all measurements agree to be within 1 K over water and to within 2 K over sand, which represents the most challenging material for estimating surface temperature. For the surface reflectance product(s), Landsat-8 and -9 are in good agreement and only deviate slightly from ground reference in the SWIR bands; a deviation of 2% in the VNIR and 5–8% in the SWIR regime. Subsequent longer-term studies indicate that Landsat 9 continues to perform as expected. The behavior of Thermal Infrared Sensor-2 (TIRS-2) against reference is also shown for the first year of the mission to illustrate its consistent performance. Full article
Show Figures

Figure 1

Protocol
Landsat 9 Cross Calibration Under-Fly of Landsat 8: Planning, and Execution
Remote Sens. 2022, 14(21), 5414; https://doi.org/10.3390/rs14215414 - 28 Oct 2022
Cited by 3 | Viewed by 1046
Abstract
During the early post-launch phase of the Landsat 9 mission, the Landsat 8 and 9 mission teams conducted a successful under-fly of Landsat 8 by Landsat 9, allowing for the near-simultaneous data collection of common Earth targets by the on-board sensors for cross-calibration. [...] Read more.
During the early post-launch phase of the Landsat 9 mission, the Landsat 8 and 9 mission teams conducted a successful under-fly of Landsat 8 by Landsat 9, allowing for the near-simultaneous data collection of common Earth targets by the on-board sensors for cross-calibration. This effort, coordinated by the Landsat Calibration and Validation team, required contributions from various entities across National Aeronautics and Space Administration and U.S. Geological Survey such as Flight Dynamics, Systems, Mission Planning, and Flight Operations teams, beginning about 18 months prior to launch. Plans existed to allow this under-fly for any possible launch date of Landsat 9. This included 16 ascent plans and 16 data acquisition plans, one for every day of the Landsat orbital repeat period, with a minimum of 5 days of useful coverage overlap between the sensors. After the Landsat 9 launch, the plan executed, and led to the acquisition of over 2000 partial to full overlapping scene pairs. Although containing less than the expected number of scenes, this dataset was larger than previous Landsat mission under-fly efforts and more than sufficient for performing cross-calibration of the Landsat 8 and Landsat 9 sensors. The details of the planning process and execution of this under-fly are presented. Full article
Show Figures

Figure 1

Back to TopTop